blob: a4919686742f20c006b2a39f933e2aeb0184b228 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkSLSPIRVCodeGenerator.h"
#include "string.h"
#include "GLSL.std.450.h"
#include "ir/SkSLExpressionStatement.h"
#include "ir/SkSLExtension.h"
#include "ir/SkSLIndexExpression.h"
#include "ir/SkSLVariableReference.h"
#include "SkSLCompiler.h"
namespace SkSL {
#define SPIRV_DEBUG 0
static const int32_t SKSL_MAGIC = 0x0; // FIXME: we should probably register a magic number
void SPIRVCodeGenerator::setupIntrinsics() {
#define ALL_GLSL(x) std::make_tuple(kGLSL_STD_450_IntrinsicKind, GLSLstd450 ## x, GLSLstd450 ## x, \
GLSLstd450 ## x, GLSLstd450 ## x)
#define BY_TYPE_GLSL(ifFloat, ifInt, ifUInt) std::make_tuple(kGLSL_STD_450_IntrinsicKind, \
GLSLstd450 ## ifFloat, \
GLSLstd450 ## ifInt, \
GLSLstd450 ## ifUInt, \
SpvOpUndef)
#define SPECIAL(x) std::make_tuple(kSpecial_IntrinsicKind, k ## x ## _SpecialIntrinsic, \
k ## x ## _SpecialIntrinsic, k ## x ## _SpecialIntrinsic, \
k ## x ## _SpecialIntrinsic)
fIntrinsicMap["round"] = ALL_GLSL(Round);
fIntrinsicMap["roundEven"] = ALL_GLSL(RoundEven);
fIntrinsicMap["trunc"] = ALL_GLSL(Trunc);
fIntrinsicMap["abs"] = BY_TYPE_GLSL(FAbs, SAbs, SAbs);
fIntrinsicMap["sign"] = BY_TYPE_GLSL(FSign, SSign, SSign);
fIntrinsicMap["floor"] = ALL_GLSL(Floor);
fIntrinsicMap["ceil"] = ALL_GLSL(Ceil);
fIntrinsicMap["fract"] = ALL_GLSL(Fract);
fIntrinsicMap["radians"] = ALL_GLSL(Radians);
fIntrinsicMap["degrees"] = ALL_GLSL(Degrees);
fIntrinsicMap["sin"] = ALL_GLSL(Sin);
fIntrinsicMap["cos"] = ALL_GLSL(Cos);
fIntrinsicMap["tan"] = ALL_GLSL(Tan);
fIntrinsicMap["asin"] = ALL_GLSL(Asin);
fIntrinsicMap["acos"] = ALL_GLSL(Acos);
fIntrinsicMap["atan"] = SPECIAL(Atan);
fIntrinsicMap["sinh"] = ALL_GLSL(Sinh);
fIntrinsicMap["cosh"] = ALL_GLSL(Cosh);
fIntrinsicMap["tanh"] = ALL_GLSL(Tanh);
fIntrinsicMap["asinh"] = ALL_GLSL(Asinh);
fIntrinsicMap["acosh"] = ALL_GLSL(Acosh);
fIntrinsicMap["atanh"] = ALL_GLSL(Atanh);
fIntrinsicMap["pow"] = ALL_GLSL(Pow);
fIntrinsicMap["exp"] = ALL_GLSL(Exp);
fIntrinsicMap["log"] = ALL_GLSL(Log);
fIntrinsicMap["exp2"] = ALL_GLSL(Exp2);
fIntrinsicMap["log2"] = ALL_GLSL(Log2);
fIntrinsicMap["sqrt"] = ALL_GLSL(Sqrt);
fIntrinsicMap["inversesqrt"] = ALL_GLSL(InverseSqrt);
fIntrinsicMap["determinant"] = ALL_GLSL(Determinant);
fIntrinsicMap["matrixInverse"] = ALL_GLSL(MatrixInverse);
fIntrinsicMap["mod"] = std::make_tuple(kSPIRV_IntrinsicKind, SpvOpFMod, SpvOpSMod,
SpvOpUMod, SpvOpUndef);
fIntrinsicMap["min"] = BY_TYPE_GLSL(FMin, SMin, UMin);
fIntrinsicMap["max"] = BY_TYPE_GLSL(FMax, SMax, UMax);
fIntrinsicMap["clamp"] = BY_TYPE_GLSL(FClamp, SClamp, UClamp);
fIntrinsicMap["dot"] = std::make_tuple(kSPIRV_IntrinsicKind, SpvOpDot, SpvOpUndef,
SpvOpUndef, SpvOpUndef);
fIntrinsicMap["mix"] = ALL_GLSL(FMix);
fIntrinsicMap["step"] = ALL_GLSL(Step);
fIntrinsicMap["smoothstep"] = ALL_GLSL(SmoothStep);
fIntrinsicMap["fma"] = ALL_GLSL(Fma);
fIntrinsicMap["frexp"] = ALL_GLSL(Frexp);
fIntrinsicMap["ldexp"] = ALL_GLSL(Ldexp);
#define PACK(type) fIntrinsicMap["pack" #type] = ALL_GLSL(Pack ## type); \
fIntrinsicMap["unpack" #type] = ALL_GLSL(Unpack ## type)
PACK(Snorm4x8);
PACK(Unorm4x8);
PACK(Snorm2x16);
PACK(Unorm2x16);
PACK(Half2x16);
PACK(Double2x32);
fIntrinsicMap["length"] = ALL_GLSL(Length);
fIntrinsicMap["distance"] = ALL_GLSL(Distance);
fIntrinsicMap["cross"] = ALL_GLSL(Cross);
fIntrinsicMap["normalize"] = ALL_GLSL(Normalize);
fIntrinsicMap["faceForward"] = ALL_GLSL(FaceForward);
fIntrinsicMap["reflect"] = ALL_GLSL(Reflect);
fIntrinsicMap["refract"] = ALL_GLSL(Refract);
fIntrinsicMap["findLSB"] = ALL_GLSL(FindILsb);
fIntrinsicMap["findMSB"] = BY_TYPE_GLSL(FindSMsb, FindSMsb, FindUMsb);
fIntrinsicMap["dFdx"] = std::make_tuple(kSPIRV_IntrinsicKind, SpvOpDPdx, SpvOpUndef,
SpvOpUndef, SpvOpUndef);
fIntrinsicMap["dFdy"] = std::make_tuple(kSPIRV_IntrinsicKind, SpvOpDPdy, SpvOpUndef,
SpvOpUndef, SpvOpUndef);
fIntrinsicMap["dFdy"] = std::make_tuple(kSPIRV_IntrinsicKind, SpvOpDPdy, SpvOpUndef,
SpvOpUndef, SpvOpUndef);
fIntrinsicMap["texture"] = SPECIAL(Texture);
fIntrinsicMap["texture2D"] = SPECIAL(Texture2D);
fIntrinsicMap["textureProj"] = SPECIAL(TextureProj);
fIntrinsicMap["any"] = std::make_tuple(kSPIRV_IntrinsicKind, SpvOpUndef,
SpvOpUndef, SpvOpUndef, SpvOpAny);
fIntrinsicMap["all"] = std::make_tuple(kSPIRV_IntrinsicKind, SpvOpUndef,
SpvOpUndef, SpvOpUndef, SpvOpAll);
fIntrinsicMap["equal"] = std::make_tuple(kSPIRV_IntrinsicKind, SpvOpFOrdEqual,
SpvOpIEqual, SpvOpIEqual,
SpvOpLogicalEqual);
fIntrinsicMap["notEqual"] = std::make_tuple(kSPIRV_IntrinsicKind, SpvOpFOrdNotEqual,
SpvOpINotEqual, SpvOpINotEqual,
SpvOpLogicalNotEqual);
fIntrinsicMap["lessThan"] = std::make_tuple(kSPIRV_IntrinsicKind, SpvOpSLessThan,
SpvOpULessThan, SpvOpFOrdLessThan,
SpvOpUndef);
fIntrinsicMap["lessThanEqual"] = std::make_tuple(kSPIRV_IntrinsicKind, SpvOpSLessThanEqual,
SpvOpULessThanEqual, SpvOpFOrdLessThanEqual,
SpvOpUndef);
fIntrinsicMap["greaterThan"] = std::make_tuple(kSPIRV_IntrinsicKind, SpvOpSGreaterThan,
SpvOpUGreaterThan, SpvOpFOrdGreaterThan,
SpvOpUndef);
fIntrinsicMap["greaterThanEqual"] = std::make_tuple(kSPIRV_IntrinsicKind,
SpvOpSGreaterThanEqual,
SpvOpUGreaterThanEqual,
SpvOpFOrdGreaterThanEqual,
SpvOpUndef);
// interpolateAt* not yet supported...
}
void SPIRVCodeGenerator::writeWord(int32_t word, std::ostream& out) {
#if SPIRV_DEBUG
out << "(" << word << ") ";
#else
out.write((const char*) &word, sizeof(word));
#endif
}
static bool is_float(const Context& context, const Type& type) {
if (type.kind() == Type::kVector_Kind) {
return is_float(context, type.componentType());
}
return type == *context.fFloat_Type || type == *context.fDouble_Type;
}
static bool is_signed(const Context& context, const Type& type) {
if (type.kind() == Type::kVector_Kind) {
return is_signed(context, type.componentType());
}
return type == *context.fInt_Type;
}
static bool is_unsigned(const Context& context, const Type& type) {
if (type.kind() == Type::kVector_Kind) {
return is_unsigned(context, type.componentType());
}
return type == *context.fUInt_Type;
}
static bool is_bool(const Context& context, const Type& type) {
if (type.kind() == Type::kVector_Kind) {
return is_bool(context, type.componentType());
}
return type == *context.fBool_Type;
}
static bool is_out(const Variable& var) {
return (var.fModifiers.fFlags & Modifiers::kOut_Flag) != 0;
}
#if SPIRV_DEBUG
static std::string opcode_text(SpvOp_ opCode) {
switch (opCode) {
case SpvOpNop:
return "Nop";
case SpvOpUndef:
return "Undef";
case SpvOpSourceContinued:
return "SourceContinued";
case SpvOpSource:
return "Source";
case SpvOpSourceExtension:
return "SourceExtension";
case SpvOpName:
return "Name";
case SpvOpMemberName:
return "MemberName";
case SpvOpString:
return "String";
case SpvOpLine:
return "Line";
case SpvOpExtension:
return "Extension";
case SpvOpExtInstImport:
return "ExtInstImport";
case SpvOpExtInst:
return "ExtInst";
case SpvOpMemoryModel:
return "MemoryModel";
case SpvOpEntryPoint:
return "EntryPoint";
case SpvOpExecutionMode:
return "ExecutionMode";
case SpvOpCapability:
return "Capability";
case SpvOpTypeVoid:
return "TypeVoid";
case SpvOpTypeBool:
return "TypeBool";
case SpvOpTypeInt:
return "TypeInt";
case SpvOpTypeFloat:
return "TypeFloat";
case SpvOpTypeVector:
return "TypeVector";
case SpvOpTypeMatrix:
return "TypeMatrix";
case SpvOpTypeImage:
return "TypeImage";
case SpvOpTypeSampler:
return "TypeSampler";
case SpvOpTypeSampledImage:
return "TypeSampledImage";
case SpvOpTypeArray:
return "TypeArray";
case SpvOpTypeRuntimeArray:
return "TypeRuntimeArray";
case SpvOpTypeStruct:
return "TypeStruct";
case SpvOpTypeOpaque:
return "TypeOpaque";
case SpvOpTypePointer:
return "TypePointer";
case SpvOpTypeFunction:
return "TypeFunction";
case SpvOpTypeEvent:
return "TypeEvent";
case SpvOpTypeDeviceEvent:
return "TypeDeviceEvent";
case SpvOpTypeReserveId:
return "TypeReserveId";
case SpvOpTypeQueue:
return "TypeQueue";
case SpvOpTypePipe:
return "TypePipe";
case SpvOpTypeForwardPointer:
return "TypeForwardPointer";
case SpvOpConstantTrue:
return "ConstantTrue";
case SpvOpConstantFalse:
return "ConstantFalse";
case SpvOpConstant:
return "Constant";
case SpvOpConstantComposite:
return "ConstantComposite";
case SpvOpConstantSampler:
return "ConstantSampler";
case SpvOpConstantNull:
return "ConstantNull";
case SpvOpSpecConstantTrue:
return "SpecConstantTrue";
case SpvOpSpecConstantFalse:
return "SpecConstantFalse";
case SpvOpSpecConstant:
return "SpecConstant";
case SpvOpSpecConstantComposite:
return "SpecConstantComposite";
case SpvOpSpecConstantOp:
return "SpecConstantOp";
case SpvOpFunction:
return "Function";
case SpvOpFunctionParameter:
return "FunctionParameter";
case SpvOpFunctionEnd:
return "FunctionEnd";
case SpvOpFunctionCall:
return "FunctionCall";
case SpvOpVariable:
return "Variable";
case SpvOpImageTexelPointer:
return "ImageTexelPointer";
case SpvOpLoad:
return "Load";
case SpvOpStore:
return "Store";
case SpvOpCopyMemory:
return "CopyMemory";
case SpvOpCopyMemorySized:
return "CopyMemorySized";
case SpvOpAccessChain:
return "AccessChain";
case SpvOpInBoundsAccessChain:
return "InBoundsAccessChain";
case SpvOpPtrAccessChain:
return "PtrAccessChain";
case SpvOpArrayLength:
return "ArrayLength";
case SpvOpGenericPtrMemSemantics:
return "GenericPtrMemSemantics";
case SpvOpInBoundsPtrAccessChain:
return "InBoundsPtrAccessChain";
case SpvOpDecorate:
return "Decorate";
case SpvOpMemberDecorate:
return "MemberDecorate";
case SpvOpDecorationGroup:
return "DecorationGroup";
case SpvOpGroupDecorate:
return "GroupDecorate";
case SpvOpGroupMemberDecorate:
return "GroupMemberDecorate";
case SpvOpVectorExtractDynamic:
return "VectorExtractDynamic";
case SpvOpVectorInsertDynamic:
return "VectorInsertDynamic";
case SpvOpVectorShuffle:
return "VectorShuffle";
case SpvOpCompositeConstruct:
return "CompositeConstruct";
case SpvOpCompositeExtract:
return "CompositeExtract";
case SpvOpCompositeInsert:
return "CompositeInsert";
case SpvOpCopyObject:
return "CopyObject";
case SpvOpTranspose:
return "Transpose";
case SpvOpSampledImage:
return "SampledImage";
case SpvOpImageSampleImplicitLod:
return "ImageSampleImplicitLod";
case SpvOpImageSampleExplicitLod:
return "ImageSampleExplicitLod";
case SpvOpImageSampleDrefImplicitLod:
return "ImageSampleDrefImplicitLod";
case SpvOpImageSampleDrefExplicitLod:
return "ImageSampleDrefExplicitLod";
case SpvOpImageSampleProjImplicitLod:
return "ImageSampleProjImplicitLod";
case SpvOpImageSampleProjExplicitLod:
return "ImageSampleProjExplicitLod";
case SpvOpImageSampleProjDrefImplicitLod:
return "ImageSampleProjDrefImplicitLod";
case SpvOpImageSampleProjDrefExplicitLod:
return "ImageSampleProjDrefExplicitLod";
