| /* |
| * Copyright 2016 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/sksl/SkSLMetalCodeGenerator.h" |
| |
| #include "src/sksl/SkSLCompiler.h" |
| #include "src/sksl/ir/SkSLExpressionStatement.h" |
| #include "src/sksl/ir/SkSLExtension.h" |
| #include "src/sksl/ir/SkSLIndexExpression.h" |
| #include "src/sksl/ir/SkSLModifiersDeclaration.h" |
| #include "src/sksl/ir/SkSLNop.h" |
| #include "src/sksl/ir/SkSLVariableReference.h" |
| |
| #include <algorithm> |
| |
| namespace SkSL { |
| |
| class MetalCodeGenerator::GlobalStructVisitor { |
| public: |
| virtual ~GlobalStructVisitor() = default; |
| virtual void VisitInterfaceBlock(const InterfaceBlock& block, const String& blockName) = 0; |
| virtual void VisitTexture(const Type& type, const String& name) = 0; |
| virtual void VisitSampler(const Type& type, const String& name) = 0; |
| virtual void VisitVariable(const Variable& var, const Expression* value) = 0; |
| }; |
| |
| void MetalCodeGenerator::setupIntrinsics() { |
| #define METAL(x) std::make_pair(kMetal_IntrinsicKind, k ## x ## _MetalIntrinsic) |
| #define SPECIAL(x) std::make_pair(kSpecial_IntrinsicKind, k ## x ## _SpecialIntrinsic) |
| fIntrinsicMap[String("sample")] = SPECIAL(Texture); |
| fIntrinsicMap[String("mod")] = SPECIAL(Mod); |
| fIntrinsicMap[String("equal")] = METAL(Equal); |
| fIntrinsicMap[String("notEqual")] = METAL(NotEqual); |
| fIntrinsicMap[String("lessThan")] = METAL(LessThan); |
| fIntrinsicMap[String("lessThanEqual")] = METAL(LessThanEqual); |
| fIntrinsicMap[String("greaterThan")] = METAL(GreaterThan); |
| fIntrinsicMap[String("greaterThanEqual")] = METAL(GreaterThanEqual); |
| } |
| |
| void MetalCodeGenerator::write(const char* s) { |
| if (!s[0]) { |
| return; |
| } |
| if (fAtLineStart) { |
| for (int i = 0; i < fIndentation; i++) { |
| fOut->writeText(" "); |
| } |
| } |
| fOut->writeText(s); |
| fAtLineStart = false; |
| } |
| |
| void MetalCodeGenerator::writeLine(const char* s) { |
| this->write(s); |
| fOut->writeText(fLineEnding); |
| fAtLineStart = true; |
| } |
| |
| void MetalCodeGenerator::write(const String& s) { |
| this->write(s.c_str()); |
| } |
| |
| void MetalCodeGenerator::writeLine(const String& s) { |
| this->writeLine(s.c_str()); |
| } |
| |
| void MetalCodeGenerator::writeLine() { |
| this->writeLine(""); |
| } |
| |
| void MetalCodeGenerator::writeExtension(const Extension& ext) { |
| this->writeLine("#extension " + ext.fName + " : enable"); |
| } |
| |
| String MetalCodeGenerator::typeName(const Type& type) { |
| switch (type.typeKind()) { |
| case Type::TypeKind::kVector: |
| return this->typeName(type.componentType()) + to_string(type.columns()); |
| case Type::TypeKind::kMatrix: |
| return this->typeName(type.componentType()) + to_string(type.columns()) + "x" + |
| to_string(type.rows()); |
| case Type::TypeKind::kSampler: |
| return "texture2d<float>"; // FIXME - support other texture types; |
| default: |
| if (type == *fContext.fHalf_Type) { |
| // FIXME - Currently only supporting floats in MSL to avoid type coercion issues. |
| return fContext.fFloat_Type->name(); |
| } else if (type == *fContext.fByte_Type) { |
| return "char"; |
| } else if (type == *fContext.fUByte_Type) { |
| return "uchar"; |
| } else { |
| return type.name(); |
| } |
| } |
| } |
| |
| void MetalCodeGenerator::writeType(const Type& type) { |
| if (type.typeKind() == Type::TypeKind::kStruct) { |
| for (const Type* search : fWrittenStructs) { |
| if (*search == type) { |
| // already written |
| this->write(type.name()); |
| return; |
| } |
| } |
| fWrittenStructs.push_back(&type); |
| this->writeLine("struct " + type.name() + " {"); |
| fIndentation++; |
| this->writeFields(type.fields(), type.fOffset); |
| fIndentation--; |
| this->write("}"); |
| } else { |
| this->write(this->typeName(type)); |
| } |
| } |
| |
| void MetalCodeGenerator::writeExpression(const Expression& expr, Precedence parentPrecedence) { |
| switch (expr.kind()) { |
| case Expression::Kind::kBinary: |
| this->writeBinaryExpression(expr.as<BinaryExpression>(), parentPrecedence); |
| break; |
| case Expression::Kind::kBoolLiteral: |
| this->writeBoolLiteral(expr.as<BoolLiteral>()); |
| break; |
| case Expression::Kind::kConstructor: |
| this->writeConstructor(expr.as<Constructor>(), parentPrecedence); |
| break; |
| case Expression::Kind::kIntLiteral: |
| this->writeIntLiteral(expr.as<IntLiteral>()); |
| break; |
| case Expression::Kind::kFieldAccess: |
| this->writeFieldAccess(expr.as<FieldAccess>()); |
| break; |
| case Expression::Kind::kFloatLiteral: |
| this->writeFloatLiteral(expr.as<FloatLiteral>()); |
| break; |
| case Expression::Kind::kFunctionCall: |
| this->writeFunctionCall(expr.as<FunctionCall>()); |
| break; |
| case Expression::Kind::kPrefix: |
| this->writePrefixExpression(expr.as<PrefixExpression>(), parentPrecedence); |
| break; |
| case Expression::Kind::kPostfix: |
| this->writePostfixExpression(expr.as<PostfixExpression>(), parentPrecedence); |
| break; |
| case Expression::Kind::kSetting: |
| this->writeSetting(expr.as<Setting>()); |
| break; |
| case Expression::Kind::kSwizzle: |
| this->writeSwizzle(expr.as<Swizzle>()); |
| break; |
| case Expression::Kind::kVariableReference: |
| this->writeVariableReference(expr.as<VariableReference>()); |
| break; |
| case Expression::Kind::kTernary: |
| this->writeTernaryExpression(expr.as<TernaryExpression>(), parentPrecedence); |
| break; |
| case Expression::Kind::kIndex: |
| this->writeIndexExpression(expr.as<IndexExpression>()); |
| break; |
| default: |
| #ifdef SK_DEBUG |
| ABORT("unsupported expression: %s", expr.description().c_str()); |
| #endif |
| break; |
| } |
| } |
| |
| void MetalCodeGenerator::writeIntrinsicCall(const FunctionCall& c) { |
| auto i = fIntrinsicMap.find(c.fFunction.fName); |
| SkASSERT(i != fIntrinsicMap.end()); |
| Intrinsic intrinsic = i->second; |
| int32_t intrinsicId = intrinsic.second; |
| switch (intrinsic.first) { |
| case kSpecial_IntrinsicKind: |
| return this->writeSpecialIntrinsic(c, (SpecialIntrinsic) intrinsicId); |
| break; |
| case kMetal_IntrinsicKind: |
| this->writeExpression(*c.fArguments[0], kSequence_Precedence); |
| switch ((MetalIntrinsic) intrinsicId) { |
| case kEqual_MetalIntrinsic: |
| this->write(" == "); |
| break; |
| case kNotEqual_MetalIntrinsic: |
| this->write(" != "); |
| break; |
| case kLessThan_MetalIntrinsic: |
| this->write(" < "); |
| break; |
| case kLessThanEqual_MetalIntrinsic: |
| this->write(" <= "); |
| break; |
| case kGreaterThan_MetalIntrinsic: |
| this->write(" > "); |
| break; |
| case kGreaterThanEqual_MetalIntrinsic: |
| this->write(" >= "); |
| break; |
| default: |
| ABORT("unsupported metal intrinsic kind"); |
| } |
| this->writeExpression(*c.fArguments[1], kSequence_Precedence); |
| break; |
| default: |
| ABORT("unsupported intrinsic kind"); |
| } |
| } |
| |
| void MetalCodeGenerator::writeFunctionCall(const FunctionCall& c) { |
| const auto& entry = fIntrinsicMap.find(c.fFunction.fName); |
| if (entry != fIntrinsicMap.end()) { |
| this->writeIntrinsicCall(c); |
| return; |
| } |
| if (c.fFunction.fBuiltin && "atan" == c.fFunction.fName && 2 == c.fArguments.size()) { |
| this->write("atan2"); |
| } else if (c.fFunction.fBuiltin && "inversesqrt" == c.fFunction.fName) { |
| this->write("rsqrt"); |
| } else if (c.fFunction.fBuiltin && "inverse" == c.fFunction.fName) { |
| SkASSERT(c.fArguments.size() == 1); |
| this->writeInverseHack(*c.fArguments[0]); |
| } else if (c.fFunction.fBuiltin && "dFdx" == c.fFunction.fName) { |
| this->write("dfdx"); |
| } else if (c.fFunction.fBuiltin && "dFdy" == c.fFunction.fName) { |
| // Flipping Y also negates the Y derivatives. |
| this->write((fProgram.fSettings.fFlipY) ? "-dfdy" : "dfdy"); |
| } else { |
| this->writeName(c.fFunction.fName); |
| } |
| this->write("("); |
| const char* separator = ""; |
| if (this->requirements(c.fFunction) & kInputs_Requirement) { |
| this->write("_in"); |
| separator = ", "; |
| } |
| if (this->requirements(c.fFunction) & kOutputs_Requirement) { |
| this->write(separator); |
| this->write("_out"); |
| separator = ", "; |
| } |
