| /* |
| * Copyright 2020 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "include/core/SkM44.h" |
| #include "include/utils/SkRandom.h" |
| #include "src/core/SkMatrixPriv.h" |
| #include "tests/Test.h" |
| |
| static bool eq(const SkM44& a, const SkM44& b, float tol) { |
| float fa[16], fb[16]; |
| a.getColMajor(fa); |
| b.getColMajor(fb); |
| for (int i = 0; i < 16; ++i) { |
| if (!SkScalarNearlyEqual(fa[i], fb[i], tol)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| DEF_TEST(M44, reporter) { |
| SkM44 m, im; |
| |
| REPORTER_ASSERT(reporter, SkM44(1, 0, 0, 0, |
| 0, 1, 0, 0, |
| 0, 0, 1, 0, |
| 0, 0, 0, 1) == m); |
| REPORTER_ASSERT(reporter, SkM44() == m); |
| REPORTER_ASSERT(reporter, m.invert(&im)); |
| REPORTER_ASSERT(reporter, SkM44() == im); |
| |
| m.setTranslate(3, 4, 2); |
| REPORTER_ASSERT(reporter, SkM44(1, 0, 0, 3, |
| 0, 1, 0, 4, |
| 0, 0, 1, 2, |
| 0, 0, 0, 1) == m); |
| |
| const float f[] = { 1, 0, 0, 2, 3, 1, 2, 5, 0, 5, 3, 0, 0, 1, 0, 2 }; |
| m = SkM44::ColMajor(f); |
| REPORTER_ASSERT(reporter, SkM44(f[0], f[4], f[ 8], f[12], |
| f[1], f[5], f[ 9], f[13], |
| f[2], f[6], f[10], f[14], |
| f[3], f[7], f[11], f[15]) == m); |
| |
| { |
| SkM44 t = m.transpose(); |
| REPORTER_ASSERT(reporter, t != m); |
| REPORTER_ASSERT(reporter, t.rc(1,0) == m.rc(0,1)); |
| SkM44 tt = t.transpose(); |
| REPORTER_ASSERT(reporter, tt == m); |
| } |
| |
| m = SkM44::RowMajor(f); |
| REPORTER_ASSERT(reporter, SkM44(f[ 0], f[ 1], f[ 2], f[ 3], |
| f[ 4], f[ 5], f[ 6], f[ 7], |
| f[ 8], f[ 9], f[10], f[14], |
| f[12], f[13], f[14], f[15]) == m); |
| |
| REPORTER_ASSERT(reporter, m.invert(&im)); |
| |
| m = m * im; |
| // m should be identity now, but our calc is not perfect... |
| REPORTER_ASSERT(reporter, eq(SkM44(), m, 0.0000005f)); |
| REPORTER_ASSERT(reporter, SkM44() != m); |
| } |
| |
| DEF_TEST(M44_v3, reporter) { |
| SkV3 a = {1, 2, 3}, |
| b = {1, 2, 2}; |
| |
| REPORTER_ASSERT(reporter, a.lengthSquared() == 1 + 4 + 9); |
| REPORTER_ASSERT(reporter, b.length() == 3); |
| REPORTER_ASSERT(reporter, a.dot(b) == 1 + 4 + 6); |
| REPORTER_ASSERT(reporter, b.dot(a) == 1 + 4 + 6); |
| REPORTER_ASSERT(reporter, (a.cross(b) == SkV3{-2, 1, 0})); |
| REPORTER_ASSERT(reporter, (b.cross(a) == SkV3{ 2, -1, 0})); |
| |
| SkM44 m = { |
| 2, 0, 0, 3, |
| 0, 1, 0, 5, |
| 0, 0, 3, 1, |
| 0, 0, 0, 1 |
| }; |
| |
| SkV3 c = m * a; |
| REPORTER_ASSERT(reporter, (c == SkV3{2, 2, 9})); |
| SkV4 d = m.map(4, 3, 2, 1); |
| REPORTER_ASSERT(reporter, (d == SkV4{11, 8, 7, 1})); |
| } |
| |
| DEF_TEST(M44_v4, reporter) { |
| SkM44 m( 1, 2, 3, 4, |
| 5, 6, 7, 8, |
| 9, 10, 11, 12, |
| 13, 14, 15, 16); |
| |
| SkV4 r0 = m.row(0), |
| r1 = m.row(1), |
| r2 = m.row(2), |
| r3 = m.row(3); |
| |
| REPORTER_ASSERT(reporter, (r0 == SkV4{ 1, 2, 3, 4})); |
