| /* |
| * Copyright 2017 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/gpu/effects/GrTextureEffect.h" |
| |
| #include "include/gpu/GrTexture.h" |
| #include "src/gpu/GrTexturePriv.h" |
| #include "src/gpu/glsl/GrGLSLFragmentProcessor.h" |
| #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h" |
| #include "src/gpu/glsl/GrGLSLProgramBuilder.h" |
| #include "src/sksl/SkSLCPP.h" |
| #include "src/sksl/SkSLUtil.h" |
| |
| using Mode = GrSamplerState::WrapMode; |
| using Filter = GrSamplerState::Filter; |
| |
| struct GrTextureEffect::Sampling { |
| GrSamplerState fHWSampler; |
| ShaderMode fShaderModes[2] = {ShaderMode::kNone, ShaderMode::kNone}; |
| SkRect fShaderSubset = {0, 0, 0, 0}; |
| SkRect fShaderClamp = {0, 0, 0, 0}; |
| float fBorder[4] = {0, 0, 0, 0}; |
| Sampling(GrSamplerState::Filter filter) : fHWSampler(filter) {} |
| Sampling(const GrSurfaceProxy& proxy, |
| GrSamplerState sampler, |
| const SkRect&, |
| const SkRect*, |
| const float border[4], |
| const GrCaps&); |
| inline bool hasBorderAlpha() const; |
| }; |
| |
| GrTextureEffect::Sampling::Sampling(const GrSurfaceProxy& proxy, |
| GrSamplerState sampler, |
| const SkRect& subset, |
| const SkRect* domain, |
| const float border[4], |
| const GrCaps& caps) { |
| struct Span { |
| float fA = 0.f, fB = 0.f; |
| |
| Span makeInset(float o) const { |
| Span r = {fA + o, fB - o}; |
| if (r.fA > r.fB) { |
| r.fA = r.fB = (r.fA + r.fB) / 2; |
| } |
| return r; |
| } |
| |
| bool contains(Span r) const { return fA <= r.fA && fB >= r.fB; } |
| }; |
| struct Result1D { |
| ShaderMode fShaderMode; |
| Span fShaderSubset; |
| Span fShaderClamp; |
| Mode fHWMode; |
| }; |
| |
| auto type = proxy.asTextureProxy()->textureType(); |
| auto filter = sampler.filter(); |
| |
| auto resolve = [type, &caps, filter, &border](int size, Mode mode, Span subset, Span domain) { |
| Result1D r; |
| bool canDoModeInHW = true; |
| // TODO: Use HW border color when available. |
| if (mode == Mode::kClampToBorder && |
| (!caps.clampToBorderSupport() || border[0] || border[1] || border[2] || border[3])) { |
| canDoModeInHW = false; |
| } else if (mode != Mode::kClamp && !caps.npotTextureTileSupport() && !SkIsPow2(size)) { |
| canDoModeInHW = false; |
| } else if (type != GrTextureType::k2D && |
| !(mode == Mode::kClamp || mode == Mode::kClampToBorder)) { |
| canDoModeInHW = false; |
| } |
| if (canDoModeInHW && size > 0 && subset.fA <= 0 && subset.fB >= size) { |
| r.fShaderMode = ShaderMode::kNone; |
| r.fHWMode = mode; |
| r.fShaderSubset = r.fShaderClamp = {0, 0}; |
| return r; |
| } |
| |
| r.fShaderSubset = subset; |
| bool domainIsSafe = false; |
| if (filter == Filter::kNearest) { |
| Span isubset{sk_float_floor(subset.fA), sk_float_ceil(subset.fB)}; |
| if (domain.fA > isubset.fA && domain.fB < isubset.fB) { |
| domainIsSafe = true; |
| } |
| // This inset prevents sampling neighboring texels that could occur when |
| // texture coords fall exactly at texel boundaries (depending on precision |
| // and GPU-specific snapping at the boundary). |
| r.fShaderClamp = isubset.makeInset(0.5f); |
| } else { |
| r.fShaderClamp = subset.makeInset(0.5f); |
| if (r.fShaderClamp.contains(domain)) { |
| domainIsSafe = true; |
| } |
| } |
| if (domainIsSafe) { |
| // The domain of coords that will be used won't access texels outside of the subset. |
