| #include "CurveIntersection.h" |
| #include "CubicUtilities.h" |
| |
| /* from http://tom.cs.byu.edu/~tom/papers/cvgip84.pdf 4.1 |
| * |
| * This paper proves that Syvester's method can compute the implicit form of |
| * the quadratic from the parameterzied form. |
| * |
| * Given x = a*t*t*t + b*t*t + c*t + d (the parameterized form) |
| * y = e*t*t*t + f*t*t + g*t + h |
| * |
| * we want to find an equation of the implicit form: |
| * |
| * A*x^3 + B*x*x*y + C*x*y*y + D*y^3 + E*x*x + F*x*y + G*y*y + H*x + I*y + J = 0 |
| * |
| * The implicit form can be expressed as a 6x6 determinant, as shown. |
| * |
| * The resultant obtained by Syvester's method is |
| * |
| * | a b c (d - x) 0 0 | |
| * | 0 a b c (d - x) 0 | |
| * | 0 0 a b c (d - x) | |
| * | e f g (h - y) 0 0 | |
| * | 0 e f g (h - y) 0 | |
| * | 0 0 e f g (h - y) | |
| * |
| * which, according to Mathematica, expands as shown below. |
| * |
| * Resultant[a*t^3 + b*t^2 + c*t + d - x, e*t^3 + f*t^2 + g*t + h - y, t] |
| * |
| * -d^3 e^3 + c d^2 e^2 f - b d^2 e f^2 + a d^2 f^3 - c^2 d e^2 g + |
| * 2 b d^2 e^2 g + b c d e f g - 3 a d^2 e f g - a c d f^2 g - |
| * b^2 d e g^2 + 2 a c d e g^2 + a b d f g^2 - a^2 d g^3 + c^3 e^2 h - |
| * 3 b c d e^2 h + 3 a d^2 e^2 h - b c^2 e f h + 2 b^2 d e f h + |
| * a c d e f h + a c^2 f^2 h - 2 a b d f^2 h + b^2 c e g h - |
| * 2 a c^2 e g h - a b d e g h - a b c f g h + 3 a^2 d f g h + |
| * a^2 c g^2 h - b^3 e h^2 + 3 a b c e h^2 - 3 a^2 d e h^2 + |
| * a b^2 f h^2 - 2 a^2 c f h^2 - a^2 b g h^2 + a^3 h^3 + 3 d^2 e^3 x - |
| * 2 c d e^2 f x + 2 b d e f^2 x - 2 a d f^3 x + c^2 e^2 g x - |
| * 4 b d e^2 g x - b c e f g x + 6 a d e f g x + a c f^2 g x + |
| * b^2 e g^2 x - 2 a c e g^2 x - a b f g^2 x + a^2 g^3 x + |
| * 3 b c e^2 h x - 6 a d e^2 h x - 2 b^2 e f h x - a c e f h x + |
| * 2 a b f^2 h x + a b e g h x - 3 a^2 f g h x + 3 a^2 e h^2 x - |
| * 3 d e^3 x^2 + c e^2 f x^2 - b e f^2 x^2 + a f^3 x^2 + |
| * 2 b e^2 g x^2 - 3 a e f g x^2 + 3 a e^2 h x^2 + e^3 x^3 - |
| * c^3 e^2 y + 3 b c d e^2 y - 3 a d^2 e^2 y + b c^2 e f y - |
| * 2 b^2 d e f y - a c d e f y - a c^2 f^2 y + 2 a b d f^2 y - |
| * b^2 c e g y + 2 a c^2 e g y + a b d e g y + a b c f g y - |
| * 3 a^2 d f g y - a^2 c g^2 y + 2 b^3 e h y - 6 a b c e h y + |
| * 6 a^2 d e h y - 2 a b^2 f h y + 4 a^2 c f h y + 2 a^2 b g h y - |
| * 3 a^3 h^2 y - 3 b c e^2 x y + 6 a d e^2 x y + 2 b^2 e f x y + |
| * a c e f x y - 2 a b f^2 x y - a b e g x y + 3 a^2 f g x y - |
| * 6 a^2 e h x y - 3 a e^2 x^2 y - b^3 e y^2 + 3 a b c e y^2 - |