| if (this->requirements(c.fFunction) & kUniforms_Requirement) { |
| this->write(separator); |
| this->write("_uniforms"); |
| separator = ", "; |
| } |
| if (this->requirements(c.fFunction) & kGlobals_Requirement) { |
| this->write(separator); |
| this->write("_globals"); |
| separator = ", "; |
| } |
| if (this->requirements(c.fFunction) & kFragCoord_Requirement) { |
| this->write(separator); |
| this->write("_fragCoord"); |
| separator = ", "; |
| } |
| for (size_t i = 0; i < c.fArguments.size(); ++i) { |
| const Expression& arg = *c.fArguments[i]; |
| this->write(separator); |
| separator = ", "; |
| if (c.fFunction.fParameters[i]->fModifiers.fFlags & Modifiers::kOut_Flag) { |
| this->write("&"); |
| } |
| this->writeExpression(arg, kSequence_Precedence); |
| } |
| this->write(")"); |
| } |
| |
| void MetalCodeGenerator::writeInverseHack(const Expression& mat) { |
| const Type& type = mat.type(); |
| const String& typeName = type.name(); |
| String name = typeName + "_inverse"; |
| if (type == *fContext.fFloat2x2_Type || type == *fContext.fHalf2x2_Type) { |
| if (fWrittenIntrinsics.find(name) == fWrittenIntrinsics.end()) { |
| fWrittenIntrinsics.insert(name); |
| fExtraFunctions.writeText(( |
| typeName + " " + name + "(" + typeName + " m) {" |
| " return float2x2(m[1][1], -m[0][1], -m[1][0], m[0][0]) * (1/determinant(m));" |
| "}" |
| ).c_str()); |
| } |
| } |
| else if (type == *fContext.fFloat3x3_Type || type == *fContext.fHalf3x3_Type) { |
| if (fWrittenIntrinsics.find(name) == fWrittenIntrinsics.end()) { |
| fWrittenIntrinsics.insert(name); |
| fExtraFunctions.writeText(( |
| typeName + " " + name + "(" + typeName + " m) {" |
| " float a00 = m[0][0], a01 = m[0][1], a02 = m[0][2];" |
| " float a10 = m[1][0], a11 = m[1][1], a12 = m[1][2];" |
| " float a20 = m[2][0], a21 = m[2][1], a22 = m[2][2];" |
| " float b01 = a22 * a11 - a12 * a21;" |
| " float b11 = -a22 * a10 + a12 * a20;" |
| " float b21 = a21 * a10 - a11 * a20;" |
| " float det = a00 * b01 + a01 * b11 + a02 * b21;" |
| " return " + typeName + |
| " (b01, (-a22 * a01 + a02 * a21), (a12 * a01 - a02 * a11)," |
| " b11, (a22 * a00 - a02 * a20), (-a12 * a00 + a02 * a10)," |
| " b21, (-a21 * a00 + a01 * a20), (a11 * a00 - a01 * a10)) * " |
| " (1/det);" |
| "}" |
| ).c_str()); |
| } |
| } |
| else if (type == *fContext.fFloat4x4_Type || type == *fContext.fHalf4x4_Type) { |
| if (fWrittenIntrinsics.find(name) == fWrittenIntrinsics.end()) { |
| fWrittenIntrinsics.insert(name); |
| fExtraFunctions.writeText(( |
| typeName + " " + name + "(" + typeName + " m) {" |
| " float a00 = m[0][0], a01 = m[0][1], a02 = m[0][2], a03 = m[0][3];" |
| " float a10 = m[1][0], a11 = m[1][1], a12 = m[1][2], a13 = m[1][3];" |
| " float a20 = m[2][0], a21 = m[2][1], a22 = m[2][2], a23 = m[2][3];" |
| " float a30 = m[3][0], a31 = m[3][1], a32 = m[3][2], a33 = m[3][3];" |
| " float b00 = a00 * a11 - a01 * a10;" |
| " float b01 = a00 * a12 - a02 * a10;" |
| " float b02 = a00 * a13 - a03 * a10;" |
| " float b03 = a01 * a12 - a02 * a11;" |
| " float b04 = a01 * a13 - a03 * a11;" |
| " float b05 = a02 * a13 - a03 * a12;" |
| " float b06 = a20 * a31 - a21 * a30;" |
| " float b07 = a20 * a32 - a22 * a30;" |
| " float b08 = a20 * a33 - a23 * a30;" |
| " float b09 = a21 * a32 - a22 * a31;" |
| " float b10 = a21 * a33 - a23 * a31;" |
| " float b11 = a22 * a33 - a23 * a32;" |
| " float det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - " |
| " b04 * b07 + b05 * b06;" |
| " return " + typeName + "(a11 * b11 - a12 * b10 + a13 * b09," |
| " a02 * b10 - a01 * b11 - a03 * b09," |
| " a31 * b05 - a32 * b04 + a33 * b03," |
| " a22 * b04 - a21 * b05 - a23 * b03," |
| " a12 * b08 - a10 * b11 - a13 * b07," |
| " a00 * b11 - a02 * b08 + a03 * b07," |
| " a32 * b02 - a30 * b05 - a33 * b01," |
| " a20 * b05 - a22 * b02 + a23 * b01," |
| " a10 * b10 - a11 * b08 + a13 * b06," |
| " a01 * b08 - a00 * b10 - a03 * b06," |
| " a30 * b04 - a31 * b02 + a33 * b00," |
| " a21 * b02 - a20 * b04 - a23 * b00," |
| " a11 * b07 - a10 * b09 - a12 * b06," |
| " a00 * b09 - a01 * b07 + a02 * b06," |
| " a31 * b01 - a30 * b03 - a32 * b00," |
| " a20 * b03 - a21 * b01 + a22 * b00) / det;" |
| "}" |
| ).c_str()); |
| } |
| } |
| this->write(name); |
| } |
| |
| void MetalCodeGenerator::writeSpecialIntrinsic(const FunctionCall & c, SpecialIntrinsic kind) { |
| switch (kind) { |
| case kTexture_SpecialIntrinsic: { |
| this->writeExpression(*c.fArguments[0], kSequence_Precedence); |
| this->write(".sample("); |
| this->writeExpression(*c.fArguments[0], kSequence_Precedence); |
| this->write(SAMPLER_SUFFIX); |
| this->write(", "); |
| const Type& arg1Type = c.fArguments[1]->type(); |
| if (arg1Type == *fContext.fFloat3_Type) { |
| // have to store the vector in a temp variable to avoid double evaluating it |
| String tmpVar = "tmpCoord" + to_string(fVarCount++); |
| this->fFunctionHeader += " " + this->typeName(arg1Type) + " " + tmpVar + ";\n"; |
| this->write("(" + tmpVar + " = "); |
| this->writeExpression(*c.fArguments[1], kSequence_Precedence); |
| this->write(", " + tmpVar + ".xy / " + tmpVar + ".z))"); |
| } else { |
| SkASSERT(arg1Type == *fContext.fFloat2_Type); |
| this->writeExpression(*c.fArguments[1], kSequence_Precedence); |
| this->write(")"); |
| } |
| break; |
| } |
| case kMod_SpecialIntrinsic: { |
| // fmod(x, y) in metal calculates x - y * trunc(x / y) instead of x - y * floor(x / y) |
| String tmpX = "tmpX" + to_string(fVarCount++); |
| String tmpY = "tmpY" + to_string(fVarCount++); |
| this->fFunctionHeader += " " + this->typeName(c.fArguments[0]->type()) + |
| " " + tmpX + ", " + tmpY + ";\n"; |
| this->write("(" + tmpX + " = "); |
| this->writeExpression(*c.fArguments[0], kSequence_Precedence); |
| this->write(", " + tmpY + " = "); |
| this->writeExpression(*c.fArguments[1], kSequence_Precedence); |
| this->write(", " + tmpX + " - " + tmpY + " * floor(" + tmpX + " / " + tmpY + "))"); |
| break; |
| } |
| default: |
| ABORT("unsupported special intrinsic kind"); |
| } |
| } |
| |
| // Assembles a matrix of type floatRxC by resizing another matrix named `x0`. |
| // Cells that don't exist in the source matrix will be populated with identity-matrix values. |
| void MetalCodeGenerator::assembleMatrixFromMatrix(const Type& sourceMatrix, int rows, int columns) { |
| SkASSERT(rows <= 4); |
| SkASSERT(columns <= 4); |
| |
| const char* columnSeparator = ""; |
| for (int c = 0; c < columns; ++c) { |
| fExtraFunctions.printf("%sfloat%d(", columnSeparator, rows); |
| columnSeparator = "), "; |
| |
| // Determine how many values to take from the source matrix for this row. |
| int swizzleLength = 0; |
| if (c < sourceMatrix.columns()) { |
| swizzleLength = std::min<>(rows, sourceMatrix.rows()); |
| } |
| |
| // Emit all the values from the source matrix row. |
| bool firstItem; |
| switch (swizzleLength) { |
| case 0: firstItem = true; break; |
| case 1: firstItem = false; fExtraFunctions.printf("x0[%d].x", c); break; |
| case 2: firstItem = false; fExtraFunctions.printf("x0[%d].xy", c); break; |
| case 3: firstItem = false; fExtraFunctions.printf("x0[%d].xyz", c); break; |
| case 4: firstItem = false; fExtraFunctions.printf("x0[%d].xyzw", c); break; |
| default: SkUNREACHABLE; |
| } |
| |
| // Emit the placeholder identity-matrix cells. |
| for (int r = swizzleLength; r < rows; ++r) { |
| fExtraFunctions.printf("%s%s", firstItem ? "" : ", ", (r == c) ? "1.0" : "0.0"); |
| firstItem = false; |
| } |
| } |
| |
| fExtraFunctions.writeText(")"); |
| } |
| |
| // Assembles a matrix of type floatRxC by concatenating an arbitrary mix of values, named `x0`, |
| // `x1`, etc. An error is written if the expression list don't contain exactly R*C scalars. |
| void MetalCodeGenerator::assembleMatrixFromExpressions( |
| const std::vector<std::unique_ptr<Expression>>& args, int rows, int columns) { |
| size_t argIndex = 0; |
| int argPosition = 0; |
| |
| const char* columnSeparator = ""; |
| for (int c = 0; c < columns; ++c) { |
| fExtraFunctions.printf("%sfloat%d(", columnSeparator, rows); |
| columnSeparator = "), "; |
| |
| const char* rowSeparator = ""; |
| for (int r = 0; r < rows; ++r) { |
| fExtraFunctions.writeText(rowSeparator); |
