blob: aa9b9c0ed43ad8dbdea81dbac8e4d29144fee187 [file] [log] [blame]
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "tests/TestUtils.h"
#include "include/encode/SkPngEncoder.h"
#include "include/utils/SkBase64.h"
#include "src/core/SkUtils.h"
#include "src/gpu/GrContextPriv.h"
#include "src/gpu/GrDrawingManager.h"
#include "src/gpu/GrGpu.h"
#include "src/gpu/GrImageInfo.h"
#include "src/gpu/GrSurfaceContext.h"
#include "src/gpu/GrSurfaceProxy.h"
#include "src/gpu/GrTextureProxy.h"
#include "src/gpu/SkGr.h"
void TestReadPixels(skiatest::Reporter* reporter,
GrSurfaceContext* srcContext,
uint32_t expectedPixelValues[],
const char* testName) {
int pixelCnt = srcContext->width() * srcContext->height();
SkAutoTMalloc<uint32_t> pixels(pixelCnt);
memset(pixels.get(), 0, sizeof(uint32_t)*pixelCnt);
SkImageInfo ii = SkImageInfo::Make(srcContext->width(), srcContext->height(),
kRGBA_8888_SkColorType, kPremul_SkAlphaType);
bool read = srcContext->readPixels(ii, pixels.get(), 0, {0, 0});
if (!read) {
ERRORF(reporter, "%s: Error reading from texture.", testName);
}
for (int i = 0; i < pixelCnt; ++i) {
if (pixels.get()[i] != expectedPixelValues[i]) {
ERRORF(reporter, "%s: Error, pixel value %d should be 0x%08x, got 0x%08x.",
testName, i, expectedPixelValues[i], pixels.get()[i]);
break;
}
}
}
void TestWritePixels(skiatest::Reporter* reporter,
GrSurfaceContext* dstContext,
bool expectedToWork,
const char* testName) {
int pixelCnt = dstContext->width() * dstContext->height();
SkAutoTMalloc<uint32_t> pixels(pixelCnt);
for (int y = 0; y < dstContext->width(); ++y) {
for (int x = 0; x < dstContext->height(); ++x) {
pixels.get()[y * dstContext->width() + x] =
SkColorToPremulGrColor(SkColorSetARGB(2*y, x, y, x + y));
}
}
SkImageInfo ii = SkImageInfo::Make(dstContext->width(), dstContext->height(),
kRGBA_8888_SkColorType, kPremul_SkAlphaType);
bool write = dstContext->writePixels(ii, pixels.get(), 0, {0, 0});
if (!write) {
if (expectedToWork) {
ERRORF(reporter, "%s: Error writing to texture.", testName);
}
return;
}
if (write && !expectedToWork) {
ERRORF(reporter, "%s: writePixels succeeded when it wasn't supposed to.", testName);
return;
}
TestReadPixels(reporter, dstContext, pixels.get(), testName);
}
void TestCopyFromSurface(skiatest::Reporter* reporter,
GrContext* context,
GrSurfaceProxy* proxy,
GrColorType colorType,
uint32_t expectedPixelValues[],
const char* testName) {
sk_sp<GrTextureProxy> dstProxy = GrSurfaceProxy::Copy(context, proxy, colorType,
GrMipMapped::kNo, SkBackingFit::kExact,
SkBudgeted::kYes);
SkASSERT(dstProxy);
GrSurfaceOrigin origin = dstProxy->origin();
GrSwizzle swizzle = context->priv().caps()->getReadSwizzle(dstProxy->backendFormat(),
colorType);
GrSurfaceProxyView view(std::move(dstProxy), origin, swizzle);
auto dstContext = GrSurfaceContext::Make(context, std::move(view), colorType,
kPremul_SkAlphaType, nullptr);
SkASSERT(dstContext);
TestReadPixels(reporter, dstContext.get(), expectedPixelValues, testName);
}
void FillPixelData(int width, int height, GrColor* data) {
for (int j = 0; j < height; ++j) {
for (int i = 0; i < width; ++i) {
unsigned int red = (unsigned int)(256.f * (i / (float)width));
unsigned int green = (unsigned int)(256.f * (j / (float)height));
