| #include "CurveIntersection.h" |
| #include "LineUtilities.h" |
| |
| bool implicitLine(const _Line& line, double& slope, double& axisIntercept) { |
| _Point delta; |
| tangent(line, delta); |
| bool moreHorizontal = fabs(delta.x) > fabs(delta.y); |
| if (moreHorizontal) { |
| slope = delta.y / delta.x; |
| axisIntercept = line[0].y - slope * line[0].x; |
| } else { |
| slope = delta.x / delta.y; |
| axisIntercept = line[0].x - slope * line[0].y; |
| } |
| return moreHorizontal; |
| } |
| |
| int reduceOrder(const _Line& line, _Line& reduced) { |
| reduced[0] = line[0]; |
| int different = line[0] != line[1]; |
| reduced[1] = line[different]; |
| return 1 + different; |
| } |
| |
| void sub_divide(const _Line& line, double t1, double t2, _Line& dst) { |
| _Point delta; |
| tangent(line, delta); |
| dst[0].x = line[0].x - t1 * delta.x; |
| dst[0].y = line[0].y - t1 * delta.y; |
| dst[1].x = line[0].x - t2 * delta.x; |
| dst[1].y = line[0].y - t2 * delta.y; |
| } |
| |
| // may have this below somewhere else already: |
| // copying here because I thought it was clever |
| |
| // Copyright 2001, softSurfer (www.softsurfer.com) |
| // This code may be freely used and modified for any purpose |
| // providing that this copyright notice is included with it. |
| // SoftSurfer makes no warranty for this code, and cannot be held |
| // liable for any real or imagined damage resulting from its use. |
| // Users of this code must verify correctness for their application. |
| |
| // Assume that a class is already given for the object: |
| // Point with coordinates {float x, y;} |
| //=================================================================== |
| |
| // isLeft(): tests if a point is Left|On|Right of an infinite line. |
| // Input: three points P0, P1, and P2 |
| // Return: >0 for P2 left of the line through P0 and P1 |
| // =0 for P2 on the line |
| // <0 for P2 right of the line |
| // See: the January 2001 Algorithm on Area of Triangles |
| #if 0 |
| float isLeft( _Point P0, _Point P1, _Point P2 ) |
| { |
| return (float) ((P1.x - P0.x)*(P2.y - P0.y) - (P2.x - P0.x)*(P1.y - P0.y)); |
| } |
| #endif |
| |
| double t_at(const _Line& line, const _Point& pt) { |
| double dx = line[1].x - line[0].x; |
| double dy = line[1].y - line[0].y; |
| if (fabs(dx) > fabs(dy)) { |
| if (approximately_zero(dx)) { |
| return 0; |
| } |
| return (pt.x - line[0].x) / dx; |
| } |
| if (approximately_zero(dy)) { |
| return 0; |
| } |
| return (pt.y - line[0].y) / dy; |
| } |
| |
| static void setMinMax(double x, int flags, double& minX, double& maxX) { |
| if (minX > x && (flags & (kFindTopMin | kFindBottomMin))) { |
| minX = x; |
| } |
| if (maxX < x && (flags & (kFindTopMax | kFindBottomMax))) { |
| maxX = x; |
| } |
| } |
| |
| void x_at(const _Point& p1, const _Point& p2, double top, double bottom, |
| int flags, double& minX, double& maxX) { |
| if (approximately_equal(p1.y, p2.y)) { |
| // It should be OK to bail early in this case. There's another edge |
| // which shares this end point which can intersect without failing to |
| // have a slope ... maybe |
| return; |
| } |
| |
| // p2.x is always greater than p1.x -- the part of points (p1, p2) are |
| // moving from the start of the cubic towards its end. |
| // if p1.y < p2.y, minX can be affected |
| // if p1.y > p2.y, maxX can be affected |
| double slope = (p2.x - p1.x) / (p2.y - p1.y); |
| int topFlags = flags & (kFindTopMin | kFindTopMax); |
| if (topFlags && (top <= p1.y && top >= p2.y |
| || top >= p1.y && top <= p2.y)) { |
| double x = p1.x + (top - p1.y) * slope; |
| setMinMax(x, topFlags, minX, maxX); |
| } |
| int bottomFlags = flags & (kFindBottomMin | kFindBottomMax); |
| if (bottomFlags && (bottom <= p1.y && bottom >= p2.y |
| || bottom >= p1.y && bottom <= p2.y)) { |
| double x = p1.x + (bottom - p1.y) * slope; |
| setMinMax(x, bottomFlags, minX, maxX); |
| } |
| } |
| |
| void xy_at_t(const _Line& line, double t, double& x, double& y) { |
| double one_t = 1 - t; |
| if (&x) { |
| x = one_t * line[0].x + t * line[1].x; |
| } |
| if (&y) { |
| y = one_t * line[0].y + t * line[1].y; |
| } |
| } |