| REPORTER_ASSERT(reporter, (r1 == SkV4{ 5, 6, 7, 8})); |
| REPORTER_ASSERT(reporter, (r2 == SkV4{ 9, 10, 11, 12})); |
| REPORTER_ASSERT(reporter, (r3 == SkV4{13, 14, 15, 16})); |
| |
| REPORTER_ASSERT(reporter, SkM44::Rows(r0, r1, r2, r3) == m); |
| |
| SkV4 c0 = m.col(0), |
| c1 = m.col(1), |
| c2 = m.col(2), |
| c3 = m.col(3); |
| |
| REPORTER_ASSERT(reporter, (c0 == SkV4{1, 5, 9, 13})); |
| REPORTER_ASSERT(reporter, (c1 == SkV4{2, 6, 10, 14})); |
| REPORTER_ASSERT(reporter, (c2 == SkV4{3, 7, 11, 15})); |
| REPORTER_ASSERT(reporter, (c3 == SkV4{4, 8, 12, 16})); |
| |
| REPORTER_ASSERT(reporter, SkM44::Cols(c0, c1, c2, c3) == m); |
| |
| // implement matrix * vector using column vectors |
| SkV4 v = {1, 2, 3, 4}; |
| SkV4 v1 = m * v; |
| SkV4 v2 = c0 * v.x + c1 * v.y + c2 * v.z + c3 * v.w; |
| REPORTER_ASSERT(reporter, v1 == v2); |
| |
| REPORTER_ASSERT(reporter, (c0 + r0 == SkV4{c0.x+r0.x, c0.y+r0.y, c0.z+r0.z, c0.w+r0.w})); |
| REPORTER_ASSERT(reporter, (c0 - r0 == SkV4{c0.x-r0.x, c0.y-r0.y, c0.z-r0.z, c0.w-r0.w})); |
| REPORTER_ASSERT(reporter, (c0 * r0 == SkV4{c0.x*r0.x, c0.y*r0.y, c0.z*r0.z, c0.w*r0.w})); |
| } |
| |
| DEF_TEST(M44_rotate, reporter) { |
| const SkV3 x = {1, 0, 0}, |
| y = {0, 1, 0}, |
| z = {0, 0, 1}; |
| |
| // We have radians version of setRotateAbout methods, but even with our best approx |
| // for PI, sin(SK_ScalarPI) != 0, so to make the comparisons in the unittest clear, |
| // I'm using the variants that explicitly take the sin,cos values. |
| |
| struct { |
| SkScalar sinAngle, cosAngle; |
| SkV3 aboutAxis; |
| SkV3 expectedX, expectedY, expectedZ; |
| } recs[] = { |
| { 0, 1, x, x, y, z}, // angle = 0 |
| { 0, 1, y, x, y, z}, // angle = 0 |
| { 0, 1, z, x, y, z}, // angle = 0 |
| |
| { 0,-1, x, x,-y,-z}, // angle = 180 |
| { 0,-1, y, -x, y,-z}, // angle = 180 |
| { 0,-1, z, -x,-y, z}, // angle = 180 |
| |
| // Skia coordinate system is right-handed |
| |
| { 1, 0, x, x, z,-y}, // angle = 90 |
| { 1, 0, y, -z, y, x}, // angle = 90 |
| { 1, 0, z, y,-x, z}, // angle = 90 |
| |
| {-1, 0, x, x,-z, y}, // angle = -90 |
| {-1, 0, y, z, y,-x}, // angle = -90 |
| {-1, 0, z, -y, x, z}, // angle = -90 |
| }; |
| |
| for (const auto& r : recs) { |
| SkM44 m(SkM44::kNaN_Constructor); |
| m.setRotateUnitSinCos(r.aboutAxis, r.sinAngle, r.cosAngle); |
| |
| auto mx = m * x; |
| auto my = m * y; |
| auto mz = m * z; |
| REPORTER_ASSERT(reporter, mx == r.expectedX); |
| REPORTER_ASSERT(reporter, my == r.expectedY); |
| REPORTER_ASSERT(reporter, mz == r.expectedZ); |
| |
| // flipping the axis-of-rotation should flip the results |
| mx = m * -x; |
| my = m * -y; |
| mz = m * -z; |
| REPORTER_ASSERT(reporter, mx == -r.expectedX); |
| REPORTER_ASSERT(reporter, my == -r.expectedY); |