case SpvOpImageFetch:
return "ImageFetch";
case SpvOpImageGather:
return "ImageGather";
case SpvOpImageDrefGather:
return "ImageDrefGather";
case SpvOpImageRead:
return "ImageRead";
case SpvOpImageWrite:
return "ImageWrite";
case SpvOpImage:
return "Image";
case SpvOpImageQueryFormat:
return "ImageQueryFormat";
case SpvOpImageQueryOrder:
return "ImageQueryOrder";
case SpvOpImageQuerySizeLod:
return "ImageQuerySizeLod";
case SpvOpImageQuerySize:
return "ImageQuerySize";
case SpvOpImageQueryLod:
return "ImageQueryLod";
case SpvOpImageQueryLevels:
return "ImageQueryLevels";
case SpvOpImageQuerySamples:
return "ImageQuerySamples";
case SpvOpConvertFToU:
return "ConvertFToU";
case SpvOpConvertFToS:
return "ConvertFToS";
case SpvOpConvertSToF:
return "ConvertSToF";
case SpvOpConvertUToF:
return "ConvertUToF";
case SpvOpUConvert:
return "UConvert";
case SpvOpSConvert:
return "SConvert";
case SpvOpFConvert:
return "FConvert";
case SpvOpQuantizeToF16:
return "QuantizeToF16";
case SpvOpConvertPtrToU:
return "ConvertPtrToU";
case SpvOpSatConvertSToU:
return "SatConvertSToU";
case SpvOpSatConvertUToS:
return "SatConvertUToS";
case SpvOpConvertUToPtr:
return "ConvertUToPtr";
case SpvOpPtrCastToGeneric:
return "PtrCastToGeneric";
case SpvOpGenericCastToPtr:
return "GenericCastToPtr";
case SpvOpGenericCastToPtrExplicit:
return "GenericCastToPtrExplicit";
case SpvOpBitcast:
return "Bitcast";
case SpvOpSNegate:
return "SNegate";
case SpvOpFNegate:
return "FNegate";
case SpvOpIAdd:
return "IAdd";
case SpvOpFAdd:
return "FAdd";
case SpvOpISub:
return "ISub";
case SpvOpFSub:
return "FSub";
case SpvOpIMul:
return "IMul";
case SpvOpFMul:
return "FMul";
case SpvOpUDiv:
return "UDiv";
case SpvOpSDiv:
return "SDiv";
case SpvOpFDiv:
return "FDiv";
case SpvOpUMod:
return "UMod";
case SpvOpSRem:
return "SRem";
case SpvOpSMod:
return "SMod";
case SpvOpFRem:
return "FRem";
case SpvOpFMod:
return "FMod";
case SpvOpVectorTimesScalar:
return "VectorTimesScalar";
case SpvOpMatrixTimesScalar:
return "MatrixTimesScalar";
case SpvOpVectorTimesMatrix:
return "VectorTimesMatrix";
case SpvOpMatrixTimesVector:
return "MatrixTimesVector";
case SpvOpMatrixTimesMatrix:
return "MatrixTimesMatrix";
case SpvOpOuterProduct:
return "OuterProduct";
case SpvOpDot:
return "Dot";
case SpvOpIAddCarry:
return "IAddCarry";
case SpvOpISubBorrow:
return "ISubBorrow";
case SpvOpUMulExtended:
return "UMulExtended";
case SpvOpSMulExtended:
return "SMulExtended";
case SpvOpAny:
return "Any";
case SpvOpAll:
return "All";
case SpvOpIsNan:
return "IsNan";
case SpvOpIsInf:
return "IsInf";
case SpvOpIsFinite:
return "IsFinite";
case SpvOpIsNormal:
return "IsNormal";
case SpvOpSignBitSet:
return "SignBitSet";
case SpvOpLessOrGreater:
return "LessOrGreater";
case SpvOpOrdered:
return "Ordered";
case SpvOpUnordered:
return "Unordered";
case SpvOpLogicalEqual:
return "LogicalEqual";
case SpvOpLogicalNotEqual:
return "LogicalNotEqual";
case SpvOpLogicalOr:
return "LogicalOr";
case SpvOpLogicalAnd:
return "LogicalAnd";
case SpvOpLogicalNot:
return "LogicalNot";
case SpvOpSelect:
return "Select";
case SpvOpIEqual:
return "IEqual";
case SpvOpINotEqual:
return "INotEqual";
case SpvOpUGreaterThan:
return "UGreaterThan";
case SpvOpSGreaterThan:
return "SGreaterThan";
case SpvOpUGreaterThanEqual:
return "UGreaterThanEqual";
case SpvOpSGreaterThanEqual:
return "SGreaterThanEqual";
case SpvOpULessThan:
return "ULessThan";
case SpvOpSLessThan:
return "SLessThan";
case SpvOpULessThanEqual:
return "ULessThanEqual";
case SpvOpSLessThanEqual:
return "SLessThanEqual";
case SpvOpFOrdEqual:
return "FOrdEqual";
case SpvOpFUnordEqual:
return "FUnordEqual";
case SpvOpFOrdNotEqual:
return "FOrdNotEqual";
case SpvOpFUnordNotEqual:
return "FUnordNotEqual";
case SpvOpFOrdLessThan:
return "FOrdLessThan";
case SpvOpFUnordLessThan:
return "FUnordLessThan";
case SpvOpFOrdGreaterThan:
return "FOrdGreaterThan";
case SpvOpFUnordGreaterThan:
return "FUnordGreaterThan";
case SpvOpFOrdLessThanEqual:
return "FOrdLessThanEqual";
case SpvOpFUnordLessThanEqual:
return "FUnordLessThanEqual";
case SpvOpFOrdGreaterThanEqual:
return "FOrdGreaterThanEqual";
case SpvOpFUnordGreaterThanEqual:
return "FUnordGreaterThanEqual";
case SpvOpShiftRightLogical:
return "ShiftRightLogical";
case SpvOpShiftRightArithmetic:
return "ShiftRightArithmetic";
case SpvOpShiftLeftLogical:
return "ShiftLeftLogical";
case SpvOpBitwiseOr:
return "BitwiseOr";
case SpvOpBitwiseXor:
return "BitwiseXor";
case SpvOpBitwiseAnd:
return "BitwiseAnd";
case SpvOpNot:
return "Not";
case SpvOpBitFieldInsert:
return "BitFieldInsert";
case SpvOpBitFieldSExtract:
return "BitFieldSExtract";
case SpvOpBitFieldUExtract:
return "BitFieldUExtract";
case SpvOpBitReverse:
return "BitReverse";
case SpvOpBitCount:
return "BitCount";
case SpvOpDPdx:
return "DPdx";
case SpvOpDPdy:
return "DPdy";
case SpvOpFwidth:
return "Fwidth";
case SpvOpDPdxFine:
return "DPdxFine";
case SpvOpDPdyFine:
return "DPdyFine";
case SpvOpFwidthFine:
return "FwidthFine";
case SpvOpDPdxCoarse:
return "DPdxCoarse";
case SpvOpDPdyCoarse:
return "DPdyCoarse";
case SpvOpFwidthCoarse:
return "FwidthCoarse";
case SpvOpEmitVertex:
return "EmitVertex";
case SpvOpEndPrimitive:
return "EndPrimitive";
case SpvOpEmitStreamVertex:
return "EmitStreamVertex";
case SpvOpEndStreamPrimitive:
return "EndStreamPrimitive";
case SpvOpControlBarrier:
return "ControlBarrier";
case SpvOpMemoryBarrier:
return "MemoryBarrier";
case SpvOpAtomicLoad:
return "AtomicLoad";
case SpvOpAtomicStore:
return "AtomicStore";
case SpvOpAtomicExchange:
return "AtomicExchange";
case SpvOpAtomicCompareExchange:
return "AtomicCompareExchange";
case SpvOpAtomicCompareExchangeWeak:
return "AtomicCompareExchangeWeak";
case SpvOpAtomicIIncrement:
return "AtomicIIncrement";
case SpvOpAtomicIDecrement:
return "AtomicIDecrement";
case SpvOpAtomicIAdd:
return "AtomicIAdd";
case SpvOpAtomicISub:
return "AtomicISub";
case SpvOpAtomicSMin:
return "AtomicSMin";
case SpvOpAtomicUMin:
return "AtomicUMin";
case SpvOpAtomicSMax:
return "AtomicSMax";
case SpvOpAtomicUMax:
return "AtomicUMax";
case SpvOpAtomicAnd:
return "AtomicAnd";
case SpvOpAtomicOr:
return "AtomicOr";
case SpvOpAtomicXor:
return "AtomicXor";
case SpvOpPhi:
return "Phi";
case SpvOpLoopMerge:
return "LoopMerge";
case SpvOpSelectionMerge:
return "SelectionMerge";
case SpvOpLabel:
return "Label";
case SpvOpBranch:
return "Branch";
case SpvOpBranchConditional:
return "BranchConditional";
case SpvOpSwitch:
return "Switch";
case SpvOpKill:
return "Kill";
case SpvOpReturn:
return "Return";
case SpvOpReturnValue:
return "ReturnValue";
case SpvOpUnreachable:
return "Unreachable";
case SpvOpLifetimeStart:
return "LifetimeStart";
case SpvOpLifetimeStop:
return "LifetimeStop";
case SpvOpGroupAsyncCopy:
return "GroupAsyncCopy";
case SpvOpGroupWaitEvents:
return "GroupWaitEvents";
case SpvOpGroupAll:
return "GroupAll";
case SpvOpGroupAny:
return "GroupAny";
case SpvOpGroupBroadcast:
return "GroupBroadcast";
case SpvOpGroupIAdd:
return "GroupIAdd";
case SpvOpGroupFAdd:
return "GroupFAdd";
case SpvOpGroupFMin:
return "GroupFMin";
case SpvOpGroupUMin:
return "GroupUMin";
case SpvOpGroupSMin:
return "GroupSMin";
case SpvOpGroupFMax:
return "GroupFMax";
case SpvOpGroupUMax:
return "GroupUMax";
case SpvOpGroupSMax:
return "GroupSMax";
case SpvOpReadPipe:
return "ReadPipe";
case SpvOpWritePipe:
return "WritePipe";
case SpvOpReservedReadPipe:
return "ReservedReadPipe";
case SpvOpReservedWritePipe:
return "ReservedWritePipe";
case SpvOpReserveReadPipePackets:
return "ReserveReadPipePackets";
case SpvOpReserveWritePipePackets:
return "ReserveWritePipePackets";
case SpvOpCommitReadPipe:
return "CommitReadPipe";
case SpvOpCommitWritePipe:
return "CommitWritePipe";
case SpvOpIsValidReserveId:
return "IsValidReserveId";
case SpvOpGetNumPipePackets:
return "GetNumPipePackets";
case SpvOpGetMaxPipePackets:
return "GetMaxPipePackets";
case SpvOpGroupReserveReadPipePackets:
return "GroupReserveReadPipePackets";
case SpvOpGroupReserveWritePipePackets:
return "GroupReserveWritePipePackets";
case SpvOpGroupCommitReadPipe:
return "GroupCommitReadPipe";
case SpvOpGroupCommitWritePipe:
return "GroupCommitWritePipe";
case SpvOpEnqueueMarker:
return "EnqueueMarker";
case SpvOpEnqueueKernel:
return "EnqueueKernel";
case SpvOpGetKernelNDrangeSubGroupCount:
return "GetKernelNDrangeSubGroupCount";
case SpvOpGetKernelNDrangeMaxSubGroupSize:
return "GetKernelNDrangeMaxSubGroupSize";
case SpvOpGetKernelWorkGroupSize:
return "GetKernelWorkGroupSize";
case SpvOpGetKernelPreferredWorkGroupSizeMultiple:
return "GetKernelPreferredWorkGroupSizeMultiple";
case SpvOpRetainEvent:
return "RetainEvent";
case SpvOpReleaseEvent:
return "ReleaseEvent";
case SpvOpCreateUserEvent:
return "CreateUserEvent";
case SpvOpIsValidEvent:
return "IsValidEvent";
case SpvOpSetUserEventStatus:
return "SetUserEventStatus";
case SpvOpCaptureEventProfilingInfo:
return "CaptureEventProfilingInfo";
case SpvOpGetDefaultQueue:
return "GetDefaultQueue";
case SpvOpBuildNDRange:
return "BuildNDRange";
case SpvOpImageSparseSampleImplicitLod:
return "ImageSparseSampleImplicitLod";
case SpvOpImageSparseSampleExplicitLod:
return "ImageSparseSampleExplicitLod";
case SpvOpImageSparseSampleDrefImplicitLod:
return "ImageSparseSampleDrefImplicitLod";
case SpvOpImageSparseSampleDrefExplicitLod:
return "ImageSparseSampleDrefExplicitLod";
case SpvOpImageSparseSampleProjImplicitLod:
return "ImageSparseSampleProjImplicitLod";
case SpvOpImageSparseSampleProjExplicitLod:
return "ImageSparseSampleProjExplicitLod";
case SpvOpImageSparseSampleProjDrefImplicitLod:
return "ImageSparseSampleProjDrefImplicitLod";
case SpvOpImageSparseSampleProjDrefExplicitLod:
return "ImageSparseSampleProjDrefExplicitLod";
case SpvOpImageSparseFetch:
return "ImageSparseFetch";
case SpvOpImageSparseGather:
return "ImageSparseGather";
case SpvOpImageSparseDrefGather:
return "ImageSparseDrefGather";
case SpvOpImageSparseTexelsResident:
return "ImageSparseTexelsResident";
case SpvOpNoLine:
return "NoLine";
case SpvOpAtomicFlagTestAndSet:
return "AtomicFlagTestAndSet";
case SpvOpAtomicFlagClear:
return "AtomicFlagClear";
case SpvOpImageSparseRead:
return "ImageSparseRead";
default:
ABORT("unsupported SPIR-V op");
}
}
#endif
void SPIRVCodeGenerator::writeOpCode(SpvOp_ opCode, int length, std::ostream& out) {
ASSERT(opCode != SpvOpUndef);
switch (opCode) {
case SpvOpReturn: // fall through
case SpvOpReturnValue: // fall through
case SpvOpKill: // fall through
case SpvOpBranch: // fall through
case SpvOpBranchConditional:
ASSERT(fCurrentBlock);
fCurrentBlock = 0;
break;
case SpvOpConstant: // fall through
case SpvOpConstantTrue: // fall through
