| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "GrConfigConversionEffect.h" |
| #include "GrContext.h" |
| #include "GrDrawContext.h" |
| #include "GrInvariantOutput.h" |
| #include "GrSimpleTextureEffect.h" |
| #include "SkMatrix.h" |
| #include "glsl/GrGLSLFragmentProcessor.h" |
| #include "glsl/GrGLSLFragmentShaderBuilder.h" |
| |
| class GrGLConfigConversionEffect : public GrGLSLFragmentProcessor { |
| public: |
| void emitCode(EmitArgs& args) override { |
| const GrConfigConversionEffect& cce = args.fFp.cast<GrConfigConversionEffect>(); |
| const GrSwizzle& swizzle = cce.swizzle(); |
| GrConfigConversionEffect::PMConversion pmConversion = cce.pmConversion(); |
| |
| // Using highp for GLES here in order to avoid some precision issues on specific GPUs. |
| GrGLSLShaderVar tmpVar("tmpColor", kVec4f_GrSLType, 0, kHigh_GrSLPrecision); |
| SkString tmpDecl; |
| tmpVar.appendDecl(args.fGLSLCaps, &tmpDecl); |
| |
| GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| |
| fragBuilder->codeAppendf("%s;", tmpDecl.c_str()); |
| |
| fragBuilder->codeAppendf("%s = ", tmpVar.c_str()); |
| fragBuilder->appendTextureLookup(args.fTexSamplers[0], args.fCoords[0].c_str(), |
| args.fCoords[0].getType()); |
| fragBuilder->codeAppend(";"); |
| |
| if (GrConfigConversionEffect::kNone_PMConversion == pmConversion) { |
| SkASSERT(GrSwizzle::RGBA() != swizzle); |
| fragBuilder->codeAppendf("%s = %s.%s;", args.fOutputColor, tmpVar.c_str(), |
| swizzle.c_str()); |
| } else { |
| switch (pmConversion) { |
| case GrConfigConversionEffect::kMulByAlpha_RoundUp_PMConversion: |
| fragBuilder->codeAppendf( |
| "%s = vec4(ceil(%s.rgb * %s.a * 255.0) / 255.0, %s.a);", |
| tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str()); |
| break; |
| case GrConfigConversionEffect::kMulByAlpha_RoundDown_PMConversion: |
| // Add a compensation(0.001) here to avoid the side effect of the floor operation. |
| // In Intel GPUs, the integer value converted from floor(%s.r * 255.0) / 255.0 |
| // is less than the integer value converted from %s.r by 1 when the %s.r is |
| // converted from the integer value 2^n, such as 1, 2, 4, 8, etc. |
| fragBuilder->codeAppendf( |
| "%s = vec4(floor(%s.rgb * %s.a * 255.0 + 0.001) / 255.0, %s.a);", |
| tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str()); |
| |
| break; |
| case GrConfigConversionEffect::kDivByAlpha_RoundUp_PMConversion: |
| fragBuilder->codeAppendf( |
| "%s = %s.a <= 0.0 ? vec4(0,0,0,0) : vec4(ceil(%s.rgb / %s.a * 255.0) / 255.0, %s.a);", |
| tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str(), |
| tmpVar.c_str()); |
| break; |
| case GrConfigConversionEffect::kDivByAlpha_RoundDown_PMConversion: |
| fragBuilder->codeAppendf( |
| "%s = %s.a <= 0.0 ? vec4(0,0,0,0) : vec4(floor(%s.rgb / %s.a * 255.0) / 255.0, %s.a);", |
| tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str(), |
| tmpVar.c_str()); |
| break; |
| default: |
| SkFAIL("Unknown conversion op."); |
| break; |
| } |
| fragBuilder->codeAppendf("%s = %s.%s;", args.fOutputColor, tmpVar.c_str(), |
| swizzle.c_str()); |
| } |
| SkString modulate; |
| GrGLSLMulVarBy4f(&modulate, args.fOutputColor, args.fInputColor); |
| fragBuilder->codeAppend(modulate.c_str()); |
| } |
| |
| static inline void GenKey(const GrProcessor& processor, const GrGLSLCaps&, |
| GrProcessorKeyBuilder* b) { |
| const GrConfigConversionEffect& cce = processor.cast<GrConfigConversionEffect>(); |
| uint32_t key = (cce.swizzle().asKey()) | (cce.pmConversion() << 16); |
| b->add32(key); |
| } |
| |
| private: |
| typedef GrGLSLFragmentProcessor INHERITED; |
| |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| GrConfigConversionEffect::GrConfigConversionEffect(GrTexture* texture, |
| const GrSwizzle& swizzle, |