| REPORTER_ASSERT(reporter, mz == -r.expectedZ); |
| } |
| } |
| |
| DEF_TEST(M44_rectToRect, reporter) { |
| SkV2 dstScales[] = { |
| {1.f, 1.f}, // no aspect ratio change, nor up/down scaling |
| {0.25f, 0.5f}, // aspect ratio narrows, downscale x and y |
| {0.5f, 0.25f}, // aspect ratio widens, downscale x and y |
| {0.5f, 0.5f}, // no aspect ratio change, downscale x and y |
| {2.f, 3.f}, // aspect ratio narrows, upscale x and y |
| {3.f, 2.f}, // aspect ratio widens, upscale x and y |
| {2.f, 2.f}, // no aspect ratio change, upscale x and y |
| {0.5f, 2.f}, // aspect ratio narrows, downscale x and upscale y |
| {2.f, 0.5f} // aspect ratio widens, upscale x and downscale y |
| }; |
| |
| auto map2d = [&](const SkM44& m, SkV2 p) { |
| SkV4 mapped = m.map(p.x, p.y, 0.f, 1.f); |
| REPORTER_ASSERT(reporter, mapped.z == 0.f); |
| REPORTER_ASSERT(reporter, mapped.w == 1.f); |
| return SkV2{mapped.x, mapped.y}; |
| }; |
| auto assertNearlyEqual = [&](float actual, float expected) { |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(actual, expected), |
| "Expected %g == %g", actual, expected); |
| }; |
| auto assertEdges = [&](float actualLow, float actualHigh, |
| float expectedLow, float expectedHigh) { |
| SkASSERT(expectedLow < expectedHigh); |
| REPORTER_ASSERT(reporter, actualLow < actualHigh, |
| "Expected %g < %g", actualLow, actualHigh); |
| |
| assertNearlyEqual(actualLow, expectedLow); |
| assertNearlyEqual(actualHigh, expectedHigh); |
| }; |
| |
| SkRandom rand; |
| for (const auto& r : dstScales) { |
| SkRect src = SkRect::MakeXYWH(rand.nextRangeF(-10.f, 10.f), |
| rand.nextRangeF(-10.f, 10.f), |
| rand.nextRangeF(1.f, 10.f), |
| rand.nextRangeF(1.f, 10.f)); |
| SkRect dst = SkRect::MakeXYWH(rand.nextRangeF(-10.f, 10.f), |
| rand.nextRangeF(-10.f, 10.f), |
| r.x * src.width(), |
| r.y * src.height()); |
| |
| SkM44 m = SkM44::RectToRect(src, dst); |
| |
| // Regardless of the factory, center of src maps to center of dst |
| SkV2 center = map2d(m, {src.centerX(), src.centerY()}); |
| assertNearlyEqual(center.x, dst.centerX()); |
| assertNearlyEqual(center.y, dst.centerY()); |
| |
| // Map the four corners of src and validate against expected edge mapping |
| SkV2 tl = map2d(m, {src.fLeft, src.fTop}); |
| SkV2 tr = map2d(m, {src.fRight, src.fTop}); |
| SkV2 br = map2d(m, {src.fRight, src.fBottom}); |
| SkV2 bl = map2d(m, {src.fLeft, src.fBottom}); |
| |
| assertEdges(tl.x, tr.x, dst.fLeft, dst.fRight); |
| assertEdges(bl.x, br.x, dst.fLeft, dst.fRight); |
| assertEdges(tl.y, bl.y, dst.fTop, dst.fBottom); |
| assertEdges(tr.y, br.y, dst.fTop, dst.fBottom); |
| } |
| } |
| |
| DEF_TEST(M44_mapRect, reporter) { |
| auto assertRectsNearlyEqual = [&](const SkRect& actual, const SkRect& expected, |