| rowSeparator = ", "; |
| |
| if (argIndex < args.size()) { |
| const Type& argType = args[argIndex]->type(); |
| switch (argType.typeKind()) { |
| case Type::TypeKind::kScalar: { |
| fExtraFunctions.printf("x%zu", argIndex); |
| break; |
| } |
| case Type::TypeKind::kVector: { |
| fExtraFunctions.printf("x%zu[%d]", argIndex, argPosition); |
| break; |
| } |
| case Type::TypeKind::kMatrix: { |
| fExtraFunctions.printf("x%zu[%d][%d]", argIndex, |
| argPosition / argType.rows(), |
| argPosition % argType.rows()); |
| break; |
| } |
| default: { |
| SkDEBUGFAIL("incorrect type of argument for matrix constructor"); |
| fExtraFunctions.writeText("<error>"); |
| break; |
| } |
| } |
| |
| ++argPosition; |
| if (argPosition >= argType.columns() * argType.rows()) { |
| ++argIndex; |
| argPosition = 0; |
| } |
| } else { |
| SkDEBUGFAIL("not enough arguments for matrix constructor"); |
| fExtraFunctions.writeText("<error>"); |
| } |
| } |
| } |
| |
| if (argPosition != 0 || argIndex != args.size()) { |
| SkDEBUGFAIL("incorrect number of arguments for matrix constructor"); |
| fExtraFunctions.writeText(", <error>"); |
| } |
| |
| fExtraFunctions.writeText(")"); |
| } |
| |
| // Generates a constructor for 'matrix' which reorganizes the input arguments into the proper shape. |
| // Keeps track of previously generated constructors so that we won't generate more than one |
| // constructor for any given permutation of input argument types. Returns the name of the |
| // generated constructor method. |
| String MetalCodeGenerator::getMatrixConstructHelper(const Constructor& c) { |
| const Type& matrix = c.type(); |
| int columns = matrix.columns(); |
| int rows = matrix.rows(); |
| const std::vector<std::unique_ptr<Expression>>& args = c.fArguments; |
| |
| // Create the helper-method name and use it as our lookup key. |
| String name; |
| name.appendf("float%dx%d_from", columns, rows); |
| for (const std::unique_ptr<Expression>& expr : args) { |
| name.appendf("_%s", expr->type().displayName().c_str()); |
| } |
| |
| // If a helper-method has already been synthesized, we don't need to synthesize it again. |
| auto [iter, newlyCreated] = fHelpers.insert(name); |
| if (!newlyCreated) { |
| return name; |
| } |
| |
| // Unlike GLSL, Metal requires that matrices are initialized with exactly R vectors of C |
| // components apiece. (In Metal 2.0, you can also supply R*C scalars, but you still cannot |
| // supply a mixture of scalars and vectors.) |
| fExtraFunctions.printf("float%dx%d %s(", columns, rows, name.c_str()); |
| |
| size_t argIndex = 0; |
| const char* argSeparator = ""; |
| for (const std::unique_ptr<Expression>& expr : args) { |
| fExtraFunctions.printf("%s%s x%zu", argSeparator, |
| expr->type().displayName().c_str(), argIndex++); |
| argSeparator = ", "; |
| } |
| |
| fExtraFunctions.printf(") {\n return float%dx%d(", columns, rows); |
| |
| if (args.size() == 1 && args.front()->type().typeKind() == Type::TypeKind::kMatrix) { |
| this->assembleMatrixFromMatrix(args.front()->type(), rows, columns); |
| } else { |
| this->assembleMatrixFromExpressions(args, rows, columns); |
| } |
| |
| fExtraFunctions.writeText(");\n}\n"); |
| return name; |
| } |
| |
| bool MetalCodeGenerator::canCoerce(const Type& t1, const Type& t2) { |
| if (t1.columns() != t2.columns() || t1.rows() != t2.rows()) { |
| return false; |
| } |
| if (t1.columns() > 1) { |
| return this->canCoerce(t1.componentType(), t2.componentType()); |
| } |
| return t1.isFloat() && t2.isFloat(); |
| } |
| |
| bool MetalCodeGenerator::matrixConstructHelperIsNeeded(const Constructor& c) { |
| // A matrix construct helper is only necessary if we are, in fact, constructing a matrix. |
| if (c.type().typeKind() != Type::TypeKind::kMatrix) { |
| return false; |
| } |
| |
| // GLSL is fairly free-form about inputs to its matrix constructors, but Metal is not; it |
| // expects exactly R vectors of C components apiece. (Metal 2.0 also allows a list of R*C |
| // scalars.) Some cases are simple to translate and so we handle those inline--e.g. a list of |
| // scalars can be constructed trivially. In more complex cases, we generate a helper function |
| // that converts our inputs into a properly-shaped matrix. |
| // A matrix construct helper method is always used if any input argument is a matrix. |
| // Helper methods are also necessary when any argument would span multiple rows. For instance: |
| // |
| // float2 x = (1, 2); |
| // float3x2(x, 3, 4, 5, 6) = | 1 3 5 | = no helper needed; conversion can be done inline |
| // | 2 4 6 | |
| // |
| // float2 x = (2, 3); |
| // float3x2(1, x, 4, 5, 6) = | 1 3 5 | = x spans multiple rows; a helper method will be used |
| // | 2 4 6 | |
| // |
| // float4 x = (1, 2, 3, 4); |
| // float2x2(x) = | 1 3 | = x spans multiple rows; a helper method will be used |
| // | 2 4 | |
| // |
| |
| int position = 0; |
| for (const std::unique_ptr<Expression>& expr : c.fArguments) { |
| // If an input argument is a matrix, we need a helper function. |
| if (expr->type().typeKind() == Type::TypeKind::kMatrix) { |
| return true; |
| } |
| position += expr->type().columns(); |
| if (position > c.type().rows()) { |
| // An input argument would span multiple rows; a helper function is required. |
| return true; |
| } |
| if (position == c.type().rows()) { |
| // We've advanced to the end of a row. Wrap to the start of the next row. |
| position = 0; |
| } |
| } |
| |
| return false; |
| } |
| |
| void MetalCodeGenerator::writeConstructor(const Constructor& c, Precedence parentPrecedence) { |
| const Type& constructorType = c.type(); |
| // Handle special cases for single-argument constructors. |
| if (c.fArguments.size() == 1) { |
| // If the type is coercible, emit it directly. |
| const Expression& arg = *c.fArguments.front(); |
| const Type& argType = arg.type(); |
| if (this->canCoerce(constructorType, argType)) { |
| this->writeExpression(arg, parentPrecedence); |
| return; |
| } |
| |
| // Metal supports creating matrices with a scalar on the diagonal via the single-argument |
| // matrix constructor. |
| if (constructorType.typeKind() == Type::TypeKind::kMatrix && argType.isNumber()) { |
| const Type& matrix = constructorType; |
| this->write("float"); |
| this->write(to_string(matrix.columns())); |
| this->write("x"); |
| this->write(to_string(matrix.rows())); |
| this->write("("); |
| this->writeExpression(arg, parentPrecedence); |
| this->write(")"); |
| return; |
| } |
| } |
| |
| // Emit and invoke a matrix-constructor helper method if one is necessary. |
| if (this->matrixConstructHelperIsNeeded(c)) { |
| this->write(this->getMatrixConstructHelper(c)); |
| this->write("("); |
| const char* separator = ""; |
| for (const std::unique_ptr<Expression>& expr : c.fArguments) { |
| this->write(separator); |
| separator = ", "; |
| this->writeExpression(*expr, kSequence_Precedence); |
| } |
| this->write(")"); |
| return; |
| } |
| |
| // Explicitly invoke the constructor, passing in the necessary arguments. |
| this->writeType(constructorType); |
| this->write("("); |
| const char* separator = ""; |
| int scalarCount = 0; |
| for (const std::unique_ptr<Expression>& arg : c.fArguments) { |
| const Type& argType = arg->type(); |
| this->write(separator); |
| separator = ", "; |
| if (constructorType.typeKind() == Type::TypeKind::kMatrix && |
| argType.columns() < constructorType.rows()) { |
| // Merge scalars and smaller vectors together. |
| if (!scalarCount) { |
| this->writeType(constructorType.componentType()); |
| this->write(to_string(constructorType.rows())); |
| this->write("("); |
| } |
| scalarCount += argType.columns(); |
| } |
| this->writeExpression(*arg, kSequence_Precedence); |
| if (scalarCount && scalarCount == constructorType.rows()) { |
| this->write(")"); |
| scalarCount = 0; |
| } |
| } |
| this->write(")"); |
| } |
| |
| void MetalCodeGenerator::writeFragCoord() { |
| if (fRTHeightName.length()) { |
| this->write("float4(_fragCoord.x, "); |
| this->write(fRTHeightName.c_str()); |
| this->write(" - _fragCoord.y, 0.0, _fragCoord.w)"); |
| } else { |
| this->write("float4(_fragCoord.x, _fragCoord.y, 0.0, _fragCoord.w)"); |