| PMConversion pmConversion, |
| const SkMatrix& matrix) |
| : INHERITED(texture, matrix) |
| , fSwizzle(swizzle) |
| , fPMConversion(pmConversion) { |
| this->initClassID<GrConfigConversionEffect>(); |
| // We expect to get here with non-BGRA/RGBA only if we're doing not doing a premul/unpremul |
| // conversion. |
| SkASSERT((kRGBA_8888_GrPixelConfig == texture->config() || |
| kBGRA_8888_GrPixelConfig == texture->config()) || |
| kNone_PMConversion == pmConversion); |
| // Why did we pollute our texture cache instead of using a GrSingleTextureEffect? |
| SkASSERT(swizzle != GrSwizzle::RGBA() || kNone_PMConversion != pmConversion); |
| } |
| |
| bool GrConfigConversionEffect::onIsEqual(const GrFragmentProcessor& s) const { |
| const GrConfigConversionEffect& other = s.cast<GrConfigConversionEffect>(); |
| return other.fSwizzle == fSwizzle && |
| other.fPMConversion == fPMConversion; |
| } |
| |
| void GrConfigConversionEffect::onComputeInvariantOutput(GrInvariantOutput* inout) const { |
| this->updateInvariantOutputForModulation(inout); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrConfigConversionEffect); |
| |
| const GrFragmentProcessor* GrConfigConversionEffect::TestCreate(GrProcessorTestData* d) { |
| PMConversion pmConv = static_cast<PMConversion>(d->fRandom->nextULessThan(kPMConversionCnt)); |
| GrSwizzle swizzle; |
| do { |
| swizzle = GrSwizzle::CreateRandom(d->fRandom); |
| } while (pmConv == kNone_PMConversion && swizzle == GrSwizzle::RGBA()); |
| return new GrConfigConversionEffect(d->fTextures[GrProcessorUnitTest::kSkiaPMTextureIdx], |
| swizzle, pmConv, GrTest::TestMatrix(d->fRandom)); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void GrConfigConversionEffect::onGetGLSLProcessorKey(const GrGLSLCaps& caps, |
| GrProcessorKeyBuilder* b) const { |
| GrGLConfigConversionEffect::GenKey(*this, caps, b); |
| } |
| |
| GrGLSLFragmentProcessor* GrConfigConversionEffect::onCreateGLSLInstance() const { |
| return new GrGLConfigConversionEffect(); |
| } |
| |
| |
| |
| void GrConfigConversionEffect::TestForPreservingPMConversions(GrContext* context, |
| PMConversion* pmToUPMRule, |
| PMConversion* upmToPMRule) { |
| *pmToUPMRule = kNone_PMConversion; |
| *upmToPMRule = kNone_PMConversion; |
| SkAutoTMalloc<uint32_t> data(256 * 256 * 3); |
| uint32_t* srcData = data.get(); |
| uint32_t* firstRead = data.get() + 256 * 256; |
| uint32_t* secondRead = data.get() + 2 * 256 * 256; |
| |
| // Fill with every possible premultiplied A, color channel value. There will be 256-y duplicate |
| // values in row y. We set r,g, and b to the same value since they are handled identically. |
| for (int y = 0; y < 256; ++y) { |
| for (int x = 0; x < 256; ++x) { |
| uint8_t* color = reinterpret_cast<uint8_t*>(&srcData[256*y + x]); |
| color[3] = y; |
| color[2] = SkTMin(x, y); |
| color[1] = SkTMin(x, y); |
| color[0] = SkTMin(x, y); |
| } |
| } |
| |
| GrSurfaceDesc desc; |
| desc.fFlags = kRenderTarget_GrSurfaceFlag; |
| desc.fWidth = 256; |
| desc.fHeight = 256; |
| desc.fConfig = kRGBA_8888_GrPixelConfig; |
| desc.fIsMipMapped = false; |
| |
| SkAutoTUnref<GrTexture> readTex(context->textureProvider()->createTexture( |
| desc, SkBudgeted::kYes, nullptr, 0)); |
| if (!readTex.get()) { |
| return; |
| } |
| SkAutoTUnref<GrTexture> tempTex(context->textureProvider()->createTexture( |
| desc, SkBudgeted::kYes, nullptr, 0)); |
| if (!tempTex.get()) { |
| return; |
| } |
| desc.fFlags = kNone_GrSurfaceFlags; |
| SkAutoTUnref<GrTexture> dataTex(context->textureProvider()->createTexture( |
| desc, SkBudgeted::kYes, data, 0)); |
| if (!dataTex.get()) { |
| return; |
| } |
| |
| static const PMConversion kConversionRules[][2] = { |
| {kDivByAlpha_RoundDown_PMConversion, kMulByAlpha_RoundUp_PMConversion}, |