| const SkRect& e) { |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(actual.fLeft, expected.fLeft, e.fLeft), |
| "Expected %g == %g", actual.fLeft, expected.fLeft); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(actual.fTop, expected.fTop, e.fTop), |
| "Expected %g == %g", actual.fTop, expected.fTop); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(actual.fRight, expected.fRight, e.fRight), |
| "Expected %g == %g", actual.fRight, expected.fRight); |
| REPORTER_ASSERT(reporter, SkScalarNearlyEqual(actual.fBottom, expected.fBottom, e.fBottom), |
| "Expected %g == %g", actual.fBottom, expected.fBottom); |
| }; |
| auto assertMapRect = [&](const SkM44& m, const SkRect& src, const SkRect* expected) { |
| SkRect epsilon = {1e-5f, 1e-5f, 1e-5f, 1e-5f}; |
| |
| SkRect actual = SkMatrixPriv::MapRect(m, src); |
| REPORTER_ASSERT(reporter, !actual.isEmpty()); |
| |
| if (expected) { |
| assertRectsNearlyEqual(actual, *expected, epsilon); |
| } |
| |
| SkV4 corners[4] = {{src.fLeft, src.fTop, 0.f, 1.f}, |
| {src.fRight, src.fTop, 0.f, 1.f}, |
| {src.fRight, src.fBottom, 0.f, 1.f}, |
| {src.fLeft, src.fBottom, 0.f, 1.f}}; |
| bool leftFound = false; |
| bool topFound = false; |
| bool rightFound = false; |
| bool bottomFound = false; |
| bool clipped = false; |
| for (int i = 0; i < 4; ++i) { |
| SkV4 mapped = m * corners[i]; |
| if (mapped.w > 0.f) { |
| // Should be contained in actual and might be on one or two of actual's edges |
| float x = mapped.x / mapped.w; |
| float y = mapped.y / mapped.w; |
| |
| // Can't use SkRect::contains() since it treats right and bottom edges as exclusive |
| REPORTER_ASSERT(reporter, actual.fLeft <= x && x <= actual.fRight, |
| "Expected %g contained in [%g, %g]", |
| x, actual.fLeft, actual.fRight); |
| REPORTER_ASSERT(reporter, actual.fTop <= y && y <= actual.fBottom, |
| "Expected %g contained in [%g, %g]", |
| y, actual.fTop, actual.fBottom); |
| |
| leftFound |= SkScalarNearlyEqual(x, actual.fLeft); |
| topFound |= SkScalarNearlyEqual(y, actual.fTop); |
| rightFound |= SkScalarNearlyEqual(x, actual.fRight); |
| bottomFound |= SkScalarNearlyEqual(y, actual.fBottom); |
| } else { |
| // The mapped point would be clipped so the clipped mapped bounds don't necessarily |
| // contain it |
| clipped = true; |
| } |
| } |
| |
| if (clipped) { |
| // At least one of the mapped corners should have contributed to the rect |
| REPORTER_ASSERT(reporter, leftFound || topFound || rightFound || bottomFound); |
| // For any edge that came from a clipped corner, increase its error tolerance relative |
| // to what SkPath::ApplyPerspectiveClip calculates. |
| // TODO(michaelludwig): skbug.com/12335 required updating the w epsilon distance which |
| // greatly increased noise for coords projecting to infinity. They aren't "wrong", since |
