| /* |
| * Copyright 2014 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| #include "GrMatrixConvolutionEffect.h" |
| |
| #include "GrTexture.h" |
| #include "GrTextureProxy.h" |
| #include "glsl/GrGLSLFragmentProcessor.h" |
| #include "glsl/GrGLSLFragmentShaderBuilder.h" |
| #include "glsl/GrGLSLProgramDataManager.h" |
| #include "glsl/GrGLSLUniformHandler.h" |
| |
| class GrGLMatrixConvolutionEffect : public GrGLSLFragmentProcessor { |
| public: |
| void emitCode(EmitArgs&) override; |
| |
| static inline void GenKey(const GrProcessor&, const GrShaderCaps&, GrProcessorKeyBuilder*); |
| |
| protected: |
| void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override; |
| |
| private: |
| typedef GrGLSLProgramDataManager::UniformHandle UniformHandle; |
| |
| UniformHandle fKernelUni; |
| UniformHandle fImageIncrementUni; |
| UniformHandle fKernelOffsetUni; |
| UniformHandle fGainUni; |
| UniformHandle fBiasUni; |
| GrTextureDomain::GLDomain fDomain; |
| |
| typedef GrGLSLFragmentProcessor INHERITED; |
| }; |
| |
| void GrGLMatrixConvolutionEffect::emitCode(EmitArgs& args) { |
| const GrMatrixConvolutionEffect& mce = args.fFp.cast<GrMatrixConvolutionEffect>(); |
| const GrTextureDomain& domain = mce.domain(); |
| |
| int kWidth = mce.kernelSize().width(); |
| int kHeight = mce.kernelSize().height(); |
| |
| int arrayCount = (kWidth * kHeight + 3) / 4; |
| SkASSERT(4 * arrayCount >= kWidth * kHeight); |
| |
| GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; |
| fImageIncrementUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf2_GrSLType, |
| "ImageIncrement"); |
| fKernelUni = uniformHandler->addUniformArray(kFragment_GrShaderFlag, kHalf4_GrSLType, |
| "Kernel", |
| arrayCount); |
| fKernelOffsetUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf2_GrSLType, |
| "KernelOffset"); |
| fGainUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf_GrSLType, "Gain"); |
| fBiasUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf_GrSLType, "Bias"); |
| |
| const char* kernelOffset = uniformHandler->getUniformCStr(fKernelOffsetUni); |
| const char* imgInc = uniformHandler->getUniformCStr(fImageIncrementUni); |
| const char* kernel = uniformHandler->getUniformCStr(fKernelUni); |
| const char* gain = uniformHandler->getUniformCStr(fGainUni); |
| const char* bias = uniformHandler->getUniformCStr(fBiasUni); |
| |
| GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| SkString coords2D = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]); |
| fragBuilder->codeAppend("half4 sum = half4(0, 0, 0, 0);"); |
| fragBuilder->codeAppendf("float2 coord = %s - %s * %s;", coords2D.c_str(), kernelOffset, imgInc); |
| fragBuilder->codeAppend("half4 c;"); |
| |
| const char* kVecSuffix[4] = { ".x", ".y", ".z", ".w" }; |
| for (int y = 0; y < kHeight; y++) { |
| for (int x = 0; x < kWidth; x++) { |
| GrGLSLShaderBuilder::ShaderBlock block(fragBuilder); |
| int offset = y*kWidth + x; |
| |
| fragBuilder->codeAppendf("half k = %s[%d]%s;", kernel, offset / 4, |
| kVecSuffix[offset & 0x3]); |
| SkString coord; |
| coord.printf("coord + half2(%d, %d) * %s", x, y, imgInc); |
| fDomain.sampleTexture(fragBuilder, |
| uniformHandler, |
| args.fShaderCaps, |
| domain, |
| "c", |
| coord, |
| args.fTexSamplers[0]); |
| if (!mce.convolveAlpha()) { |
| fragBuilder->codeAppend("c.rgb /= c.a;"); |
| fragBuilder->codeAppend("c.rgb = saturate(c.rgb);"); |
| } |
| fragBuilder->codeAppend("sum += c * k;"); |
| } |
| } |
| if (mce.convolveAlpha()) { |
| fragBuilder->codeAppendf("%s = sum * %s + %s;", args.fOutputColor, gain, bias); |