case SpvOpConstantFalse: // fall through
case SpvOpConstantComposite: // fall through
case SpvOpTypeVoid: // fall through
case SpvOpTypeInt: // fall through
case SpvOpTypeFloat: // fall through
case SpvOpTypeBool: // fall through
case SpvOpTypeVector: // fall through
case SpvOpTypeMatrix: // fall through
case SpvOpTypeArray: // fall through
case SpvOpTypePointer: // fall through
case SpvOpTypeFunction: // fall through
case SpvOpTypeRuntimeArray: // fall through
case SpvOpTypeStruct: // fall through
case SpvOpTypeImage: // fall through
case SpvOpTypeSampledImage: // fall through
case SpvOpVariable: // fall through
case SpvOpFunction: // fall through
case SpvOpFunctionParameter: // fall through
case SpvOpFunctionEnd: // fall through
case SpvOpExecutionMode: // fall through
case SpvOpMemoryModel: // fall through
case SpvOpCapability: // fall through
case SpvOpExtInstImport: // fall through
case SpvOpEntryPoint: // fall through
case SpvOpSource: // fall through
case SpvOpSourceExtension: // fall through
case SpvOpName: // fall through
case SpvOpMemberName: // fall through
case SpvOpDecorate: // fall through
case SpvOpMemberDecorate:
break;
default:
ASSERT(fCurrentBlock);
}
#if SPIRV_DEBUG
out << std::endl << opcode_text(opCode) << " ";
#else
this->writeWord((length << 16) | opCode, out);
#endif
}
void SPIRVCodeGenerator::writeLabel(SpvId label, std::ostream& out) {
fCurrentBlock = label;
this->writeInstruction(SpvOpLabel, label, out);
}
void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, std::ostream& out) {
this->writeOpCode(opCode, 1, out);
}
void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, std::ostream& out) {
this->writeOpCode(opCode, 2, out);
this->writeWord(word1, out);
}
void SPIRVCodeGenerator::writeString(const char* string, std::ostream& out) {
size_t length = strlen(string);
out << string;
switch (length % 4) {
case 1:
out << (char) 0;
// fall through
case 2:
out << (char) 0;
// fall through
case 3:
out << (char) 0;
break;
default:
this->writeWord(0, out);
}
}
void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, const char* string, std::ostream& out) {
int32_t length = (int32_t) strlen(string);
this->writeOpCode(opCode, 1 + (length + 4) / 4, out);
this->writeString(string, out);
}
void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, const char* string,
std::ostream& out) {
int32_t length = (int32_t) strlen(string);
this->writeOpCode(opCode, 2 + (length + 4) / 4, out);
this->writeWord(word1, out);
this->writeString(string, out);
}
void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2,
const char* string, std::ostream& out) {
int32_t length = (int32_t) strlen(string);
this->writeOpCode(opCode, 3 + (length + 4) / 4, out);
this->writeWord(word1, out);
this->writeWord(word2, out);
this->writeString(string, out);
}
void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2,
std::ostream& out) {
this->writeOpCode(opCode, 3, out);
this->writeWord(word1, out);
this->writeWord(word2, out);
}
void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2,
int32_t word3, std::ostream& out) {
this->writeOpCode(opCode, 4, out);
this->writeWord(word1, out);
this->writeWord(word2, out);
this->writeWord(word3, out);
}
void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2,
int32_t word3, int32_t word4, std::ostream& out) {
this->writeOpCode(opCode, 5, out);
this->writeWord(word1, out);
this->writeWord(word2, out);
this->writeWord(word3, out);
this->writeWord(word4, out);
}
void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2,
int32_t word3, int32_t word4, int32_t word5,
std::ostream& out) {
this->writeOpCode(opCode, 6, out);
this->writeWord(word1, out);
this->writeWord(word2, out);
this->writeWord(word3, out);
this->writeWord(word4, out);
this->writeWord(word5, out);
}
void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2,
int32_t word3, int32_t word4, int32_t word5,
int32_t word6, std::ostream& out) {
this->writeOpCode(opCode, 7, out);
this->writeWord(word1, out);
this->writeWord(word2, out);
this->writeWord(word3, out);
this->writeWord(word4, out);
this->writeWord(word5, out);
this->writeWord(word6, out);
}
void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2,
int32_t word3, int32_t word4, int32_t word5,
int32_t word6, int32_t word7, std::ostream& out) {
this->writeOpCode(opCode, 8, out);
this->writeWord(word1, out);
this->writeWord(word2, out);
this->writeWord(word3, out);
this->writeWord(word4, out);
this->writeWord(word5, out);
this->writeWord(word6, out);
this->writeWord(word7, out);
}
void SPIRVCodeGenerator::writeInstruction(SpvOp_ opCode, int32_t word1, int32_t word2,
int32_t word3, int32_t word4, int32_t word5,
int32_t word6, int32_t word7, int32_t word8,
std::ostream& out) {
this->writeOpCode(opCode, 9, out);
this->writeWord(word1, out);
this->writeWord(word2, out);
this->writeWord(word3, out);
this->writeWord(word4, out);
this->writeWord(word5, out);
this->writeWord(word6, out);
this->writeWord(word7, out);
this->writeWord(word8, out);
}
void SPIRVCodeGenerator::writeCapabilities(std::ostream& out) {
for (uint64_t i = 0, bit = 1; i <= kLast_Capability; i++, bit <<= 1) {
if (fCapabilities & bit) {
this->writeInstruction(SpvOpCapability, (SpvId) i, out);
}
}
}
SpvId SPIRVCodeGenerator::nextId() {
return fIdCount++;
}
void SPIRVCodeGenerator::writeStruct(const Type& type, SpvId resultId) {
this->writeInstruction(SpvOpName, resultId, type.name().c_str(), fNameBuffer);
// go ahead and write all of the field types, so we don't inadvertently write them while we're
// in the middle of writing the struct instruction
std::vector<SpvId> types;
for (const auto& f : type.fields()) {
types.push_back(this->getType(*f.fType));
}
this->writeOpCode(SpvOpTypeStruct, 2 + (int32_t) types.size(), fConstantBuffer);
this->writeWord(resultId, fConstantBuffer);
for (SpvId id : types) {
this->writeWord(id, fConstantBuffer);
}
size_t offset = 0;
for (int32_t i = 0; i < (int32_t) type.fields().size(); i++) {
size_t size = type.fields()[i].fType->size();
size_t alignment = type.fields()[i].fType->alignment();
size_t mod = offset % alignment;
if (mod != 0) {
offset += alignment - mod;
}
this->writeInstruction(SpvOpMemberName, resultId, i, type.fields()[i].fName.c_str(),
fNameBuffer);
this->writeLayout(type.fields()[i].fModifiers.fLayout, resultId, i);
if (type.fields()[i].fModifiers.fLayout.fBuiltin < 0) {
this->writeInstruction(SpvOpMemberDecorate, resultId, (SpvId) i, SpvDecorationOffset,
(SpvId) offset, fDecorationBuffer);
}
if (type.fields()[i].fType->kind() == Type::kMatrix_Kind) {
this->writeInstruction(SpvOpMemberDecorate, resultId, i, SpvDecorationColMajor,
fDecorationBuffer);
this->writeInstruction(SpvOpMemberDecorate, resultId, i, SpvDecorationMatrixStride,
(SpvId) type.fields()[i].fType->stride(), fDecorationBuffer);
}
offset += size;
Type::Kind kind = type.fields()[i].fType->kind();
if ((kind == Type::kArray_Kind || kind == Type::kStruct_Kind) && offset % alignment != 0) {
offset += alignment - offset % alignment;
}
ASSERT(offset % alignment == 0);
}
}
SpvId SPIRVCodeGenerator::getType(const Type& type) {
auto entry = fTypeMap.find(type.name());
if (entry == fTypeMap.end()) {
SpvId result = this->nextId();
switch (type.kind()) {
case Type::kScalar_Kind:
if (type == *fContext.fBool_Type) {
this->writeInstruction(SpvOpTypeBool, result, fConstantBuffer);
} else if (type == *fContext.fInt_Type) {
this->writeInstruction(SpvOpTypeInt, result, 32, 1, fConstantBuffer);
} else if (type == *fContext.fUInt_Type) {
this->writeInstruction(SpvOpTypeInt, result, 32, 0, fConstantBuffer);
} else if (type == *fContext.fFloat_Type) {
this->writeInstruction(SpvOpTypeFloat, result, 32, fConstantBuffer);
} else if (type == *fContext.fDouble_Type) {
this->writeInstruction(SpvOpTypeFloat, result, 64, fConstantBuffer);
} else {
ASSERT(false);
}
break;
case Type::kVector_Kind:
this->writeInstruction(SpvOpTypeVector, result,
this->getType(type.componentType()),
type.columns(), fConstantBuffer);
break;
case Type::kMatrix_Kind:
this->writeInstruction(SpvOpTypeMatrix, result,
this->getType(index_type(fContext, type)),
type.columns(), fConstantBuffer);
break;
case Type::kStruct_Kind:
this->writeStruct(type, result);
break;
case Type::kArray_Kind: {
if (type.columns() > 0) {
IntLiteral count(fContext, Position(), type.columns());
this->writeInstruction(SpvOpTypeArray, result,
this->getType(type.componentType()),
this->writeIntLiteral(count), fConstantBuffer);
this->writeInstruction(SpvOpDecorate, result, SpvDecorationArrayStride,
(int32_t) type.stride(), fDecorationBuffer);
} else {
ABORT("runtime-sized arrays are not yet supported");
this->writeInstruction(SpvOpTypeRuntimeArray, result,
this->getType(type.componentType()), fConstantBuffer);
}
break;
}
case Type::kSampler_Kind: {
SpvId image = this->nextId();
this->writeInstruction(SpvOpTypeImage, image, this->getType(*fContext.fFloat_Type),
type.dimensions(), type.isDepth(), type.isArrayed(),
type.isMultisampled(), type.isSampled(),
SpvImageFormatUnknown, fConstantBuffer);
this->writeInstruction(SpvOpTypeSampledImage, result, image, fConstantBuffer);
break;
}
default:
if (type == *fContext.fVoid_Type) {
this->writeInstruction(SpvOpTypeVoid, result, fConstantBuffer);
} else {
ABORT("invalid type: %s", type.description().c_str());
}
}
fTypeMap[type.name()] = result;
return result;
}
return entry->second;
}
SpvId SPIRVCodeGenerator::getFunctionType(const FunctionDeclaration& function) {
std::string key = function.fReturnType.description() + "(";
std::string separator = "";
for (size_t i = 0; i < function.fParameters.size(); i++) {
key += separator;
separator = ", ";
key += function.fParameters[i]->fType.description();
}
key += ")";
auto entry = fTypeMap.find(key);
if (entry == fTypeMap.end()) {
SpvId result = this->nextId();
int32_t length = 3 + (int32_t) function.fParameters.size();
SpvId returnType = this->getType(function.fReturnType);
std::vector<SpvId> parameterTypes;
for (size_t i = 0; i < function.fParameters.size(); i++) {
// glslang seems to treat all function arguments as pointers whether they need to be or
// not. I was initially puzzled by this until I ran bizarre failures with certain
// patterns of function calls and control constructs, as exemplified by this minimal
// failure case:
//
// void sphere(float x) {
// }
//
// void map() {
// sphere(1.0);
// }
//
// void main() {
// for (int i = 0; i < 1; i++) {
// map();
// }
// }
//
// As of this writing, compiling this in the "obvious" way (with sphere taking a float)
// crashes. Making it take a float* and storing the argument in a temporary variable,
// as glslang does, fixes it. It's entirely possible I simply missed whichever part of
// the spec makes this make sense.