| * 3 a^2 d e y^2 + a b^2 f y^2 - 2 a^2 c f y^2 - a^2 b g y^2 + |
| * 3 a^3 h y^2 + 3 a^2 e x y^2 - a^3 y^3 |
| */ |
| |
| enum { |
| xxx_coeff, // A |
| xxy_coeff, // B |
| xyy_coeff, // C |
| yyy_coeff, // D |
| xx_coeff, |
| xy_coeff, |
| yy_coeff, |
| x_coeff, |
| y_coeff, |
| c_coeff, |
| coeff_count |
| }; |
| |
| #define USE_SYVESTER 0 // if 0, use control-point base parametric form |
| #if USE_SYVESTER |
| |
| // FIXME: factoring version unwritten |
| // static bool straight_forward = true; |
| |
| /* from CubicParameterizationCode.cpp output: |
| * double A = e * e * e; |
| * double B = -3 * a * e * e; |
| * double C = 3 * a * a * e; |
| * double D = -a * a * a; |
| */ |
| static void calc_ABCD(double a, double e, double p[coeff_count]) { |
| double ee = e * e; |
| p[xxx_coeff] = e * ee; |
| p[xxy_coeff] = -3 * a * ee; |
| double aa = a * a; |
| p[xyy_coeff] = 3 * aa * e; |
| p[yyy_coeff] = -aa * a; |
| } |
| |
| /* CubicParameterizationCode.cpp turns Mathematica output into C. |
| * Rather than edit the lines below, please edit the code there instead. |
| */ |
| // start of generated code |
| static double calc_xx(double a, double b, double c, double d, |
| double e, double f, double g, double h) { |
| return |
| -3 * d * e * e * e |
| + c * e * e * f |
| - b * e * f * f |
| + a * f * f * f |
| + 2 * b * e * e * g |
| - 3 * a * e * f * g |
| + 3 * a * e * e * h; |
| } |
| |
| static double calc_xy(double a, double b, double c, double d, |
| double e, double f, double g, double h) { |
| return |
| -3 * b * c * e * e |
| + 6 * a * d * e * e |
| + 2 * b * b * e * f |
| + a * c * e * f |
| - 2 * a * b * f * f |
| - a * b * e * g |
| + 3 * a * a * f * g |
| - 6 * a * a * e * h; |
| } |
| |
| static double calc_yy(double a, double b, double c, double d, |
| double e, double f, double g, double h) { |
| return |
| -b * b * b * e |
| + 3 * a * b * c * e |
| - 3 * a * a * d * e |
| + a * b * b * f |
| - 2 * a * a * c * f |
| - a * a * b * g |
| + 3 * a * a * a * h; |
| } |
| |
| static double calc_x(double a, double b, double c, double d, |
| double e, double f, double g, double h) { |
| return |
| 3 * d * d * e * e * e |
| - 2 * c * d * e * e * f |
| + 2 * b * d * e * f * f |
| - 2 * a * d * f * f * f |
| + c * c * e * e * g |
| - 4 * b * d * e * e * g |
| - b * c * e * f * g |
| + 6 * a * d * e * f * g |
| + a * c * f * f * g |
| + b * b * e * g * g |
| - 2 * a * c * e * g * g |
| - a * b * f * g * g |
| + a * a * g * g * g |
| + 3 * b * c * e * e * h |
| - 6 * a * d * e * e * h |
| - 2 * b * b * e * f * h |