| fragBuilder->codeAppendf("%s.a = saturate(%s.a);", args.fOutputColor, args.fOutputColor); |
| fragBuilder->codeAppendf("%s.rgb = clamp(%s.rgb, 0.0, %s.a);", |
| args.fOutputColor, args.fOutputColor, args.fOutputColor); |
| } else { |
| fDomain.sampleTexture(fragBuilder, |
| uniformHandler, |
| args.fShaderCaps, |
| domain, |
| "c", |
| coords2D, |
| args.fTexSamplers[0]); |
| fragBuilder->codeAppendf("%s.a = c.a;", args.fOutputColor); |
| fragBuilder->codeAppendf("%s.rgb = saturate(sum.rgb * %s + %s);", args.fOutputColor, gain, bias); |
| fragBuilder->codeAppendf("%s.rgb *= %s.a;", args.fOutputColor, args.fOutputColor); |
| } |
| fragBuilder->codeAppendf("%s *= %s;\n", args.fOutputColor, args.fInputColor); |
| } |
| |
| void GrGLMatrixConvolutionEffect::GenKey(const GrProcessor& processor, |
| const GrShaderCaps&, GrProcessorKeyBuilder* b) { |
| const GrMatrixConvolutionEffect& m = processor.cast<GrMatrixConvolutionEffect>(); |
| SkASSERT(m.kernelSize().width() <= 0x7FFF && m.kernelSize().height() <= 0xFFFF); |
| uint32_t key = m.kernelSize().width() << 16 | m.kernelSize().height(); |
| key |= m.convolveAlpha() ? 1U << 31 : 0; |
| b->add32(key); |
| b->add32(GrTextureDomain::GLDomain::DomainKey(m.domain())); |
| } |
| |
| void GrGLMatrixConvolutionEffect::onSetData(const GrGLSLProgramDataManager& pdman, |
| const GrFragmentProcessor& processor) { |
| const GrMatrixConvolutionEffect& conv = processor.cast<GrMatrixConvolutionEffect>(); |
| GrSurfaceProxy* proxy = conv.textureSampler(0).proxy(); |
| GrTexture* texture = proxy->peekTexture(); |
| |
| float imageIncrement[2]; |
| float ySign = proxy->origin() == kTopLeft_GrSurfaceOrigin ? 1.0f : -1.0f; |
| imageIncrement[0] = 1.0f / texture->width(); |
| imageIncrement[1] = ySign / texture->height(); |
| pdman.set2fv(fImageIncrementUni, 1, imageIncrement); |
| pdman.set2fv(fKernelOffsetUni, 1, conv.kernelOffset()); |
| int kernelCount = conv.kernelSize().width() * conv.kernelSize().height(); |
| int arrayCount = (kernelCount + 3) / 4; |
| SkASSERT(4 * arrayCount >= kernelCount); |
| pdman.set4fv(fKernelUni, arrayCount, conv.kernel()); |
| pdman.set1f(fGainUni, conv.gain()); |
| pdman.set1f(fBiasUni, conv.bias()); |
| fDomain.setData(pdman, conv.domain(), proxy); |
| } |
| |
| GrMatrixConvolutionEffect::GrMatrixConvolutionEffect(sk_sp<GrTextureProxy> srcProxy, |
| const SkIRect& srcBounds, |
| const SkISize& kernelSize, |
| const SkScalar* kernel, |
| SkScalar gain, |
| SkScalar bias, |
| const SkIPoint& kernelOffset, |
| GrTextureDomain::Mode tileMode, |
| bool convolveAlpha) |
| // To advertise either the modulation or opaqueness optimizations we'd have to examine the |
| // parameters. |
| : INHERITED(kGrMatrixConvolutionEffect_ClassID, kNone_OptimizationFlags) |
| , fCoordTransform(srcProxy.get()) |
| , fDomain(srcProxy.get(), |
| GrTextureDomain::MakeTexelDomainForMode(srcBounds, tileMode), |
| tileMode) |
| , fTextureSampler(std::move(srcProxy)) |
| , fKernelSize(kernelSize) |
| , fGain(SkScalarToFloat(gain)) |
| , fBias(SkScalarToFloat(bias) / 255.0f) |
| , fConvolveAlpha(convolveAlpha) { |
| this->addCoordTransform(&fCoordTransform); |
| this->setTextureSamplerCnt(1); |
| for (int i = 0; i < kernelSize.width() * kernelSize.height(); i++) { |
| fKernel[i] = SkScalarToFloat(kernel[i]); |
| } |
| fKernelOffset[0] = static_cast<float>(kernelOffset.x()); |
| fKernelOffset[1] = static_cast<float>(kernelOffset.y()); |
| } |
| |
| GrMatrixConvolutionEffect::GrMatrixConvolutionEffect(const GrMatrixConvolutionEffect& that) |