// if (is_out(function->fParameters[i])) {
parameterTypes.push_back(this->getPointerType(function.fParameters[i]->fType,
SpvStorageClassFunction));
// } else {
// parameterTypes.push_back(this->getType(function.fParameters[i]->fType));
// }
}
this->writeOpCode(SpvOpTypeFunction, length, fConstantBuffer);
this->writeWord(result, fConstantBuffer);
this->writeWord(returnType, fConstantBuffer);
for (SpvId id : parameterTypes) {
this->writeWord(id, fConstantBuffer);
}
fTypeMap[key] = result;
return result;
}
return entry->second;
}
SpvId SPIRVCodeGenerator::getPointerType(const Type& type,
SpvStorageClass_ storageClass) {
std::string key = type.description() + "*" + to_string(storageClass);
auto entry = fTypeMap.find(key);
if (entry == fTypeMap.end()) {
SpvId result = this->nextId();
this->writeInstruction(SpvOpTypePointer, result, storageClass,
this->getType(type), fConstantBuffer);
fTypeMap[key] = result;
return result;
}
return entry->second;
}
SpvId SPIRVCodeGenerator::writeExpression(const Expression& expr, std::ostream& out) {
switch (expr.fKind) {
case Expression::kBinary_Kind:
return this->writeBinaryExpression((BinaryExpression&) expr, out);
case Expression::kBoolLiteral_Kind:
return this->writeBoolLiteral((BoolLiteral&) expr);
case Expression::kConstructor_Kind:
return this->writeConstructor((Constructor&) expr, out);
case Expression::kIntLiteral_Kind:
return this->writeIntLiteral((IntLiteral&) expr);
case Expression::kFieldAccess_Kind:
return this->writeFieldAccess(((FieldAccess&) expr), out);
case Expression::kFloatLiteral_Kind:
return this->writeFloatLiteral(((FloatLiteral&) expr));
case Expression::kFunctionCall_Kind:
return this->writeFunctionCall((FunctionCall&) expr, out);
case Expression::kPrefix_Kind:
return this->writePrefixExpression((PrefixExpression&) expr, out);
case Expression::kPostfix_Kind:
return this->writePostfixExpression((PostfixExpression&) expr, out);
case Expression::kSwizzle_Kind:
return this->writeSwizzle((Swizzle&) expr, out);
case Expression::kVariableReference_Kind:
return this->writeVariableReference((VariableReference&) expr, out);
case Expression::kTernary_Kind:
return this->writeTernaryExpression((TernaryExpression&) expr, out);
case Expression::kIndex_Kind:
return this->writeIndexExpression((IndexExpression&) expr, out);
default:
ABORT("unsupported expression: %s", expr.description().c_str());
}
return -1;
}
SpvId SPIRVCodeGenerator::writeIntrinsicCall(const FunctionCall& c, std::ostream& out) {
auto intrinsic = fIntrinsicMap.find(c.fFunction.fName);
ASSERT(intrinsic != fIntrinsicMap.end());
const Type& type = c.fArguments[0]->fType;
int32_t intrinsicId;
if (std::get<0>(intrinsic->second) == kSpecial_IntrinsicKind || is_float(fContext, type)) {
intrinsicId = std::get<1>(intrinsic->second);
} else if (is_signed(fContext, type)) {
intrinsicId = std::get<2>(intrinsic->second);
} else if (is_unsigned(fContext, type)) {
intrinsicId = std::get<3>(intrinsic->second);
} else if (is_bool(fContext, type)) {
intrinsicId = std::get<4>(intrinsic->second);
} else {
ABORT("invalid call %s, cannot operate on '%s'", c.description().c_str(),
type.description().c_str());
}
switch (std::get<0>(intrinsic->second)) {
case kGLSL_STD_450_IntrinsicKind: {
SpvId result = this->nextId();
std::vector<SpvId> arguments;
for (size_t i = 0; i < c.fArguments.size(); i++) {
arguments.push_back(this->writeExpression(*c.fArguments[i], out));
}
this->writeOpCode(SpvOpExtInst, 5 + (int32_t) arguments.size(), out);
this->writeWord(this->getType(c.fType), out);
this->writeWord(result, out);
this->writeWord(fGLSLExtendedInstructions, out);
this->writeWord(intrinsicId, out);
for (SpvId id : arguments) {
this->writeWord(id, out);
}
return result;
}
case kSPIRV_IntrinsicKind: {
SpvId result = this->nextId();
std::vector<SpvId> arguments;
for (size_t i = 0; i < c.fArguments.size(); i++) {
arguments.push_back(this->writeExpression(*c.fArguments[i], out));
}
this->writeOpCode((SpvOp_) intrinsicId, 3 + (int32_t) arguments.size(), out);
this->writeWord(this->getType(c.fType), out);
this->writeWord(result, out);
for (SpvId id : arguments) {
this->writeWord(id, out);
}
return result;
}
case kSpecial_IntrinsicKind:
return this->writeSpecialIntrinsic(c, (SpecialIntrinsic) intrinsicId, out);
default:
ABORT("unsupported intrinsic kind");
}
}
SpvId SPIRVCodeGenerator::writeSpecialIntrinsic(const FunctionCall& c, SpecialIntrinsic kind,
std::ostream& out) {
SpvId result = this->nextId();
switch (kind) {
case kAtan_SpecialIntrinsic: {
std::vector<SpvId> arguments;
for (size_t i = 0; i < c.fArguments.size(); i++) {
arguments.push_back(this->writeExpression(*c.fArguments[i], out));
}
this->writeOpCode(SpvOpExtInst, 5 + (int32_t) arguments.size(), out);
this->writeWord(this->getType(c.fType), out);
this->writeWord(result, out);
this->writeWord(fGLSLExtendedInstructions, out);
this->writeWord(arguments.size() == 2 ? GLSLstd450Atan2 : GLSLstd450Atan, out);
for (SpvId id : arguments) {
this->writeWord(id, out);
}
return result;
}
case kTexture_SpecialIntrinsic: {
SpvId type = this->getType(c.fType);
SpvId sampler = this->writeExpression(*c.fArguments[0], out);
SpvId uv = this->writeExpression(*c.fArguments[1], out);
if (c.fArguments.size() == 3) {
this->writeInstruction(SpvOpImageSampleImplicitLod, type, result, sampler, uv,
SpvImageOperandsBiasMask,
this->writeExpression(*c.fArguments[2], out),
out);
} else {
ASSERT(c.fArguments.size() == 2);
this->writeInstruction(SpvOpImageSampleImplicitLod, type, result, sampler, uv, out);
}
break;
}
case kTextureProj_SpecialIntrinsic: {
SpvId type = this->getType(c.fType);
SpvId sampler = this->writeExpression(*c.fArguments[0], out);
SpvId uv = this->writeExpression(*c.fArguments[1], out);
if (c.fArguments.size() == 3) {
this->writeInstruction(SpvOpImageSampleProjImplicitLod, type, result, sampler, uv,
SpvImageOperandsBiasMask,
this->writeExpression(*c.fArguments[2], out),
out);
} else {
ASSERT(c.fArguments.size() == 2);
this->writeInstruction(SpvOpImageSampleProjImplicitLod, type, result, sampler, uv,
out);
}
break;
}
case kTexture2D_SpecialIntrinsic: {
SpvId img = this->writeExpression(*c.fArguments[0], out);
SpvId coords = this->writeExpression(*c.fArguments[1], out);
this->writeInstruction(SpvOpImageSampleImplicitLod,
this->getType(c.fType),
result,
img,
coords,
out);
break;
}
}
return result;
}
SpvId SPIRVCodeGenerator::writeFunctionCall(const FunctionCall& c, std::ostream& out) {
const auto& entry = fFunctionMap.find(&c.fFunction);
if (entry == fFunctionMap.end()) {
return this->writeIntrinsicCall(c, out);
}
// stores (variable, type, lvalue) pairs to extract and save after the function call is complete
std::vector<std::tuple<SpvId, SpvId, std::unique_ptr<LValue>>> lvalues;
std::vector<SpvId> arguments;
for (size_t i = 0; i < c.fArguments.size(); i++) {
// id of temporary variable that we will use to hold this argument, or 0 if it is being
// passed directly
SpvId tmpVar;
// if we need a temporary var to store this argument, this is the value to store in the var
SpvId tmpValueId;
if (is_out(*c.fFunction.fParameters[i])) {
std::unique_ptr<LValue> lv = this->getLValue(*c.fArguments[i], out);
SpvId ptr = lv->getPointer();
if (ptr) {
arguments.push_back(ptr);
continue;
} else {
// lvalue cannot simply be read and written via a pointer (e.g. a swizzle). Need to
// copy it into a temp, call the function, read the value out of the temp, and then
// update the lvalue.