| } |
| } |
| |
| void MetalCodeGenerator::writeVariableReference(const VariableReference& ref) { |
| switch (ref.fVariable.fModifiers.fLayout.fBuiltin) { |
| case SK_FRAGCOLOR_BUILTIN: |
| this->write("_out->sk_FragColor"); |
| break; |
| case SK_FRAGCOORD_BUILTIN: |
| this->writeFragCoord(); |
| break; |
| case SK_VERTEXID_BUILTIN: |
| this->write("sk_VertexID"); |
| break; |
| case SK_INSTANCEID_BUILTIN: |
| this->write("sk_InstanceID"); |
| break; |
| case SK_CLOCKWISE_BUILTIN: |
| // We'd set the front facing winding in the MTLRenderCommandEncoder to be counter |
| // clockwise to match Skia convention. |
| this->write(fProgram.fSettings.fFlipY ? "_frontFacing" : "(!_frontFacing)"); |
| break; |
| default: |
| if (Variable::kGlobal_Storage == ref.fVariable.fStorage) { |
| if (ref.fVariable.fModifiers.fFlags & Modifiers::kIn_Flag) { |
| this->write("_in."); |
| } else if (ref.fVariable.fModifiers.fFlags & Modifiers::kOut_Flag) { |
| this->write("_out->"); |
| } else if (ref.fVariable.fModifiers.fFlags & Modifiers::kUniform_Flag && |
| ref.fVariable.type().typeKind() != Type::TypeKind::kSampler) { |
| this->write("_uniforms."); |
| } else { |
| this->write("_globals->"); |
| } |
| } |
| this->writeName(ref.fVariable.fName); |
| } |
| } |
| |
| void MetalCodeGenerator::writeIndexExpression(const IndexExpression& expr) { |
| this->writeExpression(*expr.fBase, kPostfix_Precedence); |
| this->write("["); |
| this->writeExpression(*expr.fIndex, kTopLevel_Precedence); |
| this->write("]"); |
| } |
| |
| void MetalCodeGenerator::writeFieldAccess(const FieldAccess& f) { |
| const Type::Field* field = &f.fBase->type().fields()[f.fFieldIndex]; |
| if (FieldAccess::kDefault_OwnerKind == f.fOwnerKind) { |
| this->writeExpression(*f.fBase, kPostfix_Precedence); |
| this->write("."); |
| } |
| switch (field->fModifiers.fLayout.fBuiltin) { |
| case SK_CLIPDISTANCE_BUILTIN: |
| this->write("gl_ClipDistance"); |
| break; |
| case SK_POSITION_BUILTIN: |
| this->write("_out->sk_Position"); |
| break; |
| default: |
| if (field->fName == "sk_PointSize") { |
| this->write("_out->sk_PointSize"); |
| } else { |
| if (FieldAccess::kAnonymousInterfaceBlock_OwnerKind == f.fOwnerKind) { |
| this->write("_globals->"); |
| this->write(fInterfaceBlockNameMap[fInterfaceBlockMap[field]]); |
| this->write("->"); |
| } |
| this->writeName(field->fName); |
| } |
| } |
| } |
| |
| void MetalCodeGenerator::writeSwizzle(const Swizzle& swizzle) { |
| int last = swizzle.fComponents.back(); |
| if (last == SKSL_SWIZZLE_0 || last == SKSL_SWIZZLE_1) { |
| this->writeType(swizzle.type()); |
| this->write("("); |
| } |
| this->writeExpression(*swizzle.fBase, kPostfix_Precedence); |
| this->write("."); |
| for (int c : swizzle.fComponents) { |
| if (c >= 0) { |
| this->write(&("x\0y\0z\0w\0"[c * 2])); |
| } |
| } |
| if (last == SKSL_SWIZZLE_0) { |
| this->write(", 0)"); |
| } |
| else if (last == SKSL_SWIZZLE_1) { |
| this->write(", 1)"); |
| } |
| } |
| |
| MetalCodeGenerator::Precedence MetalCodeGenerator::GetBinaryPrecedence(Token::Kind op) { |
| switch (op) { |
| case Token::Kind::TK_STAR: // fall through |
| case Token::Kind::TK_SLASH: // fall through |
| case Token::Kind::TK_PERCENT: return MetalCodeGenerator::kMultiplicative_Precedence; |
| case Token::Kind::TK_PLUS: // fall through |
| case Token::Kind::TK_MINUS: return MetalCodeGenerator::kAdditive_Precedence; |
| case Token::Kind::TK_SHL: // fall through |
| case Token::Kind::TK_SHR: return MetalCodeGenerator::kShift_Precedence; |
| case Token::Kind::TK_LT: // fall through |
| case Token::Kind::TK_GT: // fall through |
| case Token::Kind::TK_LTEQ: // fall through |
| case Token::Kind::TK_GTEQ: return MetalCodeGenerator::kRelational_Precedence; |
| case Token::Kind::TK_EQEQ: // fall through |
| case Token::Kind::TK_NEQ: return MetalCodeGenerator::kEquality_Precedence; |
| case Token::Kind::TK_BITWISEAND: return MetalCodeGenerator::kBitwiseAnd_Precedence; |
| case Token::Kind::TK_BITWISEXOR: return MetalCodeGenerator::kBitwiseXor_Precedence; |
| case Token::Kind::TK_BITWISEOR: return MetalCodeGenerator::kBitwiseOr_Precedence; |
| case Token::Kind::TK_LOGICALAND: return MetalCodeGenerator::kLogicalAnd_Precedence; |
| case Token::Kind::TK_LOGICALXOR: return MetalCodeGenerator::kLogicalXor_Precedence; |
| case Token::Kind::TK_LOGICALOR: return MetalCodeGenerator::kLogicalOr_Precedence; |
| case Token::Kind::TK_EQ: // fall through |
| case Token::Kind::TK_PLUSEQ: // fall through |
| case Token::Kind::TK_MINUSEQ: // fall through |
| case Token::Kind::TK_STAREQ: // fall through |
| case Token::Kind::TK_SLASHEQ: // fall through |
| case Token::Kind::TK_PERCENTEQ: // fall through |
| case Token::Kind::TK_SHLEQ: // fall through |
| case Token::Kind::TK_SHREQ: // fall through |
| case Token::Kind::TK_LOGICALANDEQ: // fall through |
| case Token::Kind::TK_LOGICALXOREQ: // fall through |
| case Token::Kind::TK_LOGICALOREQ: // fall through |
| case Token::Kind::TK_BITWISEANDEQ: // fall through |
| case Token::Kind::TK_BITWISEXOREQ: // fall through |
| case Token::Kind::TK_BITWISEOREQ: return MetalCodeGenerator::kAssignment_Precedence; |
| case Token::Kind::TK_COMMA: return MetalCodeGenerator::kSequence_Precedence; |
| default: ABORT("unsupported binary operator"); |
| } |
| } |
| |
| void MetalCodeGenerator::writeMatrixTimesEqualHelper(const Type& left, const Type& right, |
| const Type& result) { |
| String key = "TimesEqual" + left.name() + right.name(); |
| if (fHelpers.find(key) == fHelpers.end()) { |
| fExtraFunctions.printf("%s operator*=(thread %s& left, thread const %s& right) {\n" |
| " left = left * right;\n" |
| " return left;\n" |
| "}", result.name().c_str(), left.name().c_str(), |
| right.name().c_str()); |
| } |
| } |
| |
| void MetalCodeGenerator::writeBinaryExpression(const BinaryExpression& b, |
| Precedence parentPrecedence) { |
| const Type& leftType = b.fLeft->type(); |
| const Type& rightType = b.fRight->type(); |
| Precedence precedence = GetBinaryPrecedence(b.fOperator); |
| bool needParens = precedence >= parentPrecedence; |
| switch (b.fOperator) { |
| case Token::Kind::TK_EQEQ: |
| if (leftType.typeKind() == Type::TypeKind::kVector) { |
| this->write("all"); |
| needParens = true; |
| } |
| break; |
| case Token::Kind::TK_NEQ: |
| if (leftType.typeKind() == Type::TypeKind::kVector) { |
| this->write("any"); |
| needParens = true; |
| } |
| break; |
| default: |
| break; |
| } |
| if (needParens) { |
| this->write("("); |
| } |
| if (Compiler::IsAssignment(b.fOperator) && |
| Expression::Kind::kVariableReference == b.fLeft->kind() && |
| Variable::kParameter_Storage == ((VariableReference&) *b.fLeft).fVariable.fStorage && |
| (((VariableReference&) *b.fLeft).fVariable.fModifiers.fFlags & Modifiers::kOut_Flag)) { |
| // writing to an out parameter. Since we have to turn those into pointers, we have to |
| // dereference it here. |
| this->write("*"); |
| } |
| if (b.fOperator == Token::Kind::TK_STAREQ && |
| leftType.typeKind() == Type::TypeKind::kMatrix && |
| rightType.typeKind() == Type::TypeKind::kMatrix) { |
| this->writeMatrixTimesEqualHelper(leftType, rightType, b.type()); |
| } |
| this->writeExpression(*b.fLeft, precedence); |
| if (b.fOperator != Token::Kind::TK_EQ && Compiler::IsAssignment(b.fOperator) && |
| b.fLeft->kind() == Expression::Kind::kSwizzle && !b.fLeft->hasSideEffects()) { |
| // This doesn't compile in Metal: |
| // float4 x = float4(1); |
| // x.xy *= float2x2(...); |
| // with the error message "non-const reference cannot bind to vector element", |
| // but switching it to x.xy = x.xy * float2x2(...) fixes it. We perform this tranformation |
| // as long as the LHS has no side effects, and hope for the best otherwise. |
| this->write(" = "); |
| this->writeExpression(*b.fLeft, kAssignment_Precedence); |
| this->write(" "); |
| String op = Compiler::OperatorName(b.fOperator); |
| SkASSERT(op.endsWith("=")); |
| this->write(op.substr(0, op.size() - 1).c_str()); |
| this->write(" "); |
| } else { |
| this->write(String(" ") + Compiler::OperatorName(b.fOperator) + " "); |
| } |
| this->writeExpression(*b.fRight, precedence); |
