| |
| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "GrCircleBlurFragmentProcessor.h" |
| |
| #if SK_SUPPORT_GPU |
| |
| #include "GrContext.h" |
| #include "GrTextureProvider.h" |
| |
| #include "gl/GrGLFragmentProcessor.h" |
| #include "gl/builders/GrGLProgramBuilder.h" |
| #include "glsl/GrGLSLProgramDataManager.h" |
| |
| class GrGLCircleBlurFragmentProcessor : public GrGLFragmentProcessor { |
| public: |
| GrGLCircleBlurFragmentProcessor(const GrProcessor&) {} |
| void emitCode(EmitArgs&) override; |
| |
| protected: |
| void onSetData(const GrGLSLProgramDataManager&, const GrProcessor&) override; |
| |
| private: |
| GrGLSLProgramDataManager::UniformHandle fDataUniform; |
| |
| typedef GrGLFragmentProcessor INHERITED; |
| }; |
| |
| void GrGLCircleBlurFragmentProcessor::emitCode(EmitArgs& args) { |
| |
| const char *dataName; |
| |
| // The data is formatted as: |
| // x,y - the center of the circle |
| // z - the distance at which the intensity starts falling off (e.g., the start of the table) |
| // w - the size of the profile texture |
| fDataUniform = args.fBuilder->addUniform(GrGLProgramBuilder::kFragment_Visibility, |
| kVec4f_GrSLType, |
| kDefault_GrSLPrecision, |
| "data", |
| &dataName); |
| |
| GrGLFragmentBuilder* fsBuilder = args.fBuilder->getFragmentShaderBuilder(); |
| const char *fragmentPos = fsBuilder->fragmentPosition(); |
| |
| if (args.fInputColor) { |
| fsBuilder->codeAppendf("vec4 src=%s;", args.fInputColor); |
| } else { |
| fsBuilder->codeAppendf("vec4 src=vec4(1);"); |
| } |
| |
| fsBuilder->codeAppendf("vec2 vec = %s.xy - %s.xy;", fragmentPos, dataName); |
| fsBuilder->codeAppendf("float dist = (length(vec) - %s.z + 0.5) / %s.w;", dataName, dataName); |
| |
| fsBuilder->codeAppendf("float intensity = "); |
| fsBuilder->appendTextureLookup(args.fSamplers[0], "vec2(dist, 0.5)"); |
| fsBuilder->codeAppend(".a;"); |
| |
| fsBuilder->codeAppendf("%s = src * intensity;\n", args.fOutputColor ); |
| } |
| |
| void GrGLCircleBlurFragmentProcessor::onSetData(const GrGLSLProgramDataManager& pdman, |
| const GrProcessor& proc) { |
| const GrCircleBlurFragmentProcessor& cbfp = proc.cast<GrCircleBlurFragmentProcessor>(); |
| const SkRect& circle = cbfp.circle(); |
| |
| // The data is formatted as: |
| // x,y - the center of the circle |
| // z - the distance at which the intensity starts falling off (e.g., the start of the table) |
| // w - the size of the profile texture |
| pdman.set4f(fDataUniform, circle.centerX(), circle.centerY(), cbfp.offset(), |
| SkIntToScalar(cbfp.profileSize())); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| GrCircleBlurFragmentProcessor::GrCircleBlurFragmentProcessor(const SkRect& circle, |
| float sigma, |
| float offset, |
| GrTexture* blurProfile) |
| : fCircle(circle) |
| , fSigma(sigma) |
| , fOffset(offset) |
| , fBlurProfileAccess(blurProfile, GrTextureParams::kBilerp_FilterMode) { |
| this->initClassID<GrCircleBlurFragmentProcessor>(); |
| this->addTextureAccess(&fBlurProfileAccess); |
| this->setWillReadFragmentPosition(); |
| } |
| |
| GrGLFragmentProcessor* GrCircleBlurFragmentProcessor::onCreateGLInstance() const { |
| return new GrGLCircleBlurFragmentProcessor(*this); |
| } |
| |
| void GrCircleBlurFragmentProcessor::onGetGLProcessorKey(const GrGLSLCaps& caps, |
| GrProcessorKeyBuilder* b) const { |
| GrGLCircleBlurFragmentProcessor::GenKey(*this, caps, b); |
| } |
| |
| void GrCircleBlurFragmentProcessor::onComputeInvariantOutput(GrInvariantOutput* inout) const { |
| inout->mulByUnknownSingleComponent(); |
| } |
| |
| // Evaluate an AA circle function centered at the origin with 'radius' at (x,y) |
| static inline float disk(float x, float y, float radius) { |
| float distSq = x*x + y*y; |
| if (distSq <= (radius-0.5f)*(radius-0.5f)) { |
| return 1.0f; |
| } else if (distSq >= (radius+0.5f)*(radius+0.5f)) { |
| return 0.0f; |
| } else { |
| float ramp = radius + 0.5f - sqrtf(distSq); |
| SkASSERT(ramp >= 0.0f && ramp <= 1.0f); |
| return ramp; |
| } |
| } |
| |
| // Create the top half of an even-sized Gaussian kernel |
| static void make_half_kernel(float* kernel, int kernelWH, float sigma) { |
| SkASSERT(!(kernelWH & 1)); |
| |
| const float kernelOff = (kernelWH-1)/2.0f; |
| |
| float b = 1.0f / (2.0f * sigma * sigma); |
| // omit the scale term since we're just going to renormalize |