tmpValueId = lv->load(out);
tmpVar = this->nextId();
lvalues.push_back(std::make_tuple(tmpVar, this->getType(c.fArguments[i]->fType),
std::move(lv)));
}
} else {
// see getFunctionType for an explanation of why we're always using pointer parameters
tmpValueId = this->writeExpression(*c.fArguments[i], out);
tmpVar = this->nextId();
}
this->writeInstruction(SpvOpVariable,
this->getPointerType(c.fArguments[i]->fType,
SpvStorageClassFunction),
tmpVar,
SpvStorageClassFunction,
fVariableBuffer);
this->writeInstruction(SpvOpStore, tmpVar, tmpValueId, out);
arguments.push_back(tmpVar);
}
SpvId result = this->nextId();
this->writeOpCode(SpvOpFunctionCall, 4 + (int32_t) c.fArguments.size(), out);
this->writeWord(this->getType(c.fType), out);
this->writeWord(result, out);
this->writeWord(entry->second, out);
for (SpvId id : arguments) {
this->writeWord(id, out);
}
// now that the call is complete, we may need to update some lvalues with the new values of out
// arguments
for (const auto& tuple : lvalues) {
SpvId load = this->nextId();
this->writeInstruction(SpvOpLoad, std::get<1>(tuple), load, std::get<0>(tuple), out);
std::get<2>(tuple)->store(load, out);
}
return result;
}
SpvId SPIRVCodeGenerator::writeConstantVector(const Constructor& c) {
ASSERT(c.fType.kind() == Type::kVector_Kind && c.isConstant());
SpvId result = this->nextId();
std::vector<SpvId> arguments;
for (size_t i = 0; i < c.fArguments.size(); i++) {
arguments.push_back(this->writeExpression(*c.fArguments[i], fConstantBuffer));
}
SpvId type = this->getType(c.fType);
if (c.fArguments.size() == 1) {
// with a single argument, a vector will have all of its entries equal to the argument
this->writeOpCode(SpvOpConstantComposite, 3 + c.fType.columns(), fConstantBuffer);
this->writeWord(type, fConstantBuffer);
this->writeWord(result, fConstantBuffer);
for (int i = 0; i < c.fType.columns(); i++) {
this->writeWord(arguments[0], fConstantBuffer);
}
} else {
this->writeOpCode(SpvOpConstantComposite, 3 + (int32_t) c.fArguments.size(),
fConstantBuffer);
this->writeWord(type, fConstantBuffer);
this->writeWord(result, fConstantBuffer);
for (SpvId id : arguments) {
this->writeWord(id, fConstantBuffer);
}
}
return result;
}
SpvId SPIRVCodeGenerator::writeFloatConstructor(const Constructor& c, std::ostream& out) {
ASSERT(c.fType == *fContext.fFloat_Type);
ASSERT(c.fArguments.size() == 1);
ASSERT(c.fArguments[0]->fType.isNumber());
SpvId result = this->nextId();
SpvId parameter = this->writeExpression(*c.fArguments[0], out);
if (c.fArguments[0]->fType == *fContext.fInt_Type) {
this->writeInstruction(SpvOpConvertSToF, this->getType(c.fType), result, parameter,
out);
} else if (c.fArguments[0]->fType == *fContext.fUInt_Type) {
this->writeInstruction(SpvOpConvertUToF, this->getType(c.fType), result, parameter,
out);
} else if (c.fArguments[0]->fType == *fContext.fFloat_Type) {
return parameter;
}
return result;
}
SpvId SPIRVCodeGenerator::writeIntConstructor(const Constructor& c, std::ostream& out) {
ASSERT(c.fType == *fContext.fInt_Type);
ASSERT(c.fArguments.size() == 1);
ASSERT(c.fArguments[0]->fType.isNumber());
SpvId result = this->nextId();
SpvId parameter = this->writeExpression(*c.fArguments[0], out);
if (c.fArguments[0]->fType == *fContext.fFloat_Type) {
this->writeInstruction(SpvOpConvertFToS, this->getType(c.fType), result, parameter,
out);
} else if (c.fArguments[0]->fType == *fContext.fUInt_Type) {
this->writeInstruction(SpvOpSatConvertUToS, this->getType(c.fType), result, parameter,
out);
} else if (c.fArguments[0]->fType == *fContext.fInt_Type) {
return parameter;
}
return result;
}
SpvId SPIRVCodeGenerator::writeMatrixConstructor(const Constructor& c, std::ostream& out) {
ASSERT(c.fType.kind() == Type::kMatrix_Kind);
// go ahead and write the arguments so we don't try to write new instructions in the middle of
// an instruction
std::vector<SpvId> arguments;
for (size_t i = 0; i < c.fArguments.size(); i++) {
arguments.push_back(this->writeExpression(*c.fArguments[i], out));
}
SpvId result = this->nextId();
int rows = c.fType.rows();
int columns = c.fType.columns();
// FIXME this won't work to create a matrix from another matrix
if (arguments.size() == 1) {
// with a single argument, a matrix will have all of its diagonal entries equal to the
// argument and its other values equal to zero
// FIXME this won't work for int matrices
FloatLiteral zero(fContext, Position(), 0);
SpvId zeroId = this->writeFloatLiteral(zero);
std::vector<SpvId> columnIds;
for (int column = 0; column < columns; column++) {
this->writeOpCode(SpvOpCompositeConstruct, 3 + c.fType.rows(),
out);
this->writeWord(this->getType(c.fType.componentType().toCompound(fContext, rows, 1)),
out);
SpvId columnId = this->nextId();
this->writeWord(columnId, out);
columnIds.push_back(columnId);
for (int row = 0; row < c.fType.columns(); row++) {
this->writeWord(row == column ? arguments[0] : zeroId, out);
}
}
this->writeOpCode(SpvOpCompositeConstruct, 3 + columns,
out);
this->writeWord(this->getType(c.fType), out);
this->writeWord(result, out);
for (SpvId id : columnIds) {
this->writeWord(id, out);
}
} else {
std::vector<SpvId> columnIds;
int currentCount = 0;
for (size_t i = 0; i < arguments.size(); i++) {
if (c.fArguments[i]->fType.kind() == Type::kVector_Kind) {
ASSERT(currentCount == 0);
columnIds.push_back(arguments[i]);
currentCount = 0;
} else {
ASSERT(c.fArguments[i]->fType.kind() == Type::kScalar_Kind);
if (currentCount == 0) {
this->writeOpCode(SpvOpCompositeConstruct, 3 + c.fType.rows(), out);
this->writeWord(this->getType(c.fType.componentType().toCompound(fContext, rows,
1)),
out);
SpvId id = this->nextId();
this->writeWord(id, out);
columnIds.push_back(id);
}
this->writeWord(arguments[i], out);
currentCount = (currentCount + 1) % rows;
}
}
ASSERT(columnIds.size() == (size_t) columns);
this->writeOpCode(SpvOpCompositeConstruct, 3 + columns, out);
this->writeWord(this->getType(c.fType), out);
this->writeWord(result, out);
for (SpvId id : columnIds) {
this->writeWord(id, out);
}
}
return result;
}
SpvId SPIRVCodeGenerator::writeVectorConstructor(const Constructor& c, std::ostream& out) {
ASSERT(c.fType.kind() == Type::kVector_Kind);
if (c.isConstant()) {
return this->writeConstantVector(c);
}
// go ahead and write the arguments so we don't try to write new instructions in the middle of
// an instruction
std::vector<SpvId> arguments;
for (size_t i = 0; i < c.fArguments.size(); i++) {
arguments.push_back(this->writeExpression(*c.fArguments[i], out));
}
SpvId result = this->nextId();
if (arguments.size() == 1 && c.fArguments[0]->fType.kind() == Type::kScalar_Kind) {
this->writeOpCode(SpvOpCompositeConstruct, 3 + c.fType.columns(), out);
this->writeWord(this->getType(c.fType), out);
this->writeWord(result, out);
for (int i = 0; i < c.fType.columns(); i++) {
this->writeWord(arguments[0], out);
}
} else {
this->writeOpCode(SpvOpCompositeConstruct, 3 + (int32_t) c.fArguments.size(), out);
this->writeWord(this->getType(c.fType), out);
this->writeWord(result, out);
for (SpvId id : arguments) {
this->writeWord(id, out);
}
}
return result;
}
SpvId SPIRVCodeGenerator::writeConstructor(const Constructor& c, std::ostream& out) {
if (c.fType == *fContext.fFloat_Type) {
return this->writeFloatConstructor(c, out);
} else if (c.fType == *fContext.fInt_Type) {
return this->writeIntConstructor(c, out);
}
switch (c.fType.kind()) {
case Type::kVector_Kind:
return this->writeVectorConstructor(c, out);
case Type::kMatrix_Kind:
return this->writeMatrixConstructor(c, out);
default:
ABORT("unsupported constructor: %s", c.description().c_str());
}
}
SpvStorageClass_ get_storage_class(const Modifiers& modifiers) {
if (modifiers.fFlags & Modifiers::kIn_Flag) {
return SpvStorageClassInput;
} else if (modifiers.fFlags & Modifiers::kOut_Flag) {
return SpvStorageClassOutput;
} else if (modifiers.fFlags & Modifiers::kUniform_Flag) {
return SpvStorageClassUniform;
} else {
return SpvStorageClassFunction;
}
}
SpvStorageClass_ get_storage_class(const Expression& expr) {
switch (expr.fKind) {
case Expression::kVariableReference_Kind:
return get_storage_class(((VariableReference&) expr).fVariable.fModifiers);
case Expression::kFieldAccess_Kind:
return get_storage_class(*((FieldAccess&) expr).fBase);
case Expression::kIndex_Kind:
return get_storage_class(*((IndexExpression&) expr).fBase);
default:
return SpvStorageClassFunction;
}
}
std::vector<SpvId> SPIRVCodeGenerator::getAccessChain(const Expression& expr, std::ostream& out) {
std::vector<SpvId> chain;
switch (expr.fKind) {
case Expression::kIndex_Kind: {
IndexExpression& indexExpr = (IndexExpression&) expr;
chain = this->getAccessChain(*indexExpr.fBase, out);
chain.push_back(this->writeExpression(*indexExpr.fIndex, out));
break;
}
case Expression::kFieldAccess_Kind: {
FieldAccess& fieldExpr = (FieldAccess&) expr;
chain = this->getAccessChain(*fieldExpr.fBase, out);
IntLiteral index(fContext, Position(), fieldExpr.fFieldIndex);
chain.push_back(this->writeIntLiteral(index));
break;
}
default:
chain.push_back(this->getLValue(expr, out)->getPointer());
}
return chain;
}
class PointerLValue : public SPIRVCodeGenerator::LValue {
public:
PointerLValue(SPIRVCodeGenerator& gen, SpvId pointer, SpvId type)
: fGen(gen)
, fPointer(pointer)
, fType(type) {}
virtual SpvId getPointer() override {
return fPointer;
}
virtual SpvId load(std::ostream& out) override {
SpvId result = fGen.nextId();
fGen.writeInstruction(SpvOpLoad, fType, result, fPointer, out);
return result;
}
virtual void store(SpvId value, std::ostream& out) override {
fGen.writeInstruction(SpvOpStore, fPointer, value, out);
}
private:
SPIRVCodeGenerator& fGen;
const SpvId fPointer;
const SpvId fType;
};
class SwizzleLValue : public SPIRVCodeGenerator::LValue {
public:
SwizzleLValue(SPIRVCodeGenerator& gen, SpvId vecPointer, const std::vector<int>& components,
const Type& baseType, const Type& swizzleType)
: fGen(gen)
, fVecPointer(vecPointer)
, fComponents(components)
, fBaseType(baseType)
, fSwizzleType(swizzleType) {}
virtual SpvId getPointer() override {
return 0;
}
virtual SpvId load(std::ostream& out) override {
SpvId base = fGen.nextId();
fGen.writeInstruction(SpvOpLoad, fGen.getType(fBaseType), base, fVecPointer, out);
SpvId result = fGen.nextId();
fGen.writeOpCode(SpvOpVectorShuffle, 5 + (int32_t) fComponents.size(), out);
fGen.writeWord(fGen.getType(fSwizzleType), out);
fGen.writeWord(result, out);
fGen.writeWord(base, out);
fGen.writeWord(base, out);
for (int component : fComponents) {
fGen.writeWord(component, out);
}
return result;
}
virtual void store(SpvId value, std::ostream& out) override {
// use OpVectorShuffle to mix and match the vector components. We effectively create
// a virtual vector out of the concatenation of the left and right vectors, and then
// select components from this virtual vector to make the result vector. For
// instance, given:
// vec3 L = ...;
// vec3 R = ...;
// L.xz = R.xy;
// we end up with the virtual vector (L.x, L.y, L.z, R.x, R.y, R.z). Then we want
// our result vector to look like (R.x, L.y, R.y), so we need to select indices
// (3, 1, 4).