| if (needParens) { |
| this->write(")"); |
| } |
| } |
| |
| void MetalCodeGenerator::writeTernaryExpression(const TernaryExpression& t, |
| Precedence parentPrecedence) { |
| if (kTernary_Precedence >= parentPrecedence) { |
| this->write("("); |
| } |
| this->writeExpression(*t.fTest, kTernary_Precedence); |
| this->write(" ? "); |
| this->writeExpression(*t.fIfTrue, kTernary_Precedence); |
| this->write(" : "); |
| this->writeExpression(*t.fIfFalse, kTernary_Precedence); |
| if (kTernary_Precedence >= parentPrecedence) { |
| this->write(")"); |
| } |
| } |
| |
| void MetalCodeGenerator::writePrefixExpression(const PrefixExpression& p, |
| Precedence parentPrecedence) { |
| if (kPrefix_Precedence >= parentPrecedence) { |
| this->write("("); |
| } |
| this->write(Compiler::OperatorName(p.fOperator)); |
| this->writeExpression(*p.fOperand, kPrefix_Precedence); |
| if (kPrefix_Precedence >= parentPrecedence) { |
| this->write(")"); |
| } |
| } |
| |
| void MetalCodeGenerator::writePostfixExpression(const PostfixExpression& p, |
| Precedence parentPrecedence) { |
| if (kPostfix_Precedence >= parentPrecedence) { |
| this->write("("); |
| } |
| this->writeExpression(*p.fOperand, kPostfix_Precedence); |
| this->write(Compiler::OperatorName(p.fOperator)); |
| if (kPostfix_Precedence >= parentPrecedence) { |
| this->write(")"); |
| } |
| } |
| |
| void MetalCodeGenerator::writeBoolLiteral(const BoolLiteral& b) { |
| this->write(b.fValue ? "true" : "false"); |
| } |
| |
| void MetalCodeGenerator::writeIntLiteral(const IntLiteral& i) { |
| if (i.type() == *fContext.fUInt_Type) { |
| this->write(to_string(i.fValue & 0xffffffff) + "u"); |
| } else { |
| this->write(to_string((int32_t) i.fValue)); |
| } |
| } |
| |
| void MetalCodeGenerator::writeFloatLiteral(const FloatLiteral& f) { |
| this->write(to_string(f.fValue)); |
| } |
| |
| void MetalCodeGenerator::writeSetting(const Setting& s) { |
| ABORT("internal error; setting was not folded to a constant during compilation\n"); |
| } |
| |
| void MetalCodeGenerator::writeFunction(const FunctionDefinition& f) { |
| fRTHeightName = fProgram.fInputs.fRTHeight ? "_globals->_anonInterface0->u_skRTHeight" : ""; |
| const char* separator = ""; |
| if ("main" == f.fDeclaration.fName) { |
| switch (fProgram.fKind) { |
| case Program::kFragment_Kind: |
| this->write("fragment Outputs fragmentMain"); |
| break; |
| case Program::kVertex_Kind: |
| this->write("vertex Outputs vertexMain"); |
| break; |
| default: |
| SkDEBUGFAIL("unsupported kind of program"); |
| } |
| this->write("(Inputs _in [[stage_in]]"); |
| if (-1 != fUniformBuffer) { |
| this->write(", constant Uniforms& _uniforms [[buffer(" + |
| to_string(fUniformBuffer) + ")]]"); |
| } |
| for (const auto& e : fProgram) { |
| if (e.kind() == ProgramElement::Kind::kVar) { |
| const VarDeclarations& decls = e.as<VarDeclarations>(); |
| if (!decls.fVars.size()) { |
| continue; |
| } |
| for (const auto& stmt: decls.fVars) { |
| VarDeclaration& var = stmt->as<VarDeclaration>(); |
| if (var.fVar->type().typeKind() == Type::TypeKind::kSampler) { |
| if (var.fVar->fModifiers.fLayout.fBinding < 0) { |
| fErrors.error(decls.fOffset, |
| "Metal samplers must have 'layout(binding=...)'"); |
| } |
| this->write(", texture2d<float> "); // FIXME - support other texture types |
| this->writeName(var.fVar->fName); |
| this->write("[[texture("); |
| this->write(to_string(var.fVar->fModifiers.fLayout.fBinding)); |
| this->write(")]]"); |
| this->write(", sampler "); |
| this->writeName(var.fVar->fName); |
| this->write(SAMPLER_SUFFIX); |
| this->write("[[sampler("); |
| this->write(to_string(var.fVar->fModifiers.fLayout.fBinding)); |
| this->write(")]]"); |
| } |
| } |
| } else if (e.kind() == ProgramElement::Kind::kInterfaceBlock) { |
| InterfaceBlock& intf = (InterfaceBlock&) e; |
| if ("sk_PerVertex" == intf.fTypeName) { |
| continue; |
| } |
| this->write(", constant "); |
| this->writeType(intf.fVariable.type()); |
| this->write("& " ); |
| this->write(fInterfaceBlockNameMap[&intf]); |
| this->write(" [[buffer("); |
| this->write(to_string(intf.fVariable.fModifiers.fLayout.fBinding)); |
| this->write(")]]"); |
| } |
| } |
| if (fProgram.fKind == Program::kFragment_Kind) { |
| if (fProgram.fInputs.fRTHeight && fInterfaceBlockNameMap.empty()) { |
| this->write(", constant sksl_synthetic_uniforms& _anonInterface0 [[buffer(1)]]"); |
| fRTHeightName = "_anonInterface0.u_skRTHeight"; |
| } |
| this->write(", bool _frontFacing [[front_facing]]"); |
| this->write(", float4 _fragCoord [[position]]"); |
| } else if (fProgram.fKind == Program::kVertex_Kind) { |
| this->write(", uint sk_VertexID [[vertex_id]], uint sk_InstanceID [[instance_id]]"); |
| } |
| separator = ", "; |
| } else { |
| this->writeType(f.fDeclaration.fReturnType); |
| this->write(" "); |
| this->writeName(f.fDeclaration.fName); |
| this->write("("); |
| Requirements requirements = this->requirements(f.fDeclaration); |
| if (requirements & kInputs_Requirement) { |
| this->write("Inputs _in"); |
| separator = ", "; |
| } |
| if (requirements & kOutputs_Requirement) { |
| this->write(separator); |
| this->write("thread Outputs* _out"); |
| separator = ", "; |
| } |
| if (requirements & kUniforms_Requirement) { |
| this->write(separator); |
| this->write("Uniforms _uniforms"); |
| separator = ", "; |
| } |
| if (requirements & kGlobals_Requirement) { |
| this->write(separator); |
| this->write("thread Globals* _globals"); |
| separator = ", "; |
| } |
| if (requirements & kFragCoord_Requirement) { |
| this->write(separator); |
| this->write("float4 _fragCoord"); |
| separator = ", "; |
| } |
| } |
| for (const auto& param : f.fDeclaration.fParameters) { |
| this->write(separator); |
| separator = ", "; |
| this->writeModifiers(param->fModifiers, false); |
| std::vector<int> sizes; |
| const Type* type = ¶m->type(); |
| while (type->typeKind() == Type::TypeKind::kArray) { |
| sizes.push_back(type->columns()); |
| type = &type->componentType(); |
| } |
| this->writeType(*type); |
| if (param->fModifiers.fFlags & Modifiers::kOut_Flag) { |
| this->write("*"); |
| } |
| this->write(" "); |
| this->writeName(param->fName); |
| for (int s : sizes) { |
| if (s <= 0) { |
| this->write("[]"); |
| } else { |
| this->write("[" + to_string(s) + "]"); |
| } |
| } |
| } |
| this->writeLine(") {"); |
| |
| SkASSERT(!fProgram.fSettings.fFragColorIsInOut); |
| |
| if ("main" == f.fDeclaration.fName) { |
| this->writeGlobalInit(); |
| this->writeLine(" Outputs _outputStruct;"); |
| this->writeLine(" thread Outputs* _out = &_outputStruct;"); |
| } |
| |
| fFunctionHeader = ""; |
| OutputStream* oldOut = fOut; |
| StringStream buffer; |
| fOut = &buffer; |
| fIndentation++; |
| this->writeStatements(((Block&) *f.fBody).fStatements); |
| if ("main" == f.fDeclaration.fName) { |
| switch (fProgram.fKind) { |
| case Program::kFragment_Kind: |
| this->writeLine("return *_out;"); |
| break; |
| case Program::kVertex_Kind: |
| this->writeLine("_out->sk_Position.y = -_out->sk_Position.y;"); |
| this->writeLine("return *_out;"); // FIXME - detect if function already has return |
| break; |
| default: |
| SkDEBUGFAIL("unsupported kind of program"); |
| } |
| } |
| fIndentation--; |
| this->writeLine("}"); |
| |
| fOut = oldOut; |
| this->write(fFunctionHeader); |
| this->write(buffer.str()); |
| } |
| |
| void MetalCodeGenerator::writeModifiers(const Modifiers& modifiers, |
| bool globalContext) { |
| if (modifiers.fFlags & Modifiers::kOut_Flag) { |
| this->write("thread "); |
| } |
| if (modifiers.fFlags & Modifiers::kConst_Flag) { |
| this->write("constant "); |
| } |
| } |
| |
| void MetalCodeGenerator::writeInterfaceBlock(const InterfaceBlock& intf) { |
| if ("sk_PerVertex" == intf.fTypeName) { |
| return; |
| } |
| this->writeModifiers(intf.fVariable.fModifiers, true); |
| this->write("struct "); |
| this->writeLine(intf.fTypeName + " {"); |
| const Type* structType = &intf.fVariable.type(); |
| fWrittenStructs.push_back(structType); |
| while (structType->typeKind() == Type::TypeKind::kArray) { |
| structType = &structType->componentType(); |
| } |
| fIndentation++; |