| // So the wrap mode effectively doesn't matter. We use kClamp since it is always |
| // supported. |
| r.fShaderMode = ShaderMode::kNone; |
| r.fHWMode = Mode::kClamp; |
| r.fShaderSubset = r.fShaderClamp = {0, 0}; |
| return r; |
| } |
| r.fShaderMode = static_cast<ShaderMode>(mode); |
| r.fHWMode = Mode::kClamp; |
| return r; |
| }; |
| |
| SkISize dim = proxy.isFullyLazy() ? SkISize{-1, -1} : proxy.backingStoreDimensions(); |
| |
| Span subsetX{subset.fLeft, subset.fRight}; |
| auto domainX = domain ? Span{domain->fLeft, domain->fRight} |
| : Span{SK_FloatNegativeInfinity, SK_FloatInfinity}; |
| auto x = resolve(dim.width(), sampler.wrapModeX(), subsetX, domainX); |
| |
| Span subsetY{subset.fTop, subset.fBottom}; |
| auto domainY = domain ? Span{domain->fTop, domain->fBottom} |
| : Span{SK_FloatNegativeInfinity, SK_FloatInfinity}; |
| auto y = resolve(dim.height(), sampler.wrapModeY(), subsetY, domainY); |
| |
| fHWSampler = {x.fHWMode, y.fHWMode, filter}; |
| fShaderModes[0] = x.fShaderMode; |
| fShaderModes[1] = y.fShaderMode; |
| fShaderSubset = {x.fShaderSubset.fA, y.fShaderSubset.fA, |
| x.fShaderSubset.fB, y.fShaderSubset.fB}; |
| fShaderClamp = {x.fShaderClamp.fA, y.fShaderClamp.fA, |
| x.fShaderClamp.fB, y.fShaderClamp.fB}; |
| std::copy_n(border, 4, fBorder); |
| } |
| |
| bool GrTextureEffect::Sampling::hasBorderAlpha() const { |
| if (fHWSampler.wrapModeX() == GrSamplerState::WrapMode::kClampToBorder || |
| fHWSampler.wrapModeY() == GrSamplerState::WrapMode::kClampToBorder) { |
| return true; |
| } |
| if (fShaderModes[0] == ShaderMode::kClampToBorder || |
| fShaderModes[1] == ShaderMode::kClampToBorder) { |
| return fBorder[3] < 1.f; |
| } |
| return false; |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> GrTextureEffect::Make(GrSurfaceProxyView view, |
| SkAlphaType alphaType, |
| const SkMatrix& matrix, |
| Filter filter) { |
| return std::unique_ptr<GrFragmentProcessor>( |
| new GrTextureEffect(std::move(view), alphaType, matrix, Sampling(filter))); |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> GrTextureEffect::Make(GrSurfaceProxyView view, |
| SkAlphaType alphaType, |
| const SkMatrix& matrix, |
| GrSamplerState sampler, |
| const GrCaps& caps, |
| const float border[4]) { |
| Sampling sampling(*view.proxy(), sampler, SkRect::Make(view.proxy()->dimensions()), nullptr, |
| border, caps); |
| return std::unique_ptr<GrFragmentProcessor>( |
| new GrTextureEffect(std::move(view), alphaType, matrix, sampling)); |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> GrTextureEffect::MakeSubset(GrSurfaceProxyView view, |
| SkAlphaType alphaType, |
| const SkMatrix& matrix, |
| GrSamplerState sampler, |
| const SkRect& subset, |
| const GrCaps& caps, |
| const float border[4]) { |
| Sampling sampling(*view.proxy(), sampler, subset, nullptr, border, caps); |
| return std::unique_ptr<GrFragmentProcessor>( |
| new GrTextureEffect(std::move(view), alphaType, matrix, sampling)); |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> GrTextureEffect::MakeSubset(GrSurfaceProxyView view, |
| SkAlphaType alphaType, |
| const SkMatrix& matrix, |
| GrSamplerState sampler, |
| const SkRect& subset, |
| const SkRect& domain, |
| const GrCaps& caps, |
| const float border[4]) { |
| Sampling sampling(*view.proxy(), sampler, subset, &domain, border, caps); |