| - a * c * e * f * h |
| + 2 * a * b * f * f * h |
| + a * b * e * g * h |
| - 3 * a * a * f * g * h |
| + 3 * a * a * e * h * h; |
| } |
| |
| static double calc_y(double a, double b, double c, double d, |
| double e, double f, double g, double h) { |
| return |
| -c * c * c * e * e |
| + 3 * b * c * d * e * e |
| - 3 * a * d * d * e * e |
| + b * c * c * e * f |
| - 2 * b * b * d * e * f |
| - a * c * d * e * f |
| - a * c * c * f * f |
| + 2 * a * b * d * f * f |
| - b * b * c * e * g |
| + 2 * a * c * c * e * g |
| + a * b * d * e * g |
| + a * b * c * f * g |
| - 3 * a * a * d * f * g |
| - a * a * c * g * g |
| + 2 * b * b * b * e * h |
| - 6 * a * b * c * e * h |
| + 6 * a * a * d * e * h |
| - 2 * a * b * b * f * h |
| + 4 * a * a * c * f * h |
| + 2 * a * a * b * g * h |
| - 3 * a * a * a * h * h; |
| } |
| |
| static double calc_c(double a, double b, double c, double d, |
| double e, double f, double g, double h) { |
| return |
| -d * d * d * e * e * e |
| + c * d * d * e * e * f |
| - b * d * d * e * f * f |
| + a * d * d * f * f * f |
| - c * c * d * e * e * g |
| + 2 * b * d * d * e * e * g |
| + b * c * d * e * f * g |
| - 3 * a * d * d * e * f * g |
| - a * c * d * f * f * g |
| - b * b * d * e * g * g |
| + 2 * a * c * d * e * g * g |
| + a * b * d * f * g * g |
| - a * a * d * g * g * g |
| + c * c * c * e * e * h |
| - 3 * b * c * d * e * e * h |
| + 3 * a * d * d * e * e * h |
| - b * c * c * e * f * h |
| + 2 * b * b * d * e * f * h |
| + a * c * d * e * f * h |
| + a * c * c * f * f * h |
| - 2 * a * b * d * f * f * h |
| + b * b * c * e * g * h |
| - 2 * a * c * c * e * g * h |
| - a * b * d * e * g * h |
| - a * b * c * f * g * h |
| + 3 * a * a * d * f * g * h |
| + a * a * c * g * g * h |
| - b * b * b * e * h * h |
| + 3 * a * b * c * e * h * h |
| - 3 * a * a * d * e * h * h |
| + a * b * b * f * h * h |
| - 2 * a * a * c * f * h * h |
| - a * a * b * g * h * h |
| + a * a * a * h * h * h; |
| } |
| // end of generated code |
| |
| #else |
| |
| /* more Mathematica generated code. This takes a different tack, starting with |
| the control-point based parametric formulas. The C code is unoptimized -- |
| in this form, this is a proof of concept (since the other code didn't work) |
| */ |
| static double calc_c(double a, double b, double c, double d, |
| double e, double f, double g, double h) { |
| return |
| d*d*d*e*e*e - 3*d*d*(3*c*e*e*f + 3*b*e*(-3*f*f + 2*e*g) + a*(9*f*f*f - 9*e*f*g + e*e*h)) - |
| h*(27*c*c*c*e*e - 27*c*c*(3*b*e*f - 3*a*f*f + 2*a*e*g) + |