SpvId base = fGen.nextId();
fGen.writeInstruction(SpvOpLoad, fGen.getType(fBaseType), base, fVecPointer, out);
SpvId shuffle = fGen.nextId();
fGen.writeOpCode(SpvOpVectorShuffle, 5 + fBaseType.columns(), out);
fGen.writeWord(fGen.getType(fBaseType), out);
fGen.writeWord(shuffle, out);
fGen.writeWord(base, out);
fGen.writeWord(value, out);
for (int i = 0; i < fBaseType.columns(); i++) {
// current offset into the virtual vector, defaults to pulling the unmodified
// value from the left side
int offset = i;
// check to see if we are writing this component
for (size_t j = 0; j < fComponents.size(); j++) {
if (fComponents[j] == i) {
// we're writing to this component, so adjust the offset to pull from
// the correct component of the right side instead of preserving the
// value from the left
offset = (int) (j + fBaseType.columns());
break;
}
}
fGen.writeWord(offset, out);
}
fGen.writeInstruction(SpvOpStore, fVecPointer, shuffle, out);
}
private:
SPIRVCodeGenerator& fGen;
const SpvId fVecPointer;
const std::vector<int>& fComponents;
const Type& fBaseType;
const Type& fSwizzleType;
};
std::unique_ptr<SPIRVCodeGenerator::LValue> SPIRVCodeGenerator::getLValue(const Expression& expr,
std::ostream& out) {
switch (expr.fKind) {
case Expression::kVariableReference_Kind: {
const Variable& var = ((VariableReference&) expr).fVariable;
auto entry = fVariableMap.find(&var);
ASSERT(entry != fVariableMap.end());
return std::unique_ptr<SPIRVCodeGenerator::LValue>(new PointerLValue(
*this,
entry->second,
this->getType(expr.fType)));
}
case Expression::kIndex_Kind: // fall through
case Expression::kFieldAccess_Kind: {
std::vector<SpvId> chain = this->getAccessChain(expr, out);
SpvId member = this->nextId();
this->writeOpCode(SpvOpAccessChain, (SpvId) (3 + chain.size()), out);
this->writeWord(this->getPointerType(expr.fType, get_storage_class(expr)), out);
this->writeWord(member, out);
for (SpvId idx : chain) {
this->writeWord(idx, out);
}
return std::unique_ptr<SPIRVCodeGenerator::LValue>(new PointerLValue(
*this,
member,
this->getType(expr.fType)));
}
case Expression::kSwizzle_Kind: {
Swizzle& swizzle = (Swizzle&) expr;
size_t count = swizzle.fComponents.size();
SpvId base = this->getLValue(*swizzle.fBase, out)->getPointer();
ASSERT(base);
if (count == 1) {
IntLiteral index(fContext, Position(), swizzle.fComponents[0]);
SpvId member = this->nextId();
this->writeInstruction(SpvOpAccessChain,
this->getPointerType(swizzle.fType,
get_storage_class(*swizzle.fBase)),
member,
base,
this->writeIntLiteral(index),
out);
return std::unique_ptr<SPIRVCodeGenerator::LValue>(new PointerLValue(
*this,
member,
this->getType(expr.fType)));
} else {
return std::unique_ptr<SPIRVCodeGenerator::LValue>(new SwizzleLValue(
*this,
base,
swizzle.fComponents,
swizzle.fBase->fType,
expr.fType));
}
}
default:
// expr isn't actually an lvalue, create a dummy variable for it. This case happens due
// to the need to store values in temporary variables during function calls (see
// comments in getFunctionType); erroneous uses of rvalues as lvalues should have been
// caught by IRGenerator
SpvId result = this->nextId();
SpvId type = this->getPointerType(expr.fType, SpvStorageClassFunction);
this->writeInstruction(SpvOpVariable, type, result, SpvStorageClassFunction,
fVariableBuffer);
this->writeInstruction(SpvOpStore, result, this->writeExpression(expr, out), out);
return std::unique_ptr<SPIRVCodeGenerator::LValue>(new PointerLValue(
*this,
result,
this->getType(expr.fType)));
}
}
SpvId SPIRVCodeGenerator::writeVariableReference(const VariableReference& ref, std::ostream& out) {
auto entry = fVariableMap.find(&ref.fVariable);
ASSERT(entry != fVariableMap.end());
SpvId var = entry->second;
SpvId result = this->nextId();
this->writeInstruction(SpvOpLoad, this->getType(ref.fVariable.fType), result, var, out);
return result;
}
SpvId SPIRVCodeGenerator::writeIndexExpression(const IndexExpression& expr, std::ostream& out) {
return getLValue(expr, out)->load(out);
}
SpvId SPIRVCodeGenerator::writeFieldAccess(const FieldAccess& f, std::ostream& out) {
return getLValue(f, out)->load(out);
}
SpvId SPIRVCodeGenerator::writeSwizzle(const Swizzle& swizzle, std::ostream& out) {
SpvId base = this->writeExpression(*swizzle.fBase, out);
SpvId result = this->nextId();
size_t count = swizzle.fComponents.size();
if (count == 1) {
this->writeInstruction(SpvOpCompositeExtract, this->getType(swizzle.fType), result, base,
swizzle.fComponents[0], out);
} else {
this->writeOpCode(SpvOpVectorShuffle, 5 + (int32_t) count, out);
this->writeWord(this->getType(swizzle.fType), out);
this->writeWord(result, out);
this->writeWord(base, out);
this->writeWord(base, out);
for (int component : swizzle.fComponents) {
this->writeWord(component, out);
}
}
return result;
}
SpvId SPIRVCodeGenerator::writeBinaryOperation(const Type& resultType,
const Type& operandType, SpvId lhs,
SpvId rhs, SpvOp_ ifFloat, SpvOp_ ifInt,
SpvOp_ ifUInt, SpvOp_ ifBool, std::ostream& out) {
SpvId result = this->nextId();
if (is_float(fContext, operandType)) {
this->writeInstruction(ifFloat, this->getType(resultType), result, lhs, rhs, out);
} else if (is_signed(fContext, operandType)) {
this->writeInstruction(ifInt, this->getType(resultType), result, lhs, rhs, out);
} else if (is_unsigned(fContext, operandType)) {
this->writeInstruction(ifUInt, this->getType(resultType), result, lhs, rhs, out);
} else if (operandType == *fContext.fBool_Type) {
this->writeInstruction(ifBool, this->getType(resultType), result, lhs, rhs, out);
} else {
ABORT("invalid operandType: %s", operandType.description().c_str());
}
return result;
}
bool is_assignment(Token::Kind op) {
switch (op) {
case Token::EQ: // fall through
case Token::PLUSEQ: // fall through
case Token::MINUSEQ: // fall through
case Token::STAREQ: // fall through
case Token::SLASHEQ: // fall through
case Token::PERCENTEQ: // fall through
case Token::SHLEQ: // fall through
case Token::SHREQ: // fall through
case Token::BITWISEOREQ: // fall through
case Token::BITWISEXOREQ: // fall through
case Token::BITWISEANDEQ: // fall through
case Token::LOGICALOREQ: // fall through
case Token::LOGICALXOREQ: // fall through
case Token::LOGICALANDEQ:
return true;
default:
return false;
}
}
SpvId SPIRVCodeGenerator::writeBinaryExpression(const BinaryExpression& b, std::ostream& out) {
// handle cases where we don't necessarily evaluate both LHS and RHS
switch (b.fOperator) {
case Token::EQ: {
SpvId rhs = this->writeExpression(*b.fRight, out);
this->getLValue(*b.fLeft, out)->store(rhs, out);
return rhs;
}
case Token::LOGICALAND:
return this->writeLogicalAnd(b, out);
case Token::LOGICALOR:
return this->writeLogicalOr(b, out);
default:
break;
}
// "normal" operators
const Type& resultType = b.fType;
std::unique_ptr<LValue> lvalue;
SpvId lhs;
if (is_assignment(b.fOperator)) {
lvalue = this->getLValue(*b.fLeft, out);
lhs = lvalue->load(out);
} else {
lvalue = nullptr;
lhs = this->writeExpression(*b.fLeft, out);
}
SpvId rhs = this->writeExpression(*b.fRight, out);
// component type we are operating on: float, int, uint
const Type* operandType;
// IR allows mismatched types in expressions (e.g. vec2 * float), but they need special handling
// in SPIR-V
if (b.fLeft->fType != b.fRight->fType) {
if (b.fLeft->fType.kind() == Type::kVector_Kind &&
b.fRight->fType.isNumber()) {
// promote number to vector
SpvId vec = this->nextId();
this->writeOpCode(SpvOpCompositeConstruct, 3 + b.fType.columns(), out);
this->writeWord(this->getType(resultType), out);
this->writeWord(vec, out);
for (int i = 0; i < resultType.columns(); i++) {
this->writeWord(rhs, out);
}
rhs = vec;
operandType = &b.fRight->fType;
} else if (b.fRight->fType.kind() == Type::kVector_Kind &&
b.fLeft->fType.isNumber()) {
// promote number to vector
SpvId vec = this->nextId();
this->writeOpCode(SpvOpCompositeConstruct, 3 + b.fType.columns(), out);
this->writeWord(this->getType(resultType), out);
this->writeWord(vec, out);
for (int i = 0; i < resultType.columns(); i++) {
this->writeWord(lhs, out);
}
lhs = vec;
ASSERT(!lvalue);
operandType = &b.fLeft->fType;
} else if (b.fLeft->fType.kind() == Type::kMatrix_Kind) {
SpvOp_ op;
if (b.fRight->fType.kind() == Type::kMatrix_Kind) {
op = SpvOpMatrixTimesMatrix;
} else if (b.fRight->fType.kind() == Type::kVector_Kind) {
op = SpvOpMatrixTimesVector;
} else {
ASSERT(b.fRight->fType.kind() == Type::kScalar_Kind);
op = SpvOpMatrixTimesScalar;
}
SpvId result = this->nextId();
this->writeInstruction(op, this->getType(b.fType), result, lhs, rhs, out);
if (b.fOperator == Token::STAREQ) {
lvalue->store(result, out);
} else {
ASSERT(b.fOperator == Token::STAR);
}
return result;
} else if (b.fRight->fType.kind() == Type::kMatrix_Kind) {
SpvId result = this->nextId();
if (b.fLeft->fType.kind() == Type::kVector_Kind) {
this->writeInstruction(SpvOpVectorTimesMatrix, this->getType(b.fType), result,
lhs, rhs, out);
} else {
ASSERT(b.fLeft->fType.kind() == Type::kScalar_Kind);
this->writeInstruction(SpvOpMatrixTimesScalar, this->getType(b.fType), result, rhs,
lhs, out);
}
if (b.fOperator == Token::STAREQ) {
lvalue->store(result, out);
} else {
ASSERT(b.fOperator == Token::STAR);
}
return result;
} else {
ABORT("unsupported binary expression: %s", b.description().c_str());
}
} else {
operandType = &b.fLeft->fType;
ASSERT(*operandType == b.fRight->fType);
}
switch (b.fOperator) {
case Token::EQEQ:
ASSERT(resultType == *fContext.fBool_Type);
return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFOrdEqual,
SpvOpIEqual, SpvOpIEqual, SpvOpLogicalEqual, out);
case Token::NEQ:
ASSERT(resultType == *fContext.fBool_Type);
return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFOrdNotEqual,
SpvOpINotEqual, SpvOpINotEqual, SpvOpLogicalNotEqual,
out);
case Token::GT:
ASSERT(resultType == *fContext.fBool_Type);
return this->writeBinaryOperation(resultType, *operandType, lhs, rhs,
SpvOpFOrdGreaterThan, SpvOpSGreaterThan,
SpvOpUGreaterThan, SpvOpUndef, out);
case Token::LT:
ASSERT(resultType == *fContext.fBool_Type);
return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFOrdLessThan,
SpvOpSLessThan, SpvOpULessThan, SpvOpUndef, out);
case Token::GTEQ:
ASSERT(resultType == *fContext.fBool_Type);
return this->writeBinaryOperation(resultType, *operandType, lhs, rhs,
SpvOpFOrdGreaterThanEqual, SpvOpSGreaterThanEqual,
SpvOpUGreaterThanEqual, SpvOpUndef, out);
case Token::LTEQ:
ASSERT(resultType == *fContext.fBool_Type);
return this->writeBinaryOperation(resultType, *operandType, lhs, rhs,
SpvOpFOrdLessThanEqual, SpvOpSLessThanEqual,
SpvOpULessThanEqual, SpvOpUndef, out);
case Token::PLUS:
return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFAdd,
SpvOpIAdd, SpvOpIAdd, SpvOpUndef, out);
case Token::MINUS:
return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFSub,
SpvOpISub, SpvOpISub, SpvOpUndef, out);
case Token::STAR:
if (b.fLeft->fType.kind() == Type::kMatrix_Kind &&
b.fRight->fType.kind() == Type::kMatrix_Kind) {
// matrix multiply
SpvId result = this->nextId();
this->writeInstruction(SpvOpMatrixTimesMatrix, this->getType(resultType), result,
lhs, rhs, out);
return result;
}
return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFMul,
SpvOpIMul, SpvOpIMul, SpvOpUndef, out);
case Token::SLASH:
return this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFDiv,
SpvOpSDiv, SpvOpUDiv, SpvOpUndef, out);
case Token::PLUSEQ: {
SpvId result = this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFAdd,
SpvOpIAdd, SpvOpIAdd, SpvOpUndef, out);
ASSERT(lvalue);
lvalue->store(result, out);
return result;
}
case Token::MINUSEQ: {
SpvId result = this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFSub,
SpvOpISub, SpvOpISub, SpvOpUndef, out);
ASSERT(lvalue);
lvalue->store(result, out);
return result;
}
case Token::STAREQ: {
if (b.fLeft->fType.kind() == Type::kMatrix_Kind &&
b.fRight->fType.kind() == Type::kMatrix_Kind) {
// matrix multiply
SpvId result = this->nextId();
this->writeInstruction(SpvOpMatrixTimesMatrix, this->getType(resultType), result,
lhs, rhs, out);
ASSERT(lvalue);
lvalue->store(result, out);
return result;
}
SpvId result = this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFMul,
SpvOpIMul, SpvOpIMul, SpvOpUndef, out);
ASSERT(lvalue);
lvalue->store(result, out);
return result;
}
case Token::SLASHEQ: {
SpvId result = this->writeBinaryOperation(resultType, *operandType, lhs, rhs, SpvOpFDiv,
SpvOpSDiv, SpvOpUDiv, SpvOpUndef, out);
ASSERT(lvalue);
lvalue->store(result, out);
return result;
}
default:
// FIXME: missing support for some operators (bitwise, &&=, ||=, shift...)