| return std::unique_ptr<GrFragmentProcessor>( |
| new GrTextureEffect(std::move(view), alphaType, matrix, sampling)); |
| } |
| |
| GrTextureEffect::FilterLogic GrTextureEffect::GetFilterLogic(ShaderMode mode, |
| GrSamplerState::Filter filter) { |
| switch (mode) { |
| case ShaderMode::kMirrorRepeat: |
| case ShaderMode::kNone: |
| case ShaderMode::kClamp: |
| return FilterLogic::kNone; |
| case ShaderMode::kRepeat: |
| switch (filter) { |
| case GrSamplerState::Filter::kNearest: |
| return FilterLogic::kNone; |
| case GrSamplerState::Filter::kBilerp: |
| return FilterLogic::kRepeatBilerp; |
| case GrSamplerState::Filter::kMipMap: |
| return FilterLogic::kRepeatMipMap; |
| } |
| SkUNREACHABLE; |
| case ShaderMode::kClampToBorder: |
| return filter > GrSamplerState::Filter::kNearest ? FilterLogic::kClampToBorderFilter |
| : FilterLogic::kClampToBorderNearest; |
| } |
| SkUNREACHABLE; |
| } |
| |
| GrGLSLFragmentProcessor* GrTextureEffect::onCreateGLSLInstance() const { |
| class Impl : public GrGLSLFragmentProcessor { |
| UniformHandle fSubsetUni; |
| UniformHandle fClampUni; |
| UniformHandle fNormUni; |
| UniformHandle fBorderUni; |
| |
| public: |
| void emitCode(EmitArgs& args) override { |
| auto te = args.fFp.cast<GrTextureEffect>(); |
| const char* coords; |
| if (args.fFp.isSampledWithExplicitCoords()) { |
| coords = "_coords"; |
| } else { |
| coords = args.fTransformedCoords[0].fVaryingPoint.c_str(); |
| } |
| auto* fb = args.fFragBuilder; |
| if (te.fShaderModes[0] == ShaderMode::kNone && |
| te.fShaderModes[1] == ShaderMode::kNone) { |
| fb->codeAppendf("%s = ", args.fOutputColor); |
| fb->appendTextureLookupAndBlend(args.fInputColor, SkBlendMode::kModulate, |
| args.fTexSamplers[0], coords); |
| fb->codeAppendf(";"); |
| } else { |
| // Here is the basic flow of the various ShaderModes are implemented in a series of |
| // steps. Not all the steps apply to all the modes. We try to emit only the steps |
| // that are necessary for the given x/y shader modes. |
| // |
| // 0) Start with interpolated coordinates (unnormalize if doing anything |
| // complicated). |
| // 1) Map the coordinates into the subset range [Repeat and MirrorRepeat], or pass |
| // through output of 0). |
| // 2) Clamp the coordinates to a 0.5 inset of the subset rect [Clamp, Repeat, and |
| // MirrorRepeat always or ClampToBorder only when filtering] or pass through |
| // output of 1). The clamp rect collapses to a line or point it if the subset |
| // rect is less than one pixel wide/tall. |
| // 3) Look up texture with output of 2) [All] |
| // 3) Use the difference between 1) and 2) to apply filtering at edge [Repeat or |
| // ClampToBorder]. In the Repeat case this requires extra texture lookups on the |
| // other side of the subset (up to 3 more reads). Or if ClampToBorder and not |
| // filtering do a hard less than/greater than test with the subset rect. |
| |
| // Convert possible projective texture coordinates into non-homogeneous half2. |
| fb->codeAppendf( |
| "float2 inCoord = %s;", |
| fb->ensureCoords2D(args.fTransformedCoords[0].fVaryingPoint).c_str()); |
| |
| const auto& m = te.fShaderModes; |
| const auto* texture = te.fSampler.proxy()->peekTexture(); |
| bool normCoords = texture->texturePriv().textureType() != GrTextureType::kRectangle; |
| auto filter = te.fSampler.samplerState().filter(); |