| h*(-27*b*b*b*e + 27*a*b*b*f - 9*a*a*b*g + a*a*a*h) + |
| 9*c*(9*b*b*e*g + a*b*(-9*f*g + 3*e*h) + a*a*(3*g*g - 2*f*h))) + |
| 3*d*(9*c*c*e*e*g + 9*b*b*e*(3*g*g - 2*f*h) + 3*a*b*(-9*f*g*g + 6*f*f*h + e*g*h) + |
| a*a*(9*g*g*g - 9*f*g*h + e*h*h) + 3*c*(3*b*e*(-3*f*g + e*h) + a*(9*f*f*g - 6*e*g*g - e*f*h))) |
| ; |
| } |
| |
| // - Power(e - 3*f + 3*g - h,3)*Power(x,3) |
| static double calc_xxx(double e3f3gh) { |
| return -e3f3gh * e3f3gh * e3f3gh; |
| } |
| |
| static double calc_y(double a, double b, double c, double d, |
| double e, double f, double g, double h) { |
| return |
| + 3*(6*b*d*d*e*e - d*d*d*e*e + 18*b*b*d*e*f - 18*b*d*d*e*f - |
| 9*b*d*d*f*f - 54*b*b*d*e*g + 12*b*d*d*e*g - 27*b*b*d*g*g - 18*b*b*b*e*h + 18*b*b*d*e*h + |
| 18*b*b*d*f*h + a*a*a*h*h - 9*b*b*b*h*h + 9*c*c*c*e*(e + 2*h) + |
| a*a*(-3*b*h*(2*g + h) + d*(-27*g*g + 9*g*h - h*(2*e + h) + 9*f*(g + h))) + |
| a*(9*b*b*h*(2*f + h) - 3*b*d*(6*f*f - 6*f*(3*g - 2*h) + g*(-9*g + h) + e*(g + h)) + |
| d*d*(e*e + 9*f*(3*f - g) + e*(-9*f - 9*g + 2*h))) - |
| 9*c*c*(d*e*(e + 2*g) + 3*b*(f*h + e*(f + h)) + a*(-3*f*f - 6*f*h + 2*(g*h + e*(g + h)))) + |
| 3*c*(d*d*e*(e + 2*f) + a*a*(3*g*g + 6*g*h - 2*h*(2*f + h)) + 9*b*b*(g*h + e*(g + h)) + |
| a*d*(-9*f*f - 18*f*g + 6*g*g + f*h + e*(f + 12*g + h)) + |
| b*(d*(-3*e*e + 9*f*g + e*(9*f + 9*g - 6*h)) + 3*a*(h*(2*e - 3*g + h) - 3*f*(g + h))))) // *y |
| ; |
| } |
| |
| static double calc_yy(double a, double b, double c, double d, |
| double e, double f, double g, double h) { |
| return |
| - 3*(18*c*c*c*e - 18*c*c*d*e + 6*c*d*d*e - d*d*d*e + 3*c*d*d*f - 9*c*c*d*g + a*a*a*h + 9*c*c*c*h - |
| 9*b*b*b*(e + 2*h) - a*a*(d*(e - 9*f + 18*g - 7*h) + 3*c*(2*f - 6*g + h)) + |
| a*(-9*c*c*(2*e - 6*f + 2*g - h) + d*d*(-7*e + 18*f - 9*g + h) + 3*c*d*(7*e - 17*f + 3*g + h)) + |
| 9*b*b*(3*c*(e + g + h) + a*(f + 2*h) - d*(e - 2*(f - 3*g + h))) - |
| 3*b*(-(d*d*(e - 6*f + 2*g)) - 3*c*d*(e + 3*f + 3*g - h) + 9*c*c*(e + f + h) + a*a*(g + 2*h) + |
| a*(c*(-3*e + 9*f + 9*g + 3*h) + d*(e + 3*f - 17*g + 7*h)))) // *Power(y,2) |
| ; |
| } |
| |
| // + Power(a - 3*b + 3*c - d,3)*Power(y,3) |
| static double calc_yyy(double a3b3cd) { |
| return a3b3cd * a3b3cd * a3b3cd; |
| } |
| |
| static double calc_xx(double a, double b, double c, double d, |
| double e, double f, double g, double h) { |
| return |
| // + Power(x,2)* |
| (-3*(-9*b*e*f*f + 9*a*f*f*f + 6*b*e*e*g - 9*a*e*f*g + 27*b*e*f*g - 27*a*f*f*g + 18*a*e*g*g - 54*b*e*g*g + |
| 27*a*f*g*g + 27*b*f*g*g - 18*a*g*g*g + a*e*e*h - 9*b*e*e*h + 3*a*e*f*h + 9*b*e*f*h + 9*a*f*f*h - |