| |
| float tot = 0.0f; |
| for (int y = 0; y < kernelWH/2; ++y) { |
| for (int x = 0; x < kernelWH/2; ++x) { |
| // TODO: use a cheap approximation of the 2D Guassian? |
| float x2 = (x-kernelOff) * (x-kernelOff); |
| float y2 = (y-kernelOff) * (y-kernelOff); |
| // The kernel is symmetric so only compute it once for both sides |
| kernel[y*kernelWH+(kernelWH-x-1)] = kernel[y*kernelWH+x] = expf(-(x2 + y2) * b); |
| tot += 2.0f * kernel[y*kernelWH+x]; |
| } |
| } |
| // Still normalize the half kernel to 1.0 (rather than 0.5) so we don't |
| // have to scale by 2.0 after convolution. |
| for (int y = 0; y < kernelWH/2; ++y) { |
| for (int x = 0; x < kernelWH; ++x) { |
| kernel[y*kernelWH+x] /= tot; |
| } |
| } |
| } |
| |
| // Apply the half-kernel at 't' away from the center of the circle |
| static uint8_t eval_at(float t, float halfWidth, float* halfKernel, int kernelWH) { |
| SkASSERT(!(kernelWH & 1)); |
| |
| const float kernelOff = (kernelWH-1)/2.0f; |
| |
| float acc = 0; |
| |
| for (int y = 0; y < kernelWH/2; ++y) { |
| if (kernelOff-y > halfWidth+0.5f) { |
| // All disk() samples in this row will be 0.0f |
| continue; |
| } |
| |
| for (int x = 0; x < kernelWH; ++x) { |
| float image = disk(t - kernelOff + x, -kernelOff + y, halfWidth); |
| float kernel = halfKernel[y*kernelWH+x]; |
| acc += kernel * image; |
| } |
| } |
| |
| return SkUnitScalarClampToByte(acc); |
| } |
| |
| static inline void compute_profile_offset_and_size(float halfWH, float sigma, |
| float* offset, int* size) { |
| |
| if (3*sigma <= halfWH) { |
| // The circle is bigger than the Gaussian. In this case we know the interior of the |
| // blurred circle is solid. |
| *offset = halfWH - 3 * sigma; // This location maps to 0.5f in the weights texture. |
| // It should always be 255. |
| *size = SkScalarCeilToInt(6*sigma); |
| } else { |
| // The Gaussian is bigger than the circle. |
| *offset = 0.0f; |
| *size = SkScalarCeilToInt(halfWH + 3*sigma); |
| } |
| } |
| |
| static uint8_t* create_profile(float halfWH, float sigma) { |
| |
| int kernelWH = SkScalarCeilToInt(6.0f*sigma); |
| kernelWH = (kernelWH + 1) & ~1; // make it the next even number up |
| |
| SkAutoTArray<float> halfKernel(kernelWH*kernelWH/2); |
| |
| make_half_kernel(halfKernel.get(), kernelWH, sigma); |
| |
| float offset; |
| int numSteps; |
| |
| compute_profile_offset_and_size(halfWH, sigma, &offset, &numSteps); |
| |
| uint8_t* weights = new uint8_t[numSteps]; |
| for (int i = 0; i < numSteps; ++i) { |
| weights[i] = eval_at(offset+i, halfWH, halfKernel.get(), kernelWH); |
| } |
| |
| return weights; |
| } |
| |
| GrTexture* GrCircleBlurFragmentProcessor::CreateCircleBlurProfileTexture( |
| GrTextureProvider* textureProvider, |
| const SkRect& circle, |
| float sigma, |
| float* offset) { |
| float halfWH = circle.width() / 2.0f; |
| |
| int size; |
| compute_profile_offset_and_size(halfWH, sigma, offset, &size); |
| |
| GrSurfaceDesc texDesc; |
| texDesc.fWidth = size; |
| texDesc.fHeight = 1; |
| texDesc.fConfig = kAlpha_8_GrPixelConfig; |
| |
| static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain(); |
| GrUniqueKey key; |
| GrUniqueKey::Builder builder(&key, kDomain, 2); |
| // The profile curve varies with both the sigma of the Gaussian and the size of the |
| // disk. Quantizing to 16.16 should be close enough though. |
| builder[0] = SkScalarToFixed(sigma); |
| builder[1] = SkScalarToFixed(halfWH); |
| builder.finish(); |
| |
| GrTexture *blurProfile = textureProvider->findAndRefTextureByUniqueKey(key); |
| |
| if (!blurProfile) { |
| SkAutoTDeleteArray<uint8_t> profile(create_profile(halfWH, sigma)); |
| |
| blurProfile = textureProvider->createTexture(texDesc, true, profile.get(), 0); |
| if (blurProfile) { |
| textureProvider->assignUniqueKeyToTexture(key, blurProfile); |
| } |
| } |
| |
| return blurProfile; |
| } |
| |
| GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrCircleBlurFragmentProcessor); |
| |
| const GrFragmentProcessor* GrCircleBlurFragmentProcessor::TestCreate(GrProcessorTestData* d) { |
| SkScalar wh = d->fRandom->nextRangeScalar(100.f, 1000.f); |
| SkScalar sigma = d->fRandom->nextRangeF(1.f,10.f); |
| SkRect circle = SkRect::MakeWH(wh, wh); |
| return GrCircleBlurFragmentProcessor::Create(d->fContext->textureProvider(), circle, sigma); |
| } |
| |
| #endif |