| FilterLogic filterLogic[2] = {GetFilterLogic(m[0], filter), |
| GetFilterLogic(m[1], filter)}; |
| |
| const char* borderName = nullptr; |
| if (te.fShaderModes[0] == ShaderMode::kClampToBorder || |
| te.fShaderModes[1] == ShaderMode::kClampToBorder) { |
| fBorderUni = args.fUniformHandler->addUniform( |
| kFragment_GrShaderFlag, kHalf4_GrSLType, "border", &borderName); |
| } |
| auto modeUsesSubset = [](ShaderMode m) { |
| return m == ShaderMode::kRepeat || m == ShaderMode::kMirrorRepeat || |
| m == ShaderMode::kClampToBorder; |
| }; |
| |
| auto modeUsesClamp = [filter](ShaderMode m) { |
| return m != ShaderMode::kNone && |
| (m != ShaderMode::kClampToBorder || filter > Filter::kNearest); |
| }; |
| |
| bool useSubset[2] = {modeUsesSubset(m[0]), modeUsesSubset(m[1])}; |
| bool useClamp [2] = {modeUsesClamp (m[0]), modeUsesClamp (m[1])}; |
| |
| const char* subsetName = nullptr; |
| if (useSubset[0] || useSubset[1]) { |
| fSubsetUni = args.fUniformHandler->addUniform( |
| kFragment_GrShaderFlag, kFloat4_GrSLType, "subset", &subsetName); |
| } |
| |
| const char* clampName = nullptr; |
| if (useClamp[0] || useClamp[1]) { |
| fClampUni = args.fUniformHandler->addUniform( |
| kFragment_GrShaderFlag, kFloat4_GrSLType, "clamp", &clampName); |
| } |
| |
| // To keep things a little simpler, when we have filtering logic in the shader we |
| // operate on unnormalized texture coordinates. We add a uniform that stores |
| // {w, h, 1/w, 1/h} in a float4. |
| const char* norm = nullptr; |
| if (normCoords && (filterLogic[0] != FilterLogic::kNone || |
| filterLogic[1] != FilterLogic::kNone)) { |
| // TODO: Detect support for textureSize() or polyfill textureSize() in SkSL and |
| // always use? |
| fNormUni = args.fUniformHandler->addUniform(kFragment_GrShaderFlag, |
| kFloat4_GrSLType, "norm", &norm); |
| // TODO: Remove the normalization from the CoordTransform to skip unnormalizing |
| // step here. |
| fb->codeAppendf("inCoord *= %s.xy;", norm); |
| } |
| |
| // Generates a string to read at a coordinate, normalizing coords if necessary. |
| auto read = [&](const char* coord) { |
| SkString result; |
| SkString normCoord; |
| if (norm) { |
| normCoord.printf("(%s) * %s.zw", coord, norm); |
| } else { |
| normCoord = coord; |
| } |
| fb->appendTextureLookup(&result, args.fTexSamplers[0], normCoord.c_str()); |
| return result; |
| }; |
| |
| // Implements coord wrapping for kRepeat and kMirrorRepeat |
| auto subsetCoord = [&](ShaderMode mode, |
| const char* coordSwizzle, |
| const char* subsetStartSwizzle, |
| const char* subsetStopSwizzle, |
| const char* extraCoord, |
| const char* coordWeight) { |
| switch (mode) { |
| // These modes either don't use the subset rect or don't need to map the |
| // coords to be within the subset. |
| case ShaderMode::kNone: |
| case ShaderMode::kClampToBorder: |
| case ShaderMode::kClamp: |
| fb->codeAppendf("subsetCoord.%s = inCoord.%s;", coordSwizzle, |
| coordSwizzle); |
| break; |
| case ShaderMode::kRepeat: |
| if (filter == Filter::kMipMap) { |
| // The approach here is to generate two sets of texture coords that |
| // are both "moving" at the same speed (if not direction) as |
| // inCoords. We accomplish that by using two out of phase mirror |
| // repeat coords. We will always sample using both coords but the |