| 18*b*f*f*h - 21*a*e*g*h + 51*b*e*g*h - 9*a*f*g*h - 27*b*f*g*h + 18*a*g*g*h + 7*a*e*h*h - 18*b*e*h*h - 3*a*f*h*h + |
| 18*b*f*h*h - 6*a*g*h*h - 3*b*g*h*h + a*h*h*h + |
| 3*c*(-9*f*f*(g - 2*h) + 3*g*g*h - f*h*(9*g + 2*h) + e*e*(f - 6*g + 6*h) + |
| e*(9*f*g + 6*g*g - 17*f*h - 3*g*h + 3*h*h)) - |
| d*(e*e*e + e*e*(-6*f - 3*g + 7*h) - 9*(2*f - g)*(f*f + g*g - f*(g + h)) + |
| e*(18*f*f + 9*g*g + 3*g*h + h*h - 3*f*(3*g + 7*h)))) ) |
| ; |
| } |
| |
| // + Power(x,2)*(3*(a - 3*b + 3*c - d)*Power(e - 3*f + 3*g - h,2)*y) |
| static double calc_xxy(double a3b3cd, double e3f3gh) { |
| return 3 * a3b3cd * e3f3gh * e3f3gh; |
| } |
| |
| static double calc_x(double a, double b, double c, double d, |
| double e, double f, double g, double h) { |
| return |
| // + x* |
| (-3*(27*b*b*e*g*g - 27*a*b*f*g*g + 9*a*a*g*g*g - 18*b*b*e*f*h + 18*a*b*f*f*h + 3*a*b*e*g*h - |
| 27*b*b*e*g*h - 9*a*a*f*g*h + 27*a*b*f*g*h - 9*a*a*g*g*h + a*a*e*h*h - 9*a*b*e*h*h + |
| 27*b*b*e*h*h + 6*a*a*f*h*h - 18*a*b*f*h*h - 9*b*b*f*h*h + 3*a*a*g*h*h + |
| 6*a*b*g*h*h - a*a*h*h*h + 9*c*c*(e*e*(g - 3*h) - 3*f*f*h + e*(3*f + 2*g)*h) + |
| d*d*(e*e*e - 9*f*f*f + 9*e*f*(f + g) - e*e*(3*f + 6*g + h)) + |
| d*(-3*c*(-9*f*f*g + e*e*(2*f - 6*g - 3*h) + e*(9*f*g + 6*g*g + f*h)) + |
| a*(-18*f*f*f - 18*e*g*g + 18*g*g*g - 2*e*e*h + 3*e*g*h + 2*e*h*h + 9*f*f*(3*g + 2*h) + |
| 3*f*(6*e*g - 9*g*g - e*h - 6*g*h)) - 3*b*(9*f*g*g + e*e*(4*g - 3*h) - 6*f*f*h - |
| e*(6*f*f + g*(18*g + h) - 3*f*(3*g + 4*h)))) + |
| 3*c*(3*b*(e*e*h + 3*f*g*h - e*(3*f*g - 6*f*h + 6*g*h + h*h)) + |
| a*(9*f*f*(g - 2*h) + f*h*(-e + 9*g + 4*h) - 3*(2*g*g*h + e*(2*g*g - 4*g*h + h*h))))) ) |
| ; |
| } |
| |
| static double calc_xy(double a, double b, double c, double d, |
| double e, double f, double g, double h) { |
| return |
| // + x*3* |
| (-2*a*d*e*e - 7*d*d*e*e + 15*a*d*e*f + 21*d*d*e*f - 9*a*d*f*f - 18*d*d*f*f - 15*a*d*e*g - |
| 3*d*d*e*g - 9*a*a*f*g + 9*d*d*f*g + 18*a*a*g*g + 9*a*d*g*g + 2*a*a*e*h - 2*d*d*e*h + |
| 3*a*a*f*h + 15*a*d*f*h - 21*a*a*g*h - 15*a*d*g*h + 7*a*a*h*h + 2*a*d*h*h - |
| 9*c*c*(2*e*e + 3*f*f + 3*f*h - 2*g*h + e*(-3*f - 4*g + h)) + |
| 9*b*b*(3*g*g - 3*g*h + 2*h*(-2*f + h) + e*(-2*f + 3*g + h)) + |
| 3*b*(3*c*(e*e + 3*e*(f - 3*g) + (9*f - 3*g - h)*h) + a*(6*f*f + e*g - 9*f*g - 9*g*g - 5*e*h + 9*f*h + 14*g*h - 7*h*h) + |
| d*(-e*e + 12*f*f - 27*f*g + e*(-9*f + 20*g - 5*h) + g*(9*g + h))) + |
| 3*c*(a*(-(e*f) - 9*f*f + 27*f*g - 12*g*g + 5*e*h - 20*f*h + 9*g*h + h*h) + |
| d*(7*e*e + 9*f*f + 9*f*g - 6*g*g - f*h + e*(-14*f - 9*g + 5*h)))) // *y |