| writeFields(structType->fields(), structType->fOffset, &intf); |
| if (fProgram.fInputs.fRTHeight) { |
| this->writeLine("float u_skRTHeight;"); |
| } |
| fIndentation--; |
| this->write("}"); |
| if (intf.fInstanceName.size()) { |
| this->write(" "); |
| this->write(intf.fInstanceName); |
| for (const auto& size : intf.fSizes) { |
| this->write("["); |
| if (size) { |
| this->writeExpression(*size, kTopLevel_Precedence); |
| } |
| this->write("]"); |
| } |
| fInterfaceBlockNameMap[&intf] = intf.fInstanceName; |
| } else { |
| fInterfaceBlockNameMap[&intf] = "_anonInterface" + to_string(fAnonInterfaceCount++); |
| } |
| this->writeLine(";"); |
| } |
| |
| void MetalCodeGenerator::writeFields(const std::vector<Type::Field>& fields, int parentOffset, |
| const InterfaceBlock* parentIntf) { |
| MemoryLayout memoryLayout(MemoryLayout::kMetal_Standard); |
| int currentOffset = 0; |
| for (const auto& field: fields) { |
| int fieldOffset = field.fModifiers.fLayout.fOffset; |
| const Type* fieldType = field.fType; |
| if (fieldOffset != -1) { |
| if (currentOffset > fieldOffset) { |
| fErrors.error(parentOffset, |
| "offset of field '" + field.fName + "' must be at least " + |
| to_string((int) currentOffset)); |
| return; |
| } else if (currentOffset < fieldOffset) { |
| this->write("char pad"); |
| this->write(to_string(fPaddingCount++)); |
| this->write("["); |
| this->write(to_string(fieldOffset - currentOffset)); |
| this->writeLine("];"); |
| currentOffset = fieldOffset; |
| } |
| int alignment = memoryLayout.alignment(*fieldType); |
| if (fieldOffset % alignment) { |
| fErrors.error(parentOffset, |
| "offset of field '" + field.fName + "' must be a multiple of " + |
| to_string((int) alignment)); |
| return; |
| } |
| } |
| size_t fieldSize = memoryLayout.size(*fieldType); |
| if (fieldSize > static_cast<size_t>(std::numeric_limits<int>::max() - currentOffset)) { |
| fErrors.error(parentOffset, "field offset overflow"); |
| return; |
| } |
| currentOffset += fieldSize; |
| std::vector<int> sizes; |
| while (fieldType->typeKind() == Type::TypeKind::kArray) { |
| sizes.push_back(fieldType->columns()); |
| fieldType = &fieldType->componentType(); |
| } |
| this->writeModifiers(field.fModifiers, false); |
| this->writeType(*fieldType); |
| this->write(" "); |
| this->writeName(field.fName); |
| for (int s : sizes) { |
| if (s <= 0) { |
| this->write("[]"); |
| } else { |
| this->write("[" + to_string(s) + "]"); |
| } |
| } |
| this->writeLine(";"); |
| if (parentIntf) { |
| fInterfaceBlockMap[&field] = parentIntf; |
| } |
| } |
| } |
| |
| void MetalCodeGenerator::writeVarInitializer(const Variable& var, const Expression& value) { |
| this->writeExpression(value, kTopLevel_Precedence); |
| } |
| |
| void MetalCodeGenerator::writeName(const String& name) { |
| if (fReservedWords.find(name) != fReservedWords.end()) { |
| this->write("_"); // adding underscore before name to avoid conflict with reserved words |
| } |
| this->write(name); |
| } |
| |
| void MetalCodeGenerator::writeVarDeclarations(const VarDeclarations& decl, bool global) { |
| SkASSERT(decl.fVars.size() > 0); |
| bool wroteType = false; |
| for (const auto& stmt : decl.fVars) { |
| VarDeclaration& var = (VarDeclaration&) *stmt; |
| if (global && !(var.fVar->fModifiers.fFlags & Modifiers::kConst_Flag)) { |
| continue; |
| } |
| if (wroteType) { |
| this->write(", "); |
| } else { |
| this->writeModifiers(var.fVar->fModifiers, global); |
| this->writeType(decl.fBaseType); |
| this->write(" "); |
| wroteType = true; |
| } |
| this->writeName(var.fVar->fName); |
| for (const auto& size : var.fSizes) { |
| this->write("["); |
| if (size) { |
| this->writeExpression(*size, kTopLevel_Precedence); |
| } |
| this->write("]"); |
| } |
| if (var.fValue) { |
| this->write(" = "); |
| this->writeVarInitializer(*var.fVar, *var.fValue); |
| } |
| } |
| if (wroteType) { |
| this->write(";"); |
| } |
| } |
| |
| void MetalCodeGenerator::writeStatement(const Statement& s) { |
| switch (s.kind()) { |
| case Statement::Kind::kBlock: |
| this->writeBlock(s.as<Block>()); |
| break; |
| case Statement::Kind::kExpression: |
| this->writeExpression(*s.as<ExpressionStatement>().fExpression, kTopLevel_Precedence); |
| this->write(";"); |
| break; |
| case Statement::Kind::kReturn: |
| this->writeReturnStatement(s.as<ReturnStatement>()); |
| break; |
| case Statement::Kind::kVarDeclarations: |
| this->writeVarDeclarations(*s.as<VarDeclarationsStatement>().fDeclaration, false); |
| break; |
| case Statement::Kind::kIf: |
| this->writeIfStatement(s.as<IfStatement>()); |
| break; |
| case Statement::Kind::kFor: |
| this->writeForStatement(s.as<ForStatement>()); |
| break; |
| case Statement::Kind::kWhile: |
| this->writeWhileStatement(s.as<WhileStatement>()); |
| break; |
| case Statement::Kind::kDo: |
| this->writeDoStatement(s.as<DoStatement>()); |
| break; |
| case Statement::Kind::kSwitch: |
| this->writeSwitchStatement(s.as<SwitchStatement>()); |
| break; |
| case Statement::Kind::kBreak: |
| this->write("break;"); |
| break; |
| case Statement::Kind::kContinue: |
| this->write("continue;"); |
| break; |
| case Statement::Kind::kDiscard: |
| this->write("discard_fragment();"); |
| break; |
| case Statement::Kind::kInlineMarker: |
| case Statement::Kind::kNop: |
| this->write(";"); |
| break; |
| default: |
| #ifdef SK_DEBUG |
| ABORT("unsupported statement: %s", s.description().c_str()); |
| #endif |
| break; |
| } |
| } |
| |
| void MetalCodeGenerator::writeStatements(const std::vector<std::unique_ptr<Statement>>& statements) { |
| for (const auto& s : statements) { |
| if (!s->isEmpty()) { |
| this->writeStatement(*s); |
| this->writeLine(); |
| } |
| } |
| } |
| |
| void MetalCodeGenerator::writeBlock(const Block& b) { |
| if (b.fIsScope) { |
| this->writeLine("{"); |
| fIndentation++; |
| } |
| this->writeStatements(b.fStatements); |
| if (b.fIsScope) { |
| fIndentation--; |
| this->write("}"); |
| } |
| } |
| |
| void MetalCodeGenerator::writeIfStatement(const IfStatement& stmt) { |
| this->write("if ("); |
| this->writeExpression(*stmt.fTest, kTopLevel_Precedence); |
| this->write(") "); |
| this->writeStatement(*stmt.fIfTrue); |
| if (stmt.fIfFalse) { |
| this->write(" else "); |
| this->writeStatement(*stmt.fIfFalse); |
| } |
| } |
| |
| void MetalCodeGenerator::writeForStatement(const ForStatement& f) { |
| this->write("for ("); |
| if (f.fInitializer && !f.fInitializer->isEmpty()) { |
| this->writeStatement(*f.fInitializer); |
| } else { |
| this->write("; "); |
| } |
| if (f.fTest) { |
| this->writeExpression(*f.fTest, kTopLevel_Precedence); |
| } |
| this->write("; "); |
| if (f.fNext) { |
| this->writeExpression(*f.fNext, kTopLevel_Precedence); |
| } |
| this->write(") "); |
| this->writeStatement(*f.fStatement); |
| } |
| |
| void MetalCodeGenerator::writeWhileStatement(const WhileStatement& w) { |
| this->write("while ("); |
| this->writeExpression(*w.fTest, kTopLevel_Precedence); |
| this->write(") "); |
| this->writeStatement(*w.fStatement); |
| } |
| |
| void MetalCodeGenerator::writeDoStatement(const DoStatement& d) { |
| this->write("do "); |
| this->writeStatement(*d.fStatement); |
| this->write(" while ("); |
| this->writeExpression(*d.fTest, kTopLevel_Precedence); |
| this->write(");"); |
| } |
| |
| void MetalCodeGenerator::writeSwitchStatement(const SwitchStatement& s) { |
| this->write("switch ("); |
| this->writeExpression(*s.fValue, kTopLevel_Precedence); |
| this->writeLine(") {"); |
| fIndentation++; |
| for (const auto& c : s.fCases) { |
| if (c->fValue) { |
| this->write("case "); |
| this->writeExpression(*c->fValue, kTopLevel_Precedence); |
| this->writeLine(":"); |
| } else { |
| this->writeLine("default:"); |
| } |
| fIndentation++; |
| for (const auto& stmt : c->fStatements) { |
| this->writeStatement(*stmt); |
| this->writeLine(); |
| } |
| fIndentation--; |
| } |
| fIndentation--; |
| this->write("}"); |
| } |
| |
| void MetalCodeGenerator::writeReturnStatement(const ReturnStatement& r) { |
| this->write("return"); |
| if (r.fExpression) { |
| this->write(" "); |
| this->writeExpression(*r.fExpression, kTopLevel_Precedence); |