| // read from the upward sloping one is selected using a weight |
| // that transitions from one set to the other near the reflection |
| // point. Like the coords, the weight is a saw-tooth function, |
| // phase-shifted, vertically translated, and then clamped to 0..1. |
| // TODO: Skip this and use textureGrad() when available. |
| SkASSERT(extraCoord); |
| SkASSERT(coordWeight); |
| fb->codeAppend("{"); |
| fb->codeAppendf("float w = %s.%s - %s.%s;", subsetName, |
| subsetStopSwizzle, subsetName, subsetStartSwizzle); |
| fb->codeAppendf("float w2 = 2 * w;"); |
| fb->codeAppendf("float d = inCoord.%s - %s.%s;", coordSwizzle, |
| subsetName, subsetStartSwizzle); |
| fb->codeAppend("float m = mod(d, w2);"); |
| fb->codeAppend("float o = mix(m, w2 - m, step(w, m));"); |
| fb->codeAppendf("subsetCoord.%s = o + %s.%s;", coordSwizzle, |
| subsetName, subsetStartSwizzle); |
| fb->codeAppendf("%s = w - o + %s.%s;", extraCoord, subsetName, |
| subsetStartSwizzle); |
| // coordWeight is used as the third param of mix() to blend between a |
| // sample taken using subsetCoord and a sample at extraCoord. |
| fb->codeAppend("float hw = w/2;"); |
| fb->codeAppend("float n = mod(d - hw, w2);"); |
| fb->codeAppendf( |
| "%s = saturate(half(mix(n, w2 - n, step(w, n)) - hw + " |
| "0.5));", |
| coordWeight); |
| fb->codeAppend("}"); |
| } else { |
| fb->codeAppendf( |
| "subsetCoord.%s = mod(inCoord.%s - %s.%s, %s.%s - %s.%s) + " |
| "%s.%s;", |
| coordSwizzle, coordSwizzle, subsetName, subsetStartSwizzle, |
| subsetName, subsetStopSwizzle, subsetName, |
| subsetStartSwizzle, subsetName, subsetStartSwizzle); |
| } |
| break; |
| case ShaderMode::kMirrorRepeat: { |
| fb->codeAppend("{"); |
| fb->codeAppendf("float w = %s.%s - %s.%s;", subsetName, |
| subsetStopSwizzle, subsetName, subsetStartSwizzle); |
| fb->codeAppendf("float w2 = 2 * w;"); |
| fb->codeAppendf("float m = mod(inCoord.%s - %s.%s, w2);", coordSwizzle, |
| subsetName, subsetStartSwizzle); |
| fb->codeAppendf("subsetCoord.%s = mix(m, w2 - m, step(w, m)) + %s.%s;", |
| coordSwizzle, subsetName, subsetStartSwizzle); |
| fb->codeAppend("}"); |
| break; |
| } |
| } |
| }; |
| |
| auto clampCoord = [&](bool clamp, |
| const char* coordSwizzle, |
| const char* clampStartSwizzle, |
| const char* clampStopSwizzle) { |
| if (clamp) { |
| fb->codeAppendf("clampedCoord.%s = clamp(subsetCoord.%s, %s.%s, %s.%s);", |
| coordSwizzle, coordSwizzle, clampName, clampStartSwizzle, |
| clampName, clampStopSwizzle); |
| } else { |
| fb->codeAppendf("clampedCoord.%s = subsetCoord.%s;", coordSwizzle, |
| coordSwizzle); |
| } |
| }; |
| |
| // Insert vars for extra coords and blending weights for kRepeatMipMap. |
| const char* extraRepeatCoordX = nullptr; |
| const char* repeatCoordWeightX = nullptr; |
| const char* extraRepeatCoordY = nullptr; |
| const char* repeatCoordWeightY = nullptr; |
| if (filterLogic[0] == FilterLogic::kRepeatMipMap) { |
| fb->codeAppend("float extraRepeatCoordX; half repeatCoordWeightX;"); |
| extraRepeatCoordX = "extraRepeatCoordX"; |
| repeatCoordWeightX = "repeatCoordWeightX"; |
| } |
| if (filterLogic[1] == FilterLogic::kRepeatMipMap) { |
| fb->codeAppend("float extraRepeatCoordY; half repeatCoordWeightY;"); |
| extraRepeatCoordY = "extraRepeatCoordY"; |
| repeatCoordWeightY = "repeatCoordWeightY"; |
| } |
| |
| // Apply subset rect and clamp rect to coords. |