| ; |
| } |
| |
| // - x*3*Power(a - 3*b + 3*c - d,2)*(e - 3*f + 3*g - h)*Power(y,2) |
| static double calc_xyy(double a3b3cd, double e3f3gh) { |
| return -3 * a3b3cd * a3b3cd * e3f3gh; |
| } |
| |
| #endif |
| |
| static double (*calc_proc[])(double a, double b, double c, double d, |
| double e, double f, double g, double h) = { |
| calc_xx, calc_xy, calc_yy, calc_x, calc_y, calc_c |
| }; |
| |
| #if USE_SYVESTER |
| /* Control points to parametric coefficients |
| s = 1 - t |
| Attt + 3Btts + 3Ctss + Dsss == |
| Attt + 3B(1 - t)tt + 3C(1 - t)(t - tt) + D(1 - t)(1 - 2t + tt) == |
| Attt + 3B(tt - ttt) + 3C(t - tt - tt + ttt) + D(1-2t+tt-t+2tt-ttt) == |
| Attt + 3Btt - 3Bttt + 3Ct - 6Ctt + 3Cttt + D - 3Dt + 3Dtt - Dttt == |
| D + (3C - 3D)t + (3B - 6C + 3D)tt + (A - 3B + 3C - D)ttt |
| a = A - 3*B + 3*C - D |
| b = 3*B - 6*C + 3*D |
| c = 3*C - 3*D |
| d = D |
| */ |
| |
| /* http://www.algorithmist.net/bezier3.html |
| p = 3 * A |
| q = 3 * B |
| r = 3 * C |
| a = A |
| b = q - p |
| c = p - 2 * q + r |
| d = D - A + q - r |
| |
| B(t) = a + t * (b + t * (c + t * d)) |
| |
| so |
| |
| B(t) = a + t*b + t*t*(c + t*d) |
| = a + t*b + t*t*c + t*t*t*d |
| */ |
| static void set_abcd(const double* cubic, double& a, double& b, double& c, |
| double& d) { |
| a = cubic[0]; // a = A |
| b = 3 * cubic[2]; // b = 3*B (compute rest of b lazily) |
| c = 3 * cubic[4]; // c = 3*C (compute rest of c lazily) |
| d = cubic[6]; // d = D |
| a += -b + c - d; // a = A - 3*B + 3*C - D |
| } |
| |
| static void calc_bc(const double d, double& b, double& c) { |
| b -= 3 * c; // b = 3*B - 3*C |
| c -= 3 * d; // c = 3*C - 3*D |
| b -= c; // b = 3*B - 6*C + 3*D |
| } |
| |
| static void alt_set_abcd(const double* cubic, double& a, double& b, double& c, |
| double& d) { |
| a = cubic[0]; |
| double p = 3 * a; |
| double q = 3 * cubic[2]; |
| double r = 3 * cubic[4]; |
| b = q - p; |
| c = p - 2 * q + r; |
| d = cubic[6] - a + q - r; |
| } |
| |
| const bool try_alt = true; |
| |
| #else |
| |
| static void calc_ABCD(double a, double b, double c, double d, |
| double e, double f, double g, double h, |
| double p[coeff_count]) { |
| double a3b3cd = a - 3 * (b - c) - d; |
| double e3f3gh = e - 3 * (f - g) - h; |
| p[xxx_coeff] = calc_xxx(e3f3gh); |
| p[xxy_coeff] = calc_xxy(a3b3cd, e3f3gh); |
| p[xyy_coeff] = calc_xyy(a3b3cd, e3f3gh); |
| p[yyy_coeff] = calc_yyy(a3b3cd); |
| } |
| #endif |
| |
| bool implicit_matches(const Cubic& one, const Cubic& two) { |
| double p1[coeff_count]; // a'xxx , b'xxy , c'xyy , d'xx , e'xy , f'yy, etc. |