| } |
| this->write(";"); |
| } |
| |
| void MetalCodeGenerator::writeHeader() { |
| this->write("#include <metal_stdlib>\n"); |
| this->write("#include <simd/simd.h>\n"); |
| this->write("using namespace metal;\n"); |
| } |
| |
| void MetalCodeGenerator::writeUniformStruct() { |
| for (const auto& e : fProgram) { |
| if (e.kind() == ProgramElement::Kind::kVar) { |
| const VarDeclarations& decls = e.as<VarDeclarations>(); |
| if (!decls.fVars.size()) { |
| continue; |
| } |
| const Variable& first = *decls.fVars[0]->as<VarDeclaration>().fVar; |
| if (first.fModifiers.fFlags & Modifiers::kUniform_Flag && |
| first.type().typeKind() != Type::TypeKind::kSampler) { |
| if (-1 == fUniformBuffer) { |
| this->write("struct Uniforms {\n"); |
| fUniformBuffer = first.fModifiers.fLayout.fSet; |
| if (-1 == fUniformBuffer) { |
| fErrors.error(decls.fOffset, "Metal uniforms must have 'layout(set=...)'"); |
| } |
| } else if (first.fModifiers.fLayout.fSet != fUniformBuffer) { |
| if (-1 == fUniformBuffer) { |
| fErrors.error(decls.fOffset, "Metal backend requires all uniforms to have " |
| "the same 'layout(set=...)'"); |
| } |
| } |
| this->write(" "); |
| this->writeType(first.type()); |
| this->write(" "); |
| for (const auto& stmt : decls.fVars) { |
| const VarDeclaration& var = stmt->as<VarDeclaration>(); |
| this->writeName(var.fVar->fName); |
| } |
| this->write(";\n"); |
| } |
| } |
| } |
| if (-1 != fUniformBuffer) { |
| this->write("};\n"); |
| } |
| } |
| |
| void MetalCodeGenerator::writeInputStruct() { |
| this->write("struct Inputs {\n"); |
| for (const auto& e : fProgram) { |
| if (e.kind() == ProgramElement::Kind::kVar) { |
| const VarDeclarations& decls = e.as<VarDeclarations>(); |
| if (!decls.fVars.size()) { |
| continue; |
| } |
| const Variable& first = *decls.fVars[0]->as<VarDeclaration>().fVar; |
| if (first.fModifiers.fFlags & Modifiers::kIn_Flag && |
| -1 == first.fModifiers.fLayout.fBuiltin) { |
| this->write(" "); |
| this->writeType(first.type()); |
| this->write(" "); |
| for (const auto& stmt : decls.fVars) { |
| const VarDeclaration& var = stmt->as<VarDeclaration>(); |
| this->writeName(var.fVar->fName); |
| if (-1 != var.fVar->fModifiers.fLayout.fLocation) { |
| if (fProgram.fKind == Program::kVertex_Kind) { |
| this->write(" [[attribute(" + |
| to_string(var.fVar->fModifiers.fLayout.fLocation) + ")]]"); |
| } else if (fProgram.fKind == Program::kFragment_Kind) { |
| this->write(" [[user(locn" + |
| to_string(var.fVar->fModifiers.fLayout.fLocation) + ")]]"); |
| } |
| } |
| } |
| this->write(";\n"); |
| } |
| } |
| } |
| this->write("};\n"); |
| } |
| |
| void MetalCodeGenerator::writeOutputStruct() { |
| this->write("struct Outputs {\n"); |
| if (fProgram.fKind == Program::kVertex_Kind) { |
| this->write(" float4 sk_Position [[position]];\n"); |
| } else if (fProgram.fKind == Program::kFragment_Kind) { |
| this->write(" float4 sk_FragColor [[color(0)]];\n"); |
| } |
| for (const auto& e : fProgram) { |
| if (e.kind() == ProgramElement::Kind::kVar) { |
| const VarDeclarations& decls = e.as<VarDeclarations>(); |
| if (!decls.fVars.size()) { |
| continue; |
| } |
| const Variable& first = *decls.fVars[0]->as<VarDeclaration>().fVar; |
| if (first.fModifiers.fFlags & Modifiers::kOut_Flag && |
| -1 == first.fModifiers.fLayout.fBuiltin) { |
| this->write(" "); |
| this->writeType(first.type()); |
| this->write(" "); |
| for (const auto& stmt : decls.fVars) { |
| const VarDeclaration& var = stmt->as<VarDeclaration>(); |
| this->writeName(var.fVar->fName); |
| if (fProgram.fKind == Program::kVertex_Kind) { |
| this->write(" [[user(locn" + |
| to_string(var.fVar->fModifiers.fLayout.fLocation) + ")]]"); |
| } else if (fProgram.fKind == Program::kFragment_Kind) { |
| this->write(" [[color(" + |
| to_string(var.fVar->fModifiers.fLayout.fLocation) +")"); |
| int colorIndex = var.fVar->fModifiers.fLayout.fIndex; |
| if (colorIndex) { |
| this->write(", index(" + to_string(colorIndex) + ")"); |
| } |
| this->write("]]"); |
| } |
| } |
| this->write(";\n"); |
| } |
| } |
| } |
| if (fProgram.fKind == Program::kVertex_Kind) { |
| this->write(" float sk_PointSize [[point_size]];\n"); |
| } |
| this->write("};\n"); |
| } |
| |
| void MetalCodeGenerator::writeInterfaceBlocks() { |
| bool wroteInterfaceBlock = false; |
| for (const auto& e : fProgram) { |
| if (e.kind() == ProgramElement::Kind::kInterfaceBlock) { |
| this->writeInterfaceBlock(e.as<InterfaceBlock>()); |
| wroteInterfaceBlock = true; |
| } |
| } |
| if (!wroteInterfaceBlock && fProgram.fInputs.fRTHeight) { |
| this->writeLine("struct sksl_synthetic_uniforms {"); |
| this->writeLine(" float u_skRTHeight;"); |
| this->writeLine("};"); |
| } |
| } |
| |
| void MetalCodeGenerator::visitGlobalStruct(GlobalStructVisitor* visitor) { |
| // Visit the interface blocks. |
| for (const auto& [interfaceType, interfaceName] : fInterfaceBlockNameMap) { |
| visitor->VisitInterfaceBlock(*interfaceType, interfaceName); |
| } |
| for (const ProgramElement& element : fProgram) { |
| if (element.kind() != ProgramElement::Kind::kVar) { |
| continue; |
| } |
| const VarDeclarations& decls = static_cast<const VarDeclarations&>(element); |
| if (decls.fVars.empty()) { |
| continue; |
| } |
| const Variable& first = *((VarDeclaration&) *decls.fVars[0]).fVar; |
| if ((!first.fModifiers.fFlags && -1 == first.fModifiers.fLayout.fBuiltin) || |
| first.type().typeKind() == Type::TypeKind::kSampler) { |
| for (const auto& stmt : decls.fVars) { |
| VarDeclaration& var = static_cast<VarDeclaration&>(*stmt); |
| |
| if (var.fVar->type().typeKind() == Type::TypeKind::kSampler) { |
| // Samplers are represented as a "texture/sampler" duo in the global struct. |
| visitor->VisitTexture(first.type(), var.fVar->fName); |
| visitor->VisitSampler(first.type(), String(var.fVar->fName) + SAMPLER_SUFFIX); |
| } else { |
| // Visit a regular variable. |
| visitor->VisitVariable(*var.fVar, var.fValue.get()); |
| } |
| } |
| } |
| } |
| } |
| |
| void MetalCodeGenerator::writeGlobalStruct() { |
| class : public GlobalStructVisitor { |
| public: |
| void VisitInterfaceBlock(const InterfaceBlock& block, const String& blockName) override { |
| this->AddElement(); |
| fCodeGen->write(" constant "); |
| fCodeGen->write(block.fTypeName); |
| fCodeGen->write("* "); |
| fCodeGen->writeName(blockName); |
| fCodeGen->write(";\n"); |
| } |
| void VisitTexture(const Type& type, const String& name) override { |
| this->AddElement(); |
| fCodeGen->write(" "); |
| fCodeGen->writeType(type); |
| fCodeGen->write(" "); |
| fCodeGen->writeName(name); |
| fCodeGen->write(";\n"); |
| } |
| void VisitSampler(const Type&, const String& name) override { |
| this->AddElement(); |
| fCodeGen->write(" sampler "); |
| fCodeGen->writeName(name); |
| fCodeGen->write(";\n"); |
| } |
| void VisitVariable(const Variable& var, const Expression* value) override { |
| this->AddElement(); |
| fCodeGen->write(" "); |
| fCodeGen->writeType(var.type()); |
| fCodeGen->write(" "); |
| fCodeGen->writeName(var.fName); |
| fCodeGen->write(";\n"); |
| } |
| void AddElement() { |
| if (fFirst) { |
| fCodeGen->write("struct Globals {\n"); |
| fFirst = false; |
| } |
| } |
| void Finish() { |
| if (!fFirst) { |
| fCodeGen->write("};"); |
| fFirst = true; |
| } |
| } |
| |
| MetalCodeGenerator* fCodeGen = nullptr; |
| bool fFirst = true; |
| } visitor; |
| |
| visitor.fCodeGen = this; |
| this->visitGlobalStruct(&visitor); |
| visitor.Finish(); |
| } |
| |
| void MetalCodeGenerator::writeGlobalInit() { |
| class : public GlobalStructVisitor { |
| public: |
| void VisitInterfaceBlock(const InterfaceBlock& blockType, |
| const String& blockName) override { |
| this->AddElement(); |
| fCodeGen->write("&"); |
| fCodeGen->writeName(blockName); |
| } |
| void VisitTexture(const Type&, const String& name) override { |
| this->AddElement(); |
| fCodeGen->writeName(name); |
| } |
| void VisitSampler(const Type&, const String& name) override { |
| this->AddElement(); |
| fCodeGen->writeName(name); |
| } |
| void VisitVariable(const Variable& var, const Expression* value) override { |
| this->AddElement(); |
| if (value) { |