| fb->codeAppend("float2 subsetCoord;"); |
| subsetCoord(te.fShaderModes[0], "x", "x", "z", extraRepeatCoordX, |
| repeatCoordWeightX); |
| subsetCoord(te.fShaderModes[1], "y", "y", "w", extraRepeatCoordY, |
| repeatCoordWeightY); |
| fb->codeAppend("float2 clampedCoord;"); |
| clampCoord(useClamp[0], "x", "x", "z"); |
| clampCoord(useClamp[1], "y", "y", "w"); |
| |
| // Additional clamping for the extra coords for kRepeatMipMap. |
| if (filterLogic[0] == FilterLogic::kRepeatMipMap) { |
| fb->codeAppendf("extraRepeatCoordX = clamp(extraRepeatCoordX, %s.x, %s.z);", |
| clampName, clampName); |
| } |
| if (filterLogic[1] == FilterLogic::kRepeatMipMap) { |
| fb->codeAppendf("extraRepeatCoordY = clamp(extraRepeatCoordY, %s.y, %s.w);", |
| clampName, clampName); |
| } |
| |
| // Do the 2 or 4 texture reads for kRepeatMipMap and then apply the weight(s) |
| // to blend between them. If neither direction is kRepeatMipMap do a single |
| // read at clampedCoord. |
| if (filterLogic[0] == FilterLogic::kRepeatMipMap && |
| filterLogic[1] == FilterLogic::kRepeatMipMap) { |
| fb->codeAppendf( |
| "half4 textureColor =" |
| " mix(mix(%s, %s, repeatCoordWeightX)," |
| " mix(%s, %s, repeatCoordWeightX)," |
| " repeatCoordWeightY);", |
| read("clampedCoord").c_str(), |
| read("float2(extraRepeatCoordX, clampedCoord.y)").c_str(), |
| read("float2(clampedCoord.x, extraRepeatCoordY)").c_str(), |
| read("float2(extraRepeatCoordX, extraRepeatCoordY)").c_str()); |
| |
| } else if (filterLogic[0] == FilterLogic::kRepeatMipMap) { |
| fb->codeAppendf("half4 textureColor = mix(%s, %s, repeatCoordWeightX);", |
| read("clampedCoord").c_str(), |
| read("float2(extraRepeatCoordX, clampedCoord.y)").c_str()); |
| } else if (filterLogic[1] == FilterLogic::kRepeatMipMap) { |
| fb->codeAppendf("half4 textureColor = mix(%s, %s, repeatCoordWeightY);", |
| read("clampedCoord").c_str(), |
| read("float2(clampedCoord.x, extraRepeatCoordY)").c_str()); |
| } else { |
| fb->codeAppendf("half4 textureColor = %s;", read("clampedCoord").c_str()); |
| } |
| |
| // Strings for extra texture reads used only in kRepeatBilerp |
| SkString repeatBilerpReadX; |
| SkString repeatBilerpReadY; |
| |
| // Calculate the amount the coord moved for clamping. This will be used |
| // to implement shader-based filtering for kClampToBorder and kRepeat. |
| |
| if (filterLogic[0] == FilterLogic::kRepeatBilerp || |
| filterLogic[0] == FilterLogic::kClampToBorderFilter) { |
| fb->codeAppend("half errX = half(subsetCoord.x - clampedCoord.x);"); |
| fb->codeAppendf("float repeatCoordX = errX > 0 ? %s.x : %s.z;", clampName, |
| clampName); |
| repeatBilerpReadX = read("float2(repeatCoordX, clampedCoord.y)"); |
| } |
| if (filterLogic[1] == FilterLogic::kRepeatBilerp || |
| filterLogic[1] == FilterLogic::kClampToBorderFilter) { |
| fb->codeAppend("half errY = half(subsetCoord.y - clampedCoord.y);"); |
| fb->codeAppendf("float repeatCoordY = errY > 0 ? %s.y : %s.w;", clampName, |
| clampName); |
| repeatBilerpReadY = read("float2(clampedCoord.x, repeatCoordY)"); |
| } |
| |
| // Add logic for kRepeatBilerp. Do 1 or 3 more texture reads depending |
| // on whether both modes are kRepeat and whether we're near a single subset edge |
| // or a corner. Then blend the multiple reads using the err values calculated |
| // above. |
| const char* ifStr = "if"; |