data[i + j * width] = GrColorPackRGBA(red - (red >> 8), green - (green >> 8),
0xff, 0xff);
}
}
}
bool CreateBackendTexture(GrContext* context,
GrBackendTexture* backendTex,
const SkImageInfo& ii,
const SkColor4f& color,
GrMipMapped mipMapped,
GrRenderable renderable) {
*backendTex = context->createBackendTexture(ii.width(), ii.height(), ii.colorType(),
color, mipMapped, renderable);
return backendTex->isValid();
}
void DeleteBackendTexture(GrContext* context, const GrBackendTexture& backendTex) {
GrFlushInfo flushInfo;
flushInfo.fFlags = kSyncCpu_GrFlushFlag;
context->flush(flushInfo);
context->deleteBackendTexture(backendTex);
}
bool DoesFullBufferContainCorrectColor(const GrColor* srcBuffer,
const GrColor* dstBuffer,
int width, int height) {
const GrColor* srcPtr = srcBuffer;
const GrColor* dstPtr = dstBuffer;
for (int j = 0; j < height; ++j) {
for (int i = 0; i < width; ++i) {
if (srcPtr[i] != dstPtr[i]) {
return false;
}
}
srcPtr += width;
dstPtr += width;
}
return true;
}
bool BipmapToBase64DataURI(const SkBitmap& bitmap, SkString* dst) {
SkPixmap pm;
if (!bitmap.peekPixels(&pm)) {
dst->set("peekPixels failed");
return false;
}
// We're going to embed this PNG in a data URI, so make it as small as possible
SkPngEncoder::Options options;
options.fFilterFlags = SkPngEncoder::FilterFlag::kAll;
options.fZLibLevel = 9;
SkDynamicMemoryWStream wStream;
if (!SkPngEncoder::Encode(&wStream, pm, options)) {
dst->set("SkPngEncoder::Encode failed");
return false;
}
sk_sp<SkData> pngData = wStream.detachAsData();
size_t len = SkBase64::Encode(pngData->data(), pngData->size(), nullptr);
// The PNG can be almost arbitrarily large. We don't want to fill our logs with enormous URLs.
// Infra says these can be pretty big, as long as we're only outputting them on failure.
static const size_t kMaxBase64Length = 1024 * 1024;
if (len > kMaxBase64Length) {
dst->printf("Encoded image too large (%u bytes)", static_cast<uint32_t>(len));
return false;
}
dst->resize(len);
SkBase64::Encode(pngData->data(), pngData->size(), dst->writable_str());
dst->prepend("data:image/png;base64,");
return true;
}
using AccessPixelFn = const float*(const char* floatBuffer, int x, int y);
bool compare_pixels(int width, int height,
const char* floatA, std::function<AccessPixelFn>& atA,
const char* floatB, std::function<AccessPixelFn>& atB,
const float tolRGBA[4], std::function<ComparePixmapsErrorReporter>& error) {
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
const float* rgbaA = atA(floatA, x, y);
const float* rgbaB = atB(floatB, x, y);
float diffs[4];
bool bad = false;
for (int i = 0; i < 4; ++i) {
diffs[i] = rgbaB[i] - rgbaA[i];
if (std::abs(diffs[i]) > std::abs(tolRGBA[i])) {
bad = true;
}
}
if (bad) {
error(x, y, diffs);
return false;
}
}
}
return true;
}
bool ComparePixels(const GrImageInfo& infoA, const char* a, size_t rowBytesA,
const GrImageInfo& infoB, const char* b, size_t rowBytesB,
const float tolRGBA[4], std::function<ComparePixmapsErrorReporter>& error) {
if (infoA.width() != infoB.width() || infoA.height() != infoB.height()) {
static constexpr float kDummyDiffs[4] = {};
error(-1, -1, kDummyDiffs);
return false;
}
SkAlphaType floatAlphaType = infoA.alphaType();
// If one is premul and the other is unpremul we do the comparison in premul space.