| {kDivByAlpha_RoundUp_PMConversion, kMulByAlpha_RoundDown_PMConversion}, |
| }; |
| |
| bool failed = true; |
| |
| for (size_t i = 0; i < SK_ARRAY_COUNT(kConversionRules) && failed; ++i) { |
| *pmToUPMRule = kConversionRules[i][0]; |
| *upmToPMRule = kConversionRules[i][1]; |
| |
| static const SkRect kDstRect = SkRect::MakeWH(SkIntToScalar(256), SkIntToScalar(256)); |
| static const SkRect kSrcRect = SkRect::MakeWH(SK_Scalar1, SK_Scalar1); |
| // We do a PM->UPM draw from dataTex to readTex and read the data. Then we do a UPM->PM draw |
| // from readTex to tempTex followed by a PM->UPM draw to readTex and finally read the data. |
| // We then verify that two reads produced the same values. |
| |
| GrPaint paint1; |
| GrPaint paint2; |
| GrPaint paint3; |
| SkAutoTUnref<GrFragmentProcessor> pmToUPM1(new GrConfigConversionEffect( |
| dataTex, GrSwizzle::RGBA(), *pmToUPMRule, SkMatrix::I())); |
| SkAutoTUnref<GrFragmentProcessor> upmToPM(new GrConfigConversionEffect( |
| readTex, GrSwizzle::RGBA(), *upmToPMRule, SkMatrix::I())); |
| SkAutoTUnref<GrFragmentProcessor> pmToUPM2(new GrConfigConversionEffect( |
| tempTex, GrSwizzle::RGBA(), *pmToUPMRule, SkMatrix::I())); |
| |
| paint1.addColorFragmentProcessor(pmToUPM1); |
| paint1.setPorterDuffXPFactory(SkXfermode::kSrc_Mode); |
| |
| |
| sk_sp<GrDrawContext> readDrawContext( |
| context->drawContext(sk_ref_sp(readTex->asRenderTarget()))); |
| if (!readDrawContext) { |
| failed = true; |
| break; |
| } |
| |
| readDrawContext->fillRectToRect(GrNoClip(), |
| paint1, |
| SkMatrix::I(), |
| kDstRect, |
| kSrcRect); |
| |
| readTex->readPixels(0, 0, 256, 256, kRGBA_8888_GrPixelConfig, firstRead); |
| |
| paint2.addColorFragmentProcessor(upmToPM); |
| paint2.setPorterDuffXPFactory(SkXfermode::kSrc_Mode); |
| |
| sk_sp<GrDrawContext> tempDrawContext( |
| context->drawContext(sk_ref_sp(tempTex->asRenderTarget()))); |
| if (!tempDrawContext) { |
| failed = true; |
| break; |
| } |
| tempDrawContext->fillRectToRect(GrNoClip(), |
| paint2, |
| SkMatrix::I(), |
| kDstRect, |
| kSrcRect); |
| |
| paint3.addColorFragmentProcessor(pmToUPM2); |
| paint3.setPorterDuffXPFactory(SkXfermode::kSrc_Mode); |
| |
| readDrawContext = context->drawContext(sk_ref_sp(readTex->asRenderTarget())); |
| if (!readDrawContext) { |
| failed = true; |
| break; |
| } |
| |
| readDrawContext->fillRectToRect(GrNoClip(), |
| paint3, |
| SkMatrix::I(), |
| kDstRect, |
| kSrcRect); |
| |
| readTex->readPixels(0, 0, 256, 256, kRGBA_8888_GrPixelConfig, secondRead); |
| |
| failed = false; |
| for (int y = 0; y < 256 && !failed; ++y) { |
| for (int x = 0; x <= y; ++x) { |
| if (firstRead[256 * y + x] != secondRead[256 * y + x]) { |
| failed = true; |
| break; |
| } |
| } |
| } |
| } |
| if (failed) { |
| *pmToUPMRule = kNone_PMConversion; |
| *upmToPMRule = kNone_PMConversion; |
| } |
| } |
| |
| const GrFragmentProcessor* GrConfigConversionEffect::Create(GrTexture* texture, |
| const GrSwizzle& swizzle, |
| PMConversion pmConversion, |
| const SkMatrix& matrix) { |
| if (swizzle == GrSwizzle::RGBA() && kNone_PMConversion == pmConversion) { |
| // If we returned a GrConfigConversionEffect that was equivalent to a GrSimpleTextureEffect |
| // then we may pollute our texture cache with redundant shaders. So in the case that no |
| // conversions were requested we instead return a GrSimpleTextureEffect. |
| return GrSimpleTextureEffect::Create(texture, matrix); |
| } else { |
| if (kRGBA_8888_GrPixelConfig != texture->config() && |
| kBGRA_8888_GrPixelConfig != texture->config() && |
| kNone_PMConversion != pmConversion) { |
| // The PM conversions assume colors are 0..255 |
| return nullptr; |
| } |
| return new GrConfigConversionEffect(texture, swizzle, pmConversion, matrix); |
| } |
| } |