| // the intent was clearly to pick a big number that's definitely offscreen, but |
| // MapRect should have a more robust solution than a fixed w > epsilon and when it does, |
| // these expectations for clipped points should be more accurate. |
| if (!leftFound) { epsilon.fLeft = .01f * actual.fLeft; } |
| if (!topFound) { epsilon.fTop = .01f * actual.fTop; } |
| if (!rightFound) { epsilon.fRight = .01f * actual.fRight; } |
| if (!bottomFound) { epsilon.fBottom = .01f * actual.fBottom; } |
| } else { |
| // The mapped corners should have contributed to all four edges of the returned rect |
| REPORTER_ASSERT(reporter, leftFound && topFound && rightFound && bottomFound); |
| } |
| |
| SkPath path = SkPath::Rect(src); |
| path.transform(m.asM33(), SkApplyPerspectiveClip::kYes); |
| assertRectsNearlyEqual(actual, path.getBounds(), epsilon); |
| }; |
| |
| // src chosen arbitrarily |
| const SkRect src = SkRect::MakeLTRB(4.83f, -0.48f, 5.53f, 30.68f); |
| |
| // Identity maps src to src |
| assertMapRect(SkM44(), src, &src); |
| // Scale+Translate just offsets src |
| SkRect st = SkRect::MakeLTRB(10.f + 2.f * src.fLeft, 8.f + 4.f * src.fTop, |
| 10.f + 2.f * src.fRight, 8.f + 4.f * src.fBottom); |
| assertMapRect(SkM44::Scale(2.f, 4.f).postTranslate(10.f, 8.f), src, &st); |
| // Rotate 45 degrees about center |
| assertMapRect(SkM44::Rotate({0.f, 0.f, 1.f}, SK_ScalarPI / 4.f) |
| .preTranslate(-src.centerX(), -src.centerY()) |
| .postTranslate(src.centerX(), src.centerY()), |
| src, nullptr); |
| |
| // Perspective matrix where src does not need to be clipped w > 0 |
| SkM44 p = SkM44::Perspective(0.01f, 10.f, SK_ScalarPI / 3.f); |
| p.preTranslate(0.f, 5.f, -0.1f); |
| p.preConcat(SkM44::Rotate({0.f, 1.f, 0.f}, 0.008f /* radians */)); |
| assertMapRect(p, src, nullptr); |
| |
| // Perspective matrix where src *does* need to be clipped w > 0 |
| p.setIdentity(); |
| p.setRow(3, {-.2f, -.6f, 0.f, 8.f}); |
| assertMapRect(p, src, nullptr); |
| } |
| |
| DEF_TEST(M44_mapRect_skbug12335, r) { |
| // Stripped down test case from skbug.com/12335. Essentially, the corners of this rect would |
| // map to homogoneous coords with very small w's (below the old value of kW0PlaneDistance) and |
| // so they would be clipped "behind" the plane, resulting in an empty mapped rect. Coordinates |
| // with positive that wouldn't overflow when divided by w should still be included in the mapped |
| // rectangle. |
| SkRect rect = SkRect::MakeLTRB(0, 0, 319, 620); |
| SkM44 m(SkMatrix::MakeAll( 0.000152695269f, 0.00000000f, -6.53848401e-05f, |
| -1.75697533e-05f, 0.000157153074f, -1.10847975e-06f, |
| -6.00415362e-08f, 0.00000000f, 0.000169880834f)); |
| SkRect out = SkMatrixPriv::MapRect(m, rect); |
| REPORTER_ASSERT(r, !out.isEmpty()); |
| } |