ABORT("unsupported binary expression: %s", b.description().c_str());
}
}
SpvId SPIRVCodeGenerator::writeLogicalAnd(const BinaryExpression& a, std::ostream& out) {
ASSERT(a.fOperator == Token::LOGICALAND);
BoolLiteral falseLiteral(fContext, Position(), false);
SpvId falseConstant = this->writeBoolLiteral(falseLiteral);
SpvId lhs = this->writeExpression(*a.fLeft, out);
SpvId rhsLabel = this->nextId();
SpvId end = this->nextId();
SpvId lhsBlock = fCurrentBlock;
this->writeInstruction(SpvOpSelectionMerge, end, SpvSelectionControlMaskNone, out);
this->writeInstruction(SpvOpBranchConditional, lhs, rhsLabel, end, out);
this->writeLabel(rhsLabel, out);
SpvId rhs = this->writeExpression(*a.fRight, out);
SpvId rhsBlock = fCurrentBlock;
this->writeInstruction(SpvOpBranch, end, out);
this->writeLabel(end, out);
SpvId result = this->nextId();
this->writeInstruction(SpvOpPhi, this->getType(*fContext.fBool_Type), result, falseConstant,
lhsBlock, rhs, rhsBlock, out);
return result;
}
SpvId SPIRVCodeGenerator::writeLogicalOr(const BinaryExpression& o, std::ostream& out) {
ASSERT(o.fOperator == Token::LOGICALOR);
BoolLiteral trueLiteral(fContext, Position(), true);
SpvId trueConstant = this->writeBoolLiteral(trueLiteral);
SpvId lhs = this->writeExpression(*o.fLeft, out);
SpvId rhsLabel = this->nextId();
SpvId end = this->nextId();
SpvId lhsBlock = fCurrentBlock;
this->writeInstruction(SpvOpSelectionMerge, end, SpvSelectionControlMaskNone, out);
this->writeInstruction(SpvOpBranchConditional, lhs, end, rhsLabel, out);
this->writeLabel(rhsLabel, out);
SpvId rhs = this->writeExpression(*o.fRight, out);
SpvId rhsBlock = fCurrentBlock;
this->writeInstruction(SpvOpBranch, end, out);
this->writeLabel(end, out);
SpvId result = this->nextId();
this->writeInstruction(SpvOpPhi, this->getType(*fContext.fBool_Type), result, trueConstant,
lhsBlock, rhs, rhsBlock, out);
return result;
}
SpvId SPIRVCodeGenerator::writeTernaryExpression(const TernaryExpression& t, std::ostream& out) {
SpvId test = this->writeExpression(*t.fTest, out);
if (t.fIfTrue->isConstant() && t.fIfFalse->isConstant()) {
// both true and false are constants, can just use OpSelect
SpvId result = this->nextId();
SpvId trueId = this->writeExpression(*t.fIfTrue, out);
SpvId falseId = this->writeExpression(*t.fIfFalse, out);
this->writeInstruction(SpvOpSelect, this->getType(t.fType), result, test, trueId, falseId,
out);
return result;
}
// was originally using OpPhi to choose the result, but for some reason that is crashing on
// Adreno. Switched to storing the result in a temp variable as glslang does.
SpvId var = this->nextId();
this->writeInstruction(SpvOpVariable, this->getPointerType(t.fType, SpvStorageClassFunction),
var, SpvStorageClassFunction, fVariableBuffer);
SpvId trueLabel = this->nextId();
SpvId falseLabel = this->nextId();
SpvId end = this->nextId();
this->writeInstruction(SpvOpSelectionMerge, end, SpvSelectionControlMaskNone, out);
this->writeInstruction(SpvOpBranchConditional, test, trueLabel, falseLabel, out);
this->writeLabel(trueLabel, out);
this->writeInstruction(SpvOpStore, var, this->writeExpression(*t.fIfTrue, out), out);
this->writeInstruction(SpvOpBranch, end, out);
this->writeLabel(falseLabel, out);
this->writeInstruction(SpvOpStore, var, this->writeExpression(*t.fIfFalse, out), out);
this->writeInstruction(SpvOpBranch, end, out);
this->writeLabel(end, out);
SpvId result = this->nextId();
this->writeInstruction(SpvOpLoad, this->getType(t.fType), result, var, out);
return result;
}
std::unique_ptr<Expression> create_literal_1(const Context& context, const Type& type) {
if (type == *context.fInt_Type) {
return std::unique_ptr<Expression>(new IntLiteral(context, Position(), 1));
}
else if (type == *context.fFloat_Type) {
return std::unique_ptr<Expression>(new FloatLiteral(context, Position(), 1.0));
} else {
ABORT("math is unsupported on type '%s'")
}
}
SpvId SPIRVCodeGenerator::writePrefixExpression(const PrefixExpression& p, std::ostream& out) {
if (p.fOperator == Token::MINUS) {
SpvId result = this->nextId();
SpvId typeId = this->getType(p.fType);
SpvId expr = this->writeExpression(*p.fOperand, out);
if (is_float(fContext, p.fType)) {
this->writeInstruction(SpvOpFNegate, typeId, result, expr, out);
} else if (is_signed(fContext, p.fType)) {
this->writeInstruction(SpvOpSNegate, typeId, result, expr, out);
} else {
ABORT("unsupported prefix expression %s", p.description().c_str());
};
return result;
}
switch (p.fOperator) {
case Token::PLUS:
return this->writeExpression(*p.fOperand, out);
case Token::PLUSPLUS: {
std::unique_ptr<LValue> lv = this->getLValue(*p.fOperand, out);
SpvId one = this->writeExpression(*create_literal_1(fContext, p.fType), out);
SpvId result = this->writeBinaryOperation(p.fType, p.fType, lv->load(out), one,
SpvOpFAdd, SpvOpIAdd, SpvOpIAdd, SpvOpUndef,
out);
lv->store(result, out);
return result;
}
case Token::MINUSMINUS: {
std::unique_ptr<LValue> lv = this->getLValue(*p.fOperand, out);
SpvId one = this->writeExpression(*create_literal_1(fContext, p.fType), out);
SpvId result = this->writeBinaryOperation(p.fType, p.fType, lv->load(out), one,
SpvOpFSub, SpvOpISub, SpvOpISub, SpvOpUndef,
out);
lv->store(result, out);
return result;
}
case Token::LOGICALNOT: {
ASSERT(p.fOperand->fType == *fContext.fBool_Type);
SpvId result = this->nextId();
this->writeInstruction(SpvOpLogicalNot, this->getType(p.fOperand->fType), result,
this->writeExpression(*p.fOperand, out), out);
return result;
}
case Token::BITWISENOT: {
SpvId result = this->nextId();
this->writeInstruction(SpvOpNot, this->getType(p.fOperand->fType), result,
this->writeExpression(*p.fOperand, out), out);
return result;
}
default:
ABORT("unsupported prefix expression: %s", p.description().c_str());
}
}
SpvId SPIRVCodeGenerator::writePostfixExpression(const PostfixExpression& p, std::ostream& out) {
std::unique_ptr<LValue> lv = this->getLValue(*p.fOperand, out);
SpvId result = lv->load(out);
SpvId one = this->writeExpression(*create_literal_1(fContext, p.fType), out);
switch (p.fOperator) {
case Token::PLUSPLUS: {
SpvId temp = this->writeBinaryOperation(p.fType, p.fType, result, one, SpvOpFAdd,
SpvOpIAdd, SpvOpIAdd, SpvOpUndef, out);
lv->store(temp, out);
return result;
}
case Token::MINUSMINUS: {
SpvId temp = this->writeBinaryOperation(p.fType, p.fType, result, one, SpvOpFSub,
SpvOpISub, SpvOpISub, SpvOpUndef, out);
lv->store(temp, out);
return result;
}
default:
ABORT("unsupported postfix expression %s", p.description().c_str());
}
}
SpvId SPIRVCodeGenerator::writeBoolLiteral(const BoolLiteral& b) {
if (b.fValue) {
if (fBoolTrue == 0) {
fBoolTrue = this->nextId();
this->writeInstruction(SpvOpConstantTrue, this->getType(b.fType), fBoolTrue,
fConstantBuffer);
}
return fBoolTrue;
} else {
if (fBoolFalse == 0) {
fBoolFalse = this->nextId();
this->writeInstruction(SpvOpConstantFalse, this->getType(b.fType), fBoolFalse,
fConstantBuffer);
}
return fBoolFalse;
}
}
SpvId SPIRVCodeGenerator::writeIntLiteral(const IntLiteral& i) {
if (i.fType == *fContext.fInt_Type) {
auto entry = fIntConstants.find(i.fValue);
if (entry == fIntConstants.end()) {
SpvId result = this->nextId();
this->writeInstruction(SpvOpConstant, this->getType(i.fType), result, (SpvId) i.fValue,
fConstantBuffer);
fIntConstants[i.fValue] = result;
return result;
}
return entry->second;
} else {
ASSERT(i.fType == *fContext.fUInt_Type);
auto entry = fUIntConstants.find(i.fValue);
if (entry == fUIntConstants.end()) {
SpvId result = this->nextId();
this->writeInstruction(SpvOpConstant, this->getType(i.fType), result, (SpvId) i.fValue,
fConstantBuffer);
fUIntConstants[i.fValue] = result;
return result;
}
return entry->second;
}
}
SpvId SPIRVCodeGenerator::writeFloatLiteral(const FloatLiteral& f) {
if (f.fType == *fContext.fFloat_Type) {
float value = (float) f.fValue;
auto entry = fFloatConstants.find(value);
if (entry == fFloatConstants.end()) {
SpvId result = this->nextId();
uint32_t bits;
ASSERT(sizeof(bits) == sizeof(value));
memcpy(&bits, &value, sizeof(bits));
this->writeInstruction(SpvOpConstant, this->getType(f.fType), result, bits,
fConstantBuffer);
fFloatConstants[value] = result;
return result;
}
return entry->second;
} else {
ASSERT(f.fType == *fContext.fDouble_Type);
auto entry = fDoubleConstants.find(f.fValue);
if (entry == fDoubleConstants.end()) {
SpvId result = this->nextId();
uint64_t bits;
ASSERT(sizeof(bits) == sizeof(f.fValue));
memcpy(&bits, &f.fValue, sizeof(bits));
this->writeInstruction(SpvOpConstant, this->getType(f.fType), result,
bits & 0xffffffff, bits >> 32, fConstantBuffer);
fDoubleConstants[f.fValue] = result;
return result;
}
return entry->second;
}
}
SpvId SPIRVCodeGenerator::writeFunctionStart(const FunctionDeclaration& f, std::ostream& out) {
SpvId result = fFunctionMap[&f];
this->writeInstruction(SpvOpFunction, this->getType(f.fReturnType), result,
SpvFunctionControlMaskNone, this->getFunctionType(f), out);
this->writeInstruction(SpvOpName, result, f.fName.c_str(), fNameBuffer);
for (size_t i = 0; i < f.fParameters.size(); i++) {
SpvId id = this->nextId();
fVariableMap[f.fParameters[i]] = id;
SpvId type;
type = this->getPointerType(f.fParameters[i]->fType, SpvStorageClassFunction);
this->writeInstruction(SpvOpFunctionParameter, type, id, out);
}
return result;
}
SpvId SPIRVCodeGenerator::writeFunction(const FunctionDefinition& f, std::ostream& out) {
SpvId result = this->writeFunctionStart(f.fDeclaration, out);
this->writeLabel(this->nextId(), out);
if (f.fDeclaration.fName == "main") {
out << fGlobalInitializersBuffer.str();
}
std::stringstream bodyBuffer;
this->writeBlock(*f.fBody, bodyBuffer);
out << fVariableBuffer.str();
fVariableBuffer.str("");
out << bodyBuffer.str();
if (fCurrentBlock) {
this->writeInstruction(SpvOpReturn, out);
}
this->writeInstruction(SpvOpFunctionEnd, out);
return result;
}
void SPIRVCodeGenerator::writeLayout(const Layout& layout, SpvId target) {
if (layout.fLocation >= 0) {
this->writeInstruction(SpvOpDecorate, target, SpvDecorationLocation, layout.fLocation,
fDecorationBuffer);
}
if (layout.fBinding >= 0) {
this->writeInstruction(SpvOpDecorate, target, SpvDecorationBinding, layout.fBinding,
fDecorationBuffer);
}
if (layout.fIndex >= 0) {
this->writeInstruction(SpvOpDecorate, target, SpvDecorationIndex, layout.fIndex,
fDecorationBuffer);
}
if (layout.fSet >= 0) {
this->writeInstruction(SpvOpDecorate, target, SpvDecorationDescriptorSet, layout.fSet,
fDecorationBuffer);
}
if (layout.fBuiltin >= 0 && layout.fBuiltin != SK_FRAGCOLOR_BUILTIN) {
this->writeInstruction(SpvOpDecorate, target, SpvDecorationBuiltIn, layout.fBuiltin,
fDecorationBuffer);
}
}
void SPIRVCodeGenerator::writeLayout(const Layout& layout, SpvId target, int member) {
if (layout.fLocation >= 0) {
this->writeInstruction(SpvOpMemberDecorate, target, member, SpvDecorationLocation,
layout.fLocation, fDecorationBuffer);