if ((infoA.alphaType() == kPremul_SkAlphaType ||
infoB.alphaType() == kPremul_SkAlphaType) &&
(infoA.alphaType() == kUnpremul_SkAlphaType ||
infoB.alphaType() == kUnpremul_SkAlphaType)) {
floatAlphaType = kPremul_SkAlphaType;
}
sk_sp<SkColorSpace> floatCS;
if (SkColorSpace::Equals(infoA.colorSpace(), infoB.colorSpace())) {
floatCS = infoA.refColorSpace();
} else {
floatCS = SkColorSpace::MakeSRGBLinear();
}
GrImageInfo floatInfo(GrColorType::kRGBA_F32, floatAlphaType, std::move(floatCS),
infoA.width(), infoA.height());
size_t floatBpp = GrColorTypeBytesPerPixel(GrColorType::kRGBA_F32);
size_t floatRowBytes = floatBpp * infoA.width();
std::unique_ptr<char[]> floatA(new char[floatRowBytes * infoA.height()]);
std::unique_ptr<char[]> floatB(new char[floatRowBytes * infoA.height()]);
SkAssertResult(GrConvertPixels(floatInfo, floatA.get(), floatRowBytes, infoA, a, rowBytesA));
SkAssertResult(GrConvertPixels(floatInfo, floatB.get(), floatRowBytes, infoB, b, rowBytesB));
auto at = std::function<AccessPixelFn>(
[floatBpp, floatRowBytes](const char* floatBuffer, int x, int y) {
return reinterpret_cast<const float*>(floatBuffer + y * floatRowBytes + x * floatBpp);
});
return compare_pixels(infoA.width(), infoA.height(),
floatA.get(), at, floatB.get(), at,
tolRGBA, error);
}
bool ComparePixels(const SkPixmap& a, const SkPixmap& b, const float tolRGBA[4],
std::function<ComparePixmapsErrorReporter>& error) {
return ComparePixels(a.info(), static_cast<const char*>(a.addr()), a.rowBytes(),
b.info(), static_cast<const char*>(b.addr()), b.rowBytes(),
tolRGBA, error);
}
bool CheckSolidPixels(const SkColor4f& col, const SkPixmap& pixmap,
const float tolRGBA[4], std::function<ComparePixmapsErrorReporter>& error) {
size_t floatBpp = GrColorTypeBytesPerPixel(GrColorType::kRGBA_F32);
std::unique_ptr<char[]> floatA(new char[floatBpp]);
// First convert 'col' to be compatible with 'pixmap'
{
sk_sp<SkColorSpace> srcCS = SkColorSpace::MakeSRGBLinear();
GrImageInfo srcInfo(GrColorType::kRGBA_F32, kUnpremul_SkAlphaType, std::move(srcCS), 1, 1);
GrImageInfo dstInfo(GrColorType::kRGBA_F32, pixmap.alphaType(), pixmap.refColorSpace(), 1, 1);
SkAssertResult(GrConvertPixels(dstInfo, floatA.get(), floatBpp, srcInfo,
col.vec(), floatBpp));
}
size_t floatRowBytes = floatBpp * pixmap.width();
std::unique_ptr<char[]> floatB(new char[floatRowBytes * pixmap.height()]);
// Then convert 'pixmap' to RGBA_F32
{
GrImageInfo dstInfo(GrColorType::kRGBA_F32, pixmap.alphaType(), pixmap.refColorSpace(),
pixmap.width(), pixmap.height());
SkAssertResult(GrConvertPixels(dstInfo, floatB.get(), floatRowBytes, pixmap.info(),
pixmap.addr(), pixmap.rowBytes()));
}
auto atA = std::function<AccessPixelFn>(
[](const char* floatBuffer, int /* x */, int /* y */) {
return reinterpret_cast<const float*>(floatBuffer);
});
auto atB = std::function<AccessPixelFn>(
[floatBpp, floatRowBytes](const char* floatBuffer, int x, int y) {
return reinterpret_cast<const float*>(floatBuffer + y * floatRowBytes + x * floatBpp);
});
return compare_pixels(pixmap.width(), pixmap.height(), floatA.get(), atA, floatB.get(), atB,
tolRGBA, error);
}
void CheckSingleThreadedProxyRefs(skiatest::Reporter* reporter,
GrTextureProxy* proxy,
int32_t expectedProxyRefs,
int32_t expectedBackingRefs) {
int32_t actualBackingRefs = proxy->testingOnly_getBackingRefCnt();
REPORTER_ASSERT(reporter, proxy->refCntGreaterThan(expectedProxyRefs - 1) &&
!proxy->refCntGreaterThan(expectedProxyRefs));
REPORTER_ASSERT(reporter, actualBackingRefs == expectedBackingRefs);
}
#include "src/utils/SkCharToGlyphCache.h"
static SkGlyphID hash_to_glyph(uint32_t value) {
return SkToU16(((value >> 16) ^ value) & 0xFFFF);
}
namespace {
class UnicharGen {
SkUnichar fU;
const int fStep;
public:
UnicharGen(int step) : fU(0), fStep(step) {}
SkUnichar next() {
fU += fStep;
return fU;
}
};
}
DEF_TEST(chartoglyph_cache, reporter) {
SkCharToGlyphCache cache;
const int step = 3;
UnicharGen gen(step);
for (int i = 0; i < 500; ++i) {
SkUnichar c = gen.next();
SkGlyphID glyph = hash_to_glyph(c);
int index = cache.findGlyphIndex(c);
if (index >= 0) {
index = cache.findGlyphIndex(c);
}
REPORTER_ASSERT(reporter, index < 0);
cache.insertCharAndGlyph(~index, c, glyph);
UnicharGen gen2(step);
for (int j = 0; j <= i; ++j) {
c = gen2.next();
glyph = hash_to_glyph(c);
index = cache.findGlyphIndex(c);
if ((unsigned)index != glyph) {
index = cache.findGlyphIndex(c);
}
REPORTER_ASSERT(reporter, (unsigned)index == glyph);
}
}
}