| double p2[coeff_count]; |
| #if USE_SYVESTER |
| double a1, b1, c1, d1; |
| if (try_alt) |
| alt_set_abcd(&one[0].x, a1, b1, c1, d1); |
| else |
| set_abcd(&one[0].x, a1, b1, c1, d1); |
| double e1, f1, g1, h1; |
| if (try_alt) |
| alt_set_abcd(&one[0].y, e1, f1, g1, h1); |
| else |
| set_abcd(&one[0].y, e1, f1, g1, h1); |
| calc_ABCD(a1, e1, p1); |
| double a2, b2, c2, d2; |
| if (try_alt) |
| alt_set_abcd(&two[0].x, a2, b2, c2, d2); |
| else |
| set_abcd(&two[0].x, a2, b2, c2, d2); |
| double e2, f2, g2, h2; |
| if (try_alt) |
| alt_set_abcd(&two[0].y, e2, f2, g2, h2); |
| else |
| set_abcd(&two[0].y, e2, f2, g2, h2); |
| calc_ABCD(a2, e2, p2); |
| #else |
| double a1 = one[0].x; |
| double b1 = one[1].x; |
| double c1 = one[2].x; |
| double d1 = one[3].x; |
| double e1 = one[0].y; |
| double f1 = one[1].y; |
| double g1 = one[2].y; |
| double h1 = one[3].y; |
| calc_ABCD(a1, b1, c1, d1, e1, f1, g1, h1, p1); |
| double a2 = two[0].x; |
| double b2 = two[1].x; |
| double c2 = two[2].x; |
| double d2 = two[3].x; |
| double e2 = two[0].y; |
| double f2 = two[1].y; |
| double g2 = two[2].y; |
| double h2 = two[3].y; |
| calc_ABCD(a2, b2, c2, d2, e2, f2, g2, h2, p2); |
| #endif |
| int first = 0; |
| for (int index = 0; index < coeff_count; ++index) { |
| #if USE_SYVESTER |
| if (!try_alt && index == xx_coeff) { |
| calc_bc(d1, b1, c1); |
| calc_bc(h1, f1, g1); |
| calc_bc(d2, b2, c2); |
| calc_bc(h2, f2, g2); |
| } |
| #endif |
| if (index >= xx_coeff) { |
| int procIndex = index - xx_coeff; |
| p1[index] = (*calc_proc[procIndex])(a1, b1, c1, d1, e1, f1, g1, h1); |
| p2[index] = (*calc_proc[procIndex])(a2, b2, c2, d2, e2, f2, g2, h2); |
| } |
| if (approximately_zero(p1[index]) || approximately_zero(p2[index])) { |
| first += first == index; |
| continue; |
| } |
| if (first == index) { |
| continue; |
| } |
| if (!approximately_equal(p1[index] * p2[first], |
| p1[first] * p2[index])) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| static double tangent(const double* cubic, double t) { |
| double a, b, c, d; |
| #if USE_SYVESTER |
| set_abcd(cubic, a, b, c, d); |
| calc_bc(d, b, c); |
| #else |
| coefficients(cubic, a, b, c, d); |
| #endif |
| return 3 * a * t * t + 2 * b * t + c; |
| } |
| |
| void tangent(const Cubic& cubic, double t, _Point& result) { |
| result.x = tangent(&cubic[0].x, t); |
| result.y = tangent(&cubic[0].y, t); |
| } |
| |
| // unit test to return and validate parametric coefficients |
| #include "CubicParameterization_TestUtility.cpp" |
| |
| |