| : INHERITED(kGrMatrixConvolutionEffect_ClassID, kNone_OptimizationFlags) |
| , fCoordTransform(that.fCoordTransform) |
| , fDomain(that.fDomain) |
| , fTextureSampler(that.fTextureSampler) |
| , fKernelSize(that.fKernelSize) |
| , fGain(that.fGain) |
| , fBias(that.fBias) |
| , fConvolveAlpha(that.fConvolveAlpha) { |
| this->addCoordTransform(&fCoordTransform); |
| this->setTextureSamplerCnt(1); |
| memcpy(fKernel, that.fKernel, sizeof(float) * fKernelSize.width() * fKernelSize.height()); |
| memcpy(fKernelOffset, that.fKernelOffset, sizeof(fKernelOffset)); |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> GrMatrixConvolutionEffect::clone() const { |
| return std::unique_ptr<GrFragmentProcessor>(new GrMatrixConvolutionEffect(*this)); |
| } |
| |
| void GrMatrixConvolutionEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps, |
| GrProcessorKeyBuilder* b) const { |
| GrGLMatrixConvolutionEffect::GenKey(*this, caps, b); |
| } |
| |
| GrGLSLFragmentProcessor* GrMatrixConvolutionEffect::onCreateGLSLInstance() const { |
| return new GrGLMatrixConvolutionEffect; |
| } |
| |
| bool GrMatrixConvolutionEffect::onIsEqual(const GrFragmentProcessor& sBase) const { |
| const GrMatrixConvolutionEffect& s = sBase.cast<GrMatrixConvolutionEffect>(); |
| return fKernelSize == s.kernelSize() && |
| !memcmp(fKernel, s.kernel(), |
| fKernelSize.width() * fKernelSize.height() * sizeof(float)) && |
| fGain == s.gain() && |
| fBias == s.bias() && |
| !memcmp(fKernelOffset, s.kernelOffset(), sizeof(fKernelOffset)) && |
| fConvolveAlpha == s.convolveAlpha() && |
| fDomain == s.domain(); |
| } |
| |
| static void fill_in_1D_gaussian_kernel_with_stride(float* kernel, int size, int stride, |
| float twoSigmaSqrd) { |
| SkASSERT(!SkScalarNearlyZero(twoSigmaSqrd, SK_ScalarNearlyZero)); |
| |
| const float sigmaDenom = 1.0f / twoSigmaSqrd; |
| const int radius = size / 2; |
| |
| float sum = 0.0f; |
| for (int i = 0; i < size; ++i) { |
| float term = static_cast<float>(i - radius); |
| // Note that the constant term (1/(sqrt(2*pi*sigma^2)) of the Gaussian |
| // is dropped here, since we renormalize the kernel below. |
| kernel[i * stride] = sk_float_exp(-term * term * sigmaDenom); |
| sum += kernel[i * stride]; |
| } |
| // Normalize the kernel |
| float scale = 1.0f / sum; |
| for (int i = 0; i < size; ++i) { |
| kernel[i * stride] *= scale; |
| } |
| } |
| |
| static void fill_in_2D_gaussian_kernel(float* kernel, int width, int height, |
| SkScalar sigmaX, SkScalar sigmaY) { |
| SkASSERT(width * height <= MAX_KERNEL_SIZE); |
| const float twoSigmaSqrdX = 2.0f * SkScalarToFloat(SkScalarSquare(sigmaX)); |
| const float twoSigmaSqrdY = 2.0f * SkScalarToFloat(SkScalarSquare(sigmaY)); |
| |
| // TODO: in all of these degenerate cases we're uploading (and using) a whole lot of zeros. |
| if (SkScalarNearlyZero(twoSigmaSqrdX, SK_ScalarNearlyZero) || |
| SkScalarNearlyZero(twoSigmaSqrdY, SK_ScalarNearlyZero)) { |
| // In this case the 2D Gaussian degenerates to a 1D Gaussian (in X or Y) or a point |
| SkASSERT(3 == width || 3 == height); |
| memset(kernel, 0, width*height*sizeof(float)); |
| |
| if (SkScalarNearlyZero(twoSigmaSqrdX, SK_ScalarNearlyZero) && |
| SkScalarNearlyZero(twoSigmaSqrdY, SK_ScalarNearlyZero)) { |
| // A point |
| SkASSERT(3 == width && 3 == height); |
| kernel[4] = 1.0f; |
| } else if (SkScalarNearlyZero(twoSigmaSqrdX, SK_ScalarNearlyZero)) { |
| // A 1D Gaussian in Y |
| SkASSERT(3 == width); |
| // Down the middle column of the kernel with a stride of width |