}
if (layout.fBinding >= 0) {
this->writeInstruction(SpvOpMemberDecorate, target, member, SpvDecorationBinding,
layout.fBinding, fDecorationBuffer);
}
if (layout.fIndex >= 0) {
this->writeInstruction(SpvOpMemberDecorate, target, member, SpvDecorationIndex,
layout.fIndex, fDecorationBuffer);
}
if (layout.fSet >= 0) {
this->writeInstruction(SpvOpMemberDecorate, target, member, SpvDecorationDescriptorSet,
layout.fSet, fDecorationBuffer);
}
if (layout.fBuiltin >= 0) {
this->writeInstruction(SpvOpMemberDecorate, target, member, SpvDecorationBuiltIn,
layout.fBuiltin, fDecorationBuffer);
}
}
SpvId SPIRVCodeGenerator::writeInterfaceBlock(const InterfaceBlock& intf) {
SpvId type = this->getType(intf.fVariable.fType);
SpvId result = this->nextId();
this->writeInstruction(SpvOpDecorate, type, SpvDecorationBlock, fDecorationBuffer);
SpvStorageClass_ storageClass = get_storage_class(intf.fVariable.fModifiers);
SpvId ptrType = this->nextId();
this->writeInstruction(SpvOpTypePointer, ptrType, storageClass, type, fConstantBuffer);
this->writeInstruction(SpvOpVariable, ptrType, result, storageClass, fConstantBuffer);
this->writeLayout(intf.fVariable.fModifiers.fLayout, result);
fVariableMap[&intf.fVariable] = result;
return result;
}
#define BUILTIN_IGNORE 9999
void SPIRVCodeGenerator::writeGlobalVars(Program::Kind kind, const VarDeclarations& decl,
std::ostream& out) {
for (size_t i = 0; i < decl.fVars.size(); i++) {
const VarDeclaration& varDecl = decl.fVars[i];
const Variable* var = varDecl.fVar;
if (var->fModifiers.fLayout.fBuiltin == BUILTIN_IGNORE) {
continue;
}
if (var->fModifiers.fLayout.fBuiltin == SK_FRAGCOLOR_BUILTIN &&
kind != Program::kFragment_Kind) {
continue;
}
if (!var->fIsReadFrom && !var->fIsWrittenTo &&
!(var->fModifiers.fFlags & (Modifiers::kIn_Flag |
Modifiers::kOut_Flag |
Modifiers::kUniform_Flag))) {
// variable is dead and not an input / output var (the Vulkan debug layers complain if
// we elide an interface var, even if it's dead)
continue;
}
SpvStorageClass_ storageClass;
if (var->fModifiers.fFlags & Modifiers::kIn_Flag) {
storageClass = SpvStorageClassInput;
} else if (var->fModifiers.fFlags & Modifiers::kOut_Flag) {
storageClass = SpvStorageClassOutput;
} else if (var->fModifiers.fFlags & Modifiers::kUniform_Flag) {
if (var->fType.kind() == Type::kSampler_Kind) {
storageClass = SpvStorageClassUniformConstant;
} else {
storageClass = SpvStorageClassUniform;
}
} else {
storageClass = SpvStorageClassPrivate;
}
SpvId id = this->nextId();
fVariableMap[var] = id;
SpvId type = this->getPointerType(var->fType, storageClass);
this->writeInstruction(SpvOpVariable, type, id, storageClass, fConstantBuffer);
this->writeInstruction(SpvOpName, id, var->fName.c_str(), fNameBuffer);
if (var->fType.kind() == Type::kMatrix_Kind) {
this->writeInstruction(SpvOpMemberDecorate, id, (SpvId) i, SpvDecorationColMajor,
fDecorationBuffer);
this->writeInstruction(SpvOpMemberDecorate, id, (SpvId) i, SpvDecorationMatrixStride,
(SpvId) var->fType.stride(), fDecorationBuffer);
}
if (varDecl.fValue) {
ASSERT(!fCurrentBlock);
fCurrentBlock = -1;
SpvId value = this->writeExpression(*varDecl.fValue, fGlobalInitializersBuffer);
this->writeInstruction(SpvOpStore, id, value, fGlobalInitializersBuffer);
fCurrentBlock = 0;
}
this->writeLayout(var->fModifiers.fLayout, id);
}
}
void SPIRVCodeGenerator::writeVarDeclarations(const VarDeclarations& decl, std::ostream& out) {
for (const auto& varDecl : decl.fVars) {
const Variable* var = varDecl.fVar;
SpvId id = this->nextId();
fVariableMap[var] = id;
SpvId type = this->getPointerType(var->fType, SpvStorageClassFunction);
this->writeInstruction(SpvOpVariable, type, id, SpvStorageClassFunction, fVariableBuffer);
this->writeInstruction(SpvOpName, id, var->fName.c_str(), fNameBuffer);
if (varDecl.fValue) {
SpvId value = this->writeExpression(*varDecl.fValue, out);
this->writeInstruction(SpvOpStore, id, value, out);
}
}
}
void SPIRVCodeGenerator::writeStatement(const Statement& s, std::ostream& out) {
switch (s.fKind) {
case Statement::kBlock_Kind:
this->writeBlock((Block&) s, out);
break;
case Statement::kExpression_Kind:
this->writeExpression(*((ExpressionStatement&) s).fExpression, out);
break;
case Statement::kReturn_Kind:
this->writeReturnStatement((ReturnStatement&) s, out);
break;
case Statement::kVarDeclarations_Kind:
this->writeVarDeclarations(*((VarDeclarationsStatement&) s).fDeclaration, out);
break;
case Statement::kIf_Kind:
this->writeIfStatement((IfStatement&) s, out);
break;
case Statement::kFor_Kind:
this->writeForStatement((ForStatement&) s, out);
break;
case Statement::kBreak_Kind:
this->writeInstruction(SpvOpBranch, fBreakTarget.top(), out);
break;
case Statement::kContinue_Kind:
this->writeInstruction(SpvOpBranch, fContinueTarget.top(), out);
break;
case Statement::kDiscard_Kind:
this->writeInstruction(SpvOpKill, out);
break;
default:
ABORT("unsupported statement: %s", s.description().c_str());
}
}
void SPIRVCodeGenerator::writeBlock(const Block& b, std::ostream& out) {
for (size_t i = 0; i < b.fStatements.size(); i++) {
this->writeStatement(*b.fStatements[i], out);
}
}
void SPIRVCodeGenerator::writeIfStatement(const IfStatement& stmt, std::ostream& out) {
SpvId test = this->writeExpression(*stmt.fTest, out);
SpvId ifTrue = this->nextId();
SpvId ifFalse = this->nextId();
if (stmt.fIfFalse) {
SpvId end = this->nextId();
this->writeInstruction(SpvOpSelectionMerge, end, SpvSelectionControlMaskNone, out);
this->writeInstruction(SpvOpBranchConditional, test, ifTrue, ifFalse, out);
this->writeLabel(ifTrue, out);
this->writeStatement(*stmt.fIfTrue, out);
if (fCurrentBlock) {
this->writeInstruction(SpvOpBranch, end, out);
}
this->writeLabel(ifFalse, out);
this->writeStatement(*stmt.fIfFalse, out);
if (fCurrentBlock) {
this->writeInstruction(SpvOpBranch, end, out);
}
this->writeLabel(end, out);
} else {
this->writeInstruction(SpvOpSelectionMerge, ifFalse, SpvSelectionControlMaskNone, out);
this->writeInstruction(SpvOpBranchConditional, test, ifTrue, ifFalse, out);
this->writeLabel(ifTrue, out);
this->writeStatement(*stmt.fIfTrue, out);
if (fCurrentBlock) {
this->writeInstruction(SpvOpBranch, ifFalse, out);
}
this->writeLabel(ifFalse, out);
}
}
void SPIRVCodeGenerator::writeForStatement(const ForStatement& f, std::ostream& out) {
if (f.fInitializer) {
this->writeStatement(*f.fInitializer, out);
}
SpvId header = this->nextId();
SpvId start = this->nextId();
SpvId body = this->nextId();
SpvId next = this->nextId();
fContinueTarget.push(next);
SpvId end = this->nextId();
fBreakTarget.push(end);
this->writeInstruction(SpvOpBranch, header, out);
this->writeLabel(header, out);
this->writeInstruction(SpvOpLoopMerge, end, next, SpvLoopControlMaskNone, out);
this->writeInstruction(SpvOpBranch, start, out);
this->writeLabel(start, out);
if (f.fTest) {
SpvId test = this->writeExpression(*f.fTest, out);
this->writeInstruction(SpvOpBranchConditional, test, body, end, out);
}
this->writeLabel(body, out);
this->writeStatement(*f.fStatement, out);
if (fCurrentBlock) {
this->writeInstruction(SpvOpBranch, next, out);
}
this->writeLabel(next, out);
if (f.fNext) {
this->writeExpression(*f.fNext, out);
}
this->writeInstruction(SpvOpBranch, header, out);
this->writeLabel(end, out);
fBreakTarget.pop();
fContinueTarget.pop();
}
void SPIRVCodeGenerator::writeReturnStatement(const ReturnStatement& r, std::ostream& out) {
if (r.fExpression) {
this->writeInstruction(SpvOpReturnValue, this->writeExpression(*r.fExpression, out),
out);
} else {
this->writeInstruction(SpvOpReturn, out);
}
}
void SPIRVCodeGenerator::writeInstructions(const Program& program, std::ostream& out) {
fGLSLExtendedInstructions = this->nextId();
std::stringstream body;
std::vector<SpvId> interfaceVars;
// assign IDs to functions
for (size_t i = 0; i < program.fElements.size(); i++) {
if (program.fElements[i]->fKind == ProgramElement::kFunction_Kind) {
FunctionDefinition& f = (FunctionDefinition&) *program.fElements[i];
fFunctionMap[&f.fDeclaration] = this->nextId();
}
}
for (size_t i = 0; i < program.fElements.size(); i++) {
if (program.fElements[i]->fKind == ProgramElement::kInterfaceBlock_Kind) {
InterfaceBlock& intf = (InterfaceBlock&) *program.fElements[i];
SpvId id = this->writeInterfaceBlock(intf);
if ((intf.fVariable.fModifiers.fFlags & Modifiers::kIn_Flag) ||
(intf.fVariable.fModifiers.fFlags & Modifiers::kOut_Flag)) {
interfaceVars.push_back(id);
}
}
}
for (size_t i = 0; i < program.fElements.size(); i++) {
if (program.fElements[i]->fKind == ProgramElement::kVar_Kind) {
this->writeGlobalVars(program.fKind, ((VarDeclarations&) *program.fElements[i]),
body);
}
}
for (size_t i = 0; i < program.fElements.size(); i++) {
if (program.fElements[i]->fKind == ProgramElement::kFunction_Kind) {
this->writeFunction(((FunctionDefinition&) *program.fElements[i]), body);
}
}
const FunctionDeclaration* main = nullptr;
for (auto entry : fFunctionMap) {
if (entry.first->fName == "main") {
main = entry.first;
}
}
ASSERT(main);
for (auto entry : fVariableMap) {
const Variable* var = entry.first;
if (var->fStorage == Variable::kGlobal_Storage &&
((var->fModifiers.fFlags & Modifiers::kIn_Flag) ||
(var->fModifiers.fFlags & Modifiers::kOut_Flag))) {
interfaceVars.push_back(entry.second);
}
}
this->writeCapabilities(out);
this->writeInstruction(SpvOpExtInstImport, fGLSLExtendedInstructions, "GLSL.std.450", out);
this->writeInstruction(SpvOpMemoryModel, SpvAddressingModelLogical, SpvMemoryModelGLSL450, out);
this->writeOpCode(SpvOpEntryPoint, (SpvId) (3 + (strlen(main->fName.c_str()) + 4) / 4) +
(int32_t) interfaceVars.size(), out);
switch (program.fKind) {
case Program::kVertex_Kind:
this->writeWord(SpvExecutionModelVertex, out);
break;
case Program::kFragment_Kind:
this->writeWord(SpvExecutionModelFragment, out);
break;
}
this->writeWord(fFunctionMap[main], out);
this->writeString(main->fName.c_str(), out);
for (int var : interfaceVars) {
this->writeWord(var, out);
}
if (program.fKind == Program::kFragment_Kind) {
this->writeInstruction(SpvOpExecutionMode,
fFunctionMap[main],
SpvExecutionModeOriginUpperLeft,
out);
}
for (size_t i = 0; i < program.fElements.size(); i++) {
if (program.fElements[i]->fKind == ProgramElement::kExtension_Kind) {
this->writeInstruction(SpvOpSourceExtension,
((Extension&) *program.fElements[i]).fName.c_str(),
out);
}
}
out << fNameBuffer.str();
out << fDecorationBuffer.str();
out << fConstantBuffer.str();
out << fExternalFunctionsBuffer.str();
out << body.str();
}
void SPIRVCodeGenerator::generateCode(const Program& program, std::ostream& out) {
this->writeWord(SpvMagicNumber, out);
this->writeWord(SpvVersion, out);
this->writeWord(SKSL_MAGIC, out);
std::stringstream buffer;
this->writeInstructions(program, buffer);
this->writeWord(fIdCount, out);
this->writeWord(0, out); // reserved, always zero
out << buffer.str();
}
}