| fCodeGen->writeVarInitializer(var, *value); |
| } else { |
| fCodeGen->write("{}"); |
| } |
| } |
| void AddElement() { |
| if (fFirst) { |
| fCodeGen->write(" Globals globalStruct{"); |
| fFirst = false; |
| } else { |
| fCodeGen->write(", "); |
| } |
| } |
| void Finish() { |
| if (!fFirst) { |
| fCodeGen->writeLine("};"); |
| fCodeGen->writeLine(" thread Globals* _globals = &globalStruct;"); |
| fCodeGen->writeLine(" (void)_globals;"); |
| } |
| } |
| MetalCodeGenerator* fCodeGen = nullptr; |
| bool fFirst = true; |
| } visitor; |
| |
| visitor.fCodeGen = this; |
| this->visitGlobalStruct(&visitor); |
| visitor.Finish(); |
| } |
| |
| void MetalCodeGenerator::writeProgramElement(const ProgramElement& e) { |
| switch (e.kind()) { |
| case ProgramElement::Kind::kExtension: |
| break; |
| case ProgramElement::Kind::kVar: { |
| const VarDeclarations& decl = e.as<VarDeclarations>(); |
| if (decl.fVars.size() > 0) { |
| int builtin = decl.fVars[0]->as<VarDeclaration>().fVar->fModifiers.fLayout.fBuiltin; |
| if (-1 == builtin) { |
| // normal var |
| this->writeVarDeclarations(decl, true); |
| this->writeLine(); |
| } else if (SK_FRAGCOLOR_BUILTIN == builtin) { |
| // ignore |
| } |
| } |
| break; |
| } |
| case ProgramElement::Kind::kInterfaceBlock: |
| // handled in writeInterfaceBlocks, do nothing |
| break; |
| case ProgramElement::Kind::kFunction: |
| this->writeFunction(e.as<FunctionDefinition>()); |
| break; |
| case ProgramElement::Kind::kModifiers: |
| this->writeModifiers(e.as<ModifiersDeclaration>().fModifiers, true); |
| this->writeLine(";"); |
| break; |
| default: |
| #ifdef SK_DEBUG |
| ABORT("unsupported program element: %s\n", e.description().c_str()); |
| #endif |
| break; |
| } |
| } |
| |
| MetalCodeGenerator::Requirements MetalCodeGenerator::requirements(const Expression* e) { |
| if (!e) { |
| return kNo_Requirements; |
| } |
| switch (e->kind()) { |
| case Expression::Kind::kFunctionCall: { |
| const FunctionCall& f = e->as<FunctionCall>(); |
| Requirements result = this->requirements(f.fFunction); |
| for (const auto& arg : f.fArguments) { |
| result |= this->requirements(arg.get()); |
| } |
| return result; |
| } |
| case Expression::Kind::kConstructor: { |
| const Constructor& c = e->as<Constructor>(); |
| Requirements result = kNo_Requirements; |
| for (const auto& arg : c.fArguments) { |
| result |= this->requirements(arg.get()); |
| } |
| return result; |
| } |
| case Expression::Kind::kFieldAccess: { |
| const FieldAccess& f = e->as<FieldAccess>(); |
| if (FieldAccess::kAnonymousInterfaceBlock_OwnerKind == f.fOwnerKind) { |
| return kGlobals_Requirement; |
| } |
| return this->requirements(f.fBase.get()); |
| } |
| case Expression::Kind::kSwizzle: |
| return this->requirements(e->as<Swizzle>().fBase.get()); |
| case Expression::Kind::kBinary: { |
| const BinaryExpression& bin = e->as<BinaryExpression>(); |
| return this->requirements(bin.fLeft.get()) | |
| this->requirements(bin.fRight.get()); |
| } |
| case Expression::Kind::kIndex: { |
| const IndexExpression& idx = e->as<IndexExpression>(); |
| return this->requirements(idx.fBase.get()) | this->requirements(idx.fIndex.get()); |
| } |
| case Expression::Kind::kPrefix: |
| return this->requirements(e->as<PrefixExpression>().fOperand.get()); |
| case Expression::Kind::kPostfix: |
| return this->requirements(e->as<PostfixExpression>().fOperand.get()); |
| case Expression::Kind::kTernary: { |
| const TernaryExpression& t = e->as<TernaryExpression>(); |
| return this->requirements(t.fTest.get()) | this->requirements(t.fIfTrue.get()) | |
| this->requirements(t.fIfFalse.get()); |
| } |
| case Expression::Kind::kVariableReference: { |
| const VariableReference& v = e->as<VariableReference>(); |
| Requirements result = kNo_Requirements; |
| if (v.fVariable.fModifiers.fLayout.fBuiltin == SK_FRAGCOORD_BUILTIN) { |
| result = kGlobals_Requirement | kFragCoord_Requirement; |
| } else if (Variable::kGlobal_Storage == v.fVariable.fStorage) { |
| if (v.fVariable.fModifiers.fFlags & Modifiers::kIn_Flag) { |
| result = kInputs_Requirement; |
| } else if (v.fVariable.fModifiers.fFlags & Modifiers::kOut_Flag) { |
| result = kOutputs_Requirement; |
| } else if (v.fVariable.fModifiers.fFlags & Modifiers::kUniform_Flag && |
| v.fVariable.type().typeKind() != Type::TypeKind::kSampler) { |
| result = kUniforms_Requirement; |
| } else { |
| result = kGlobals_Requirement; |
| } |
| } |
| return result; |
| } |
| default: |
| return kNo_Requirements; |
| } |
| } |
| |
| MetalCodeGenerator::Requirements MetalCodeGenerator::requirements(const Statement* s) { |
| if (!s) { |
| return kNo_Requirements; |
| } |
| switch (s->kind()) { |
| case Statement::Kind::kBlock: { |
| Requirements result = kNo_Requirements; |
| for (const auto& child : s->as<Block>().fStatements) { |
| result |= this->requirements(child.get()); |
| } |
| return result; |
| } |
| case Statement::Kind::kVarDeclaration: { |
| const VarDeclaration& var = s->as<VarDeclaration>(); |
| return this->requirements(var.fValue.get()); |
| } |
| case Statement::Kind::kVarDeclarations: { |
| Requirements result = kNo_Requirements; |
| const VarDeclarations& decls = *s->as<VarDeclarationsStatement>().fDeclaration; |
| for (const auto& stmt : decls.fVars) { |
| result |= this->requirements(stmt.get()); |
| } |
| return result; |
| } |
| case Statement::Kind::kExpression: |
| return this->requirements(s->as<ExpressionStatement>().fExpression.get()); |
| case Statement::Kind::kReturn: { |
| const ReturnStatement& r = s->as<ReturnStatement>(); |
| return this->requirements(r.fExpression.get()); |
| } |
| case Statement::Kind::kIf: { |
| const IfStatement& i = s->as<IfStatement>(); |
| return this->requirements(i.fTest.get()) | |
| this->requirements(i.fIfTrue.get()) | |
| this->requirements(i.fIfFalse.get()); |
| } |
| case Statement::Kind::kFor: { |
| const ForStatement& f = s->as<ForStatement>(); |
| return this->requirements(f.fInitializer.get()) | |
| this->requirements(f.fTest.get()) | |
| this->requirements(f.fNext.get()) | |
| this->requirements(f.fStatement.get()); |
| } |
| case Statement::Kind::kWhile: { |
| const WhileStatement& w = s->as<WhileStatement>(); |
| return this->requirements(w.fTest.get()) | |
| this->requirements(w.fStatement.get()); |
| } |
| case Statement::Kind::kDo: { |
| const DoStatement& d = s->as<DoStatement>(); |
| return this->requirements(d.fTest.get()) | |
| this->requirements(d.fStatement.get()); |
| } |
| case Statement::Kind::kSwitch: { |
| const SwitchStatement& sw = s->as<SwitchStatement>(); |
| Requirements result = this->requirements(sw.fValue.get()); |
| for (const auto& c : sw.fCases) { |
| for (const auto& st : c->fStatements) { |
| result |= this->requirements(st.get()); |
| } |
| } |
| return result; |
| } |
| default: |
| return kNo_Requirements; |
| } |
| } |
| |
| MetalCodeGenerator::Requirements MetalCodeGenerator::requirements(const FunctionDeclaration& f) { |
| if (f.fBuiltin) { |
| return kNo_Requirements; |
| } |
| auto found = fRequirements.find(&f); |
| if (found == fRequirements.end()) { |
| fRequirements[&f] = kNo_Requirements; |
| for (const auto& e : fProgram) { |
| if (e.kind() == ProgramElement::Kind::kFunction) { |
| const FunctionDefinition& def = e.as<FunctionDefinition>(); |
| if (&def.fDeclaration == &f) { |
| Requirements reqs = this->requirements(def.fBody.get()); |
| fRequirements[&f] = reqs; |
| return reqs; |
| } |
| } |
| } |
| } |
| return found->second; |
| } |
| |
| bool MetalCodeGenerator::generateCode() { |
| OutputStream* rawOut = fOut; |
| fOut = &fHeader; |
| fProgramKind = fProgram.fKind; |
| this->writeHeader(); |
| this->writeUniformStruct(); |
| this->writeInputStruct(); |
| this->writeOutputStruct(); |
| this->writeInterfaceBlocks(); |
| this->writeGlobalStruct(); |
| StringStream body; |
| fOut = &body; |
| for (const auto& e : fProgram) { |
| this->writeProgramElement(e); |
| } |
| fOut = rawOut; |
| |
| write_stringstream(fHeader, *rawOut); |
| write_stringstream(fExtraFunctions, *rawOut); |
| write_stringstream(body, *rawOut); |
| return 0 == fErrors.errorCount(); |
| } |
| |
| } // namespace SkSL |