| fill_in_1D_gaussian_kernel_with_stride(&kernel[1], height, width, twoSigmaSqrdY); |
| } else { |
| // A 1D Gaussian in X |
| SkASSERT(SkScalarNearlyZero(twoSigmaSqrdY, SK_ScalarNearlyZero)); |
| SkASSERT(3 == height); |
| // Down the middle row of the kernel with a stride of 1 |
| fill_in_1D_gaussian_kernel_with_stride(&kernel[width], width, 1, twoSigmaSqrdX); |
| } |
| return; |
| } |
| |
| const float sigmaXDenom = 1.0f / twoSigmaSqrdX; |
| const float sigmaYDenom = 1.0f / twoSigmaSqrdY; |
| const int xRadius = width / 2; |
| const int yRadius = height / 2; |
| |
| float sum = 0.0f; |
| for (int x = 0; x < width; x++) { |
| float xTerm = static_cast<float>(x - xRadius); |
| xTerm = xTerm * xTerm * sigmaXDenom; |
| for (int y = 0; y < height; y++) { |
| float yTerm = static_cast<float>(y - yRadius); |
| float xyTerm = sk_float_exp(-(xTerm + yTerm * yTerm * sigmaYDenom)); |
| // Note that the constant term (1/(sqrt(2*pi*sigma^2)) of the Gaussian |
| // is dropped here, since we renormalize the kernel below. |
| kernel[y * width + x] = xyTerm; |
| sum += xyTerm; |
| } |
| } |
| // Normalize the kernel |
| float scale = 1.0f / sum; |
| for (int i = 0; i < width * height; ++i) { |
| kernel[i] *= scale; |
| } |
| } |
| |
| // Static function to create a 2D convolution |
| std::unique_ptr<GrFragmentProcessor> GrMatrixConvolutionEffect::MakeGaussian( |
| sk_sp<GrTextureProxy> srcProxy, |
| const SkIRect& srcBounds, |
| const SkISize& kernelSize, |
| SkScalar gain, |
| SkScalar bias, |
| const SkIPoint& kernelOffset, |
| GrTextureDomain::Mode tileMode, |
| bool convolveAlpha, |
| SkScalar sigmaX, |
| SkScalar sigmaY) { |
| float kernel[MAX_KERNEL_SIZE]; |
| |
| fill_in_2D_gaussian_kernel(kernel, kernelSize.width(), kernelSize.height(), sigmaX, sigmaY); |
| |
| return std::unique_ptr<GrFragmentProcessor>( |
| new GrMatrixConvolutionEffect(std::move(srcProxy), srcBounds, kernelSize, kernel, |
| gain, bias, kernelOffset, tileMode, convolveAlpha)); |
| } |
| |
| GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrMatrixConvolutionEffect); |
| |
| #if GR_TEST_UTILS |
| std::unique_ptr<GrFragmentProcessor> GrMatrixConvolutionEffect::TestCreate(GrProcessorTestData* d) { |
| int texIdx = d->fRandom->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx |
| : GrProcessorUnitTest::kAlphaTextureIdx; |
| sk_sp<GrTextureProxy> proxy = d->textureProxy(texIdx); |
| |
| int width = d->fRandom->nextRangeU(1, MAX_KERNEL_SIZE); |
| int height = d->fRandom->nextRangeU(1, MAX_KERNEL_SIZE / width); |
| SkISize kernelSize = SkISize::Make(width, height); |
| std::unique_ptr<SkScalar[]> kernel(new SkScalar[width * height]); |
| for (int i = 0; i < width * height; i++) { |
| kernel.get()[i] = d->fRandom->nextSScalar1(); |
| } |
| SkScalar gain = d->fRandom->nextSScalar1(); |
| SkScalar bias = d->fRandom->nextSScalar1(); |
| SkIPoint kernelOffset = SkIPoint::Make(d->fRandom->nextRangeU(0, kernelSize.width()), |
| d->fRandom->nextRangeU(0, kernelSize.height())); |
| SkIRect bounds = SkIRect::MakeXYWH(d->fRandom->nextRangeU(0, proxy->width()), |
| d->fRandom->nextRangeU(0, proxy->height()), |
| d->fRandom->nextRangeU(0, proxy->width()), |
| d->fRandom->nextRangeU(0, proxy->height())); |
| GrTextureDomain::Mode tileMode = |
| static_cast<GrTextureDomain::Mode>(d->fRandom->nextRangeU(0, 2)); |
| bool convolveAlpha = d->fRandom->nextBool(); |
| return GrMatrixConvolutionEffect::Make(std::move(proxy), |
| bounds, |
| kernelSize, |
| kernel.get(), |
| gain, |
| bias, |
| kernelOffset, |
| tileMode, |
| convolveAlpha); |
| } |
| #endif |