| if (filterLogic[0] == FilterLogic::kRepeatBilerp && |
| filterLogic[1] == FilterLogic::kRepeatBilerp) { |
| auto repeatBilerpReadXY = read("float2(repeatCoordX, repeatCoordY)"); |
| fb->codeAppendf( |
| "if (errX != 0 && errY != 0) {" |
| " errX = abs(errX);" |
| " textureColor = mix(mix(textureColor, %s, errX)," |
| " mix(%s, %s, errX)," |
| " abs(errY));" |
| "}", |
| repeatBilerpReadX.c_str(), repeatBilerpReadY.c_str(), |
| repeatBilerpReadXY.c_str()); |
| ifStr = "else if"; |
| } |
| if (filterLogic[0] == FilterLogic::kRepeatBilerp) { |
| fb->codeAppendf( |
| "%s (errX != 0) {" |
| " textureColor = mix(textureColor, %s, abs(errX));" |
| "}", |
| ifStr, repeatBilerpReadX.c_str()); |
| } |
| if (filterLogic[1] == FilterLogic::kRepeatBilerp) { |
| fb->codeAppendf( |
| "%s (errY != 0) {" |
| " textureColor = mix(textureColor, %s, abs(errY));" |
| "}", |
| ifStr, repeatBilerpReadY.c_str()); |
| } |
| |
| // Do soft edge shader filtering against border color for kClampToBorderFilter using |
| // the err values calculated above. |
| if (filterLogic[0] == FilterLogic::kClampToBorderFilter) { |
| fb->codeAppendf("textureColor = mix(textureColor, %s, min(abs(errX), 1));", |
| borderName); |
| } |
| if (filterLogic[1] == FilterLogic::kClampToBorderFilter) { |
| fb->codeAppendf("textureColor = mix(textureColor, %s, min(abs(errY), 1));", |
| borderName); |
| } |
| |
| // Do hard-edge shader transition to border color for kClampToBorderNearest at the |
| // subset boundaries. |
| if (filterLogic[0] == FilterLogic::kClampToBorderNearest) { |
| fb->codeAppendf( |
| "if (inCoord.x < %s.x || inCoord.x > %s.z) {" |
| " textureColor = %s;" |
| "}", |
| subsetName, subsetName, borderName); |
| } |
| if (filterLogic[1] == FilterLogic::kClampToBorderNearest) { |
| fb->codeAppendf( |
| "if (inCoord.y < %s.y || inCoord.y > %s.w) {" |
| " textureColor = %s;" |
| "}", |
| subsetName, subsetName, borderName); |
| } |
| fb->codeAppendf("%s = %s * textureColor;", args.fOutputColor, args.fInputColor); |
| } |
| } |
| |
| protected: |
| void onSetData(const GrGLSLProgramDataManager& pdm, |
| const GrFragmentProcessor& fp) override { |
| const auto& te = fp.cast<GrTextureEffect>(); |
| |
| const float w = te.fSampler.peekTexture()->width(); |
| const float h = te.fSampler.peekTexture()->height(); |
| const auto& s = te.fSubset; |
| const auto& c = te.fClamp; |
| |
| auto type = te.fSampler.peekTexture()->texturePriv().textureType(); |
| |
| float norm[4] = {w, h, 1.f/w, 1.f/h}; |
| |
| if (fNormUni.isValid()) { |
| pdm.set4fv(fNormUni, 1, norm); |
| SkASSERT(type != GrTextureType::kRectangle); |
| } |
| |
| auto pushRect = [&](float rect[4], UniformHandle uni) { |
| if (te.fSampler.view().origin() == kBottomLeft_GrSurfaceOrigin) { |
| rect[1] = h - rect[1]; |
| rect[3] = h - rect[3]; |
| std::swap(rect[1], rect[3]); |
| } |
| if (!fNormUni.isValid() && type != GrTextureType::kRectangle) { |
| rect[0] *= norm[2]; |
| rect[2] *= norm[2]; |
| rect[1] *= norm[3]; |
| rect[3] *= norm[3]; |
| } |
| pdm.set4fv(uni, 1, rect); |
| }; |
| |
| if (fSubsetUni.isValid()) { |
| float subset[] = {s.fLeft, s.fTop, s.fRight, s.fBottom}; |
| pushRect(subset, fSubsetUni); |
| } |
| if (fClampUni.isValid()) { |
| float subset[] = {c.fLeft, c.fTop, c.fRight, c.fBottom}; |
| pushRect(subset, fClampUni); |
| } |
| if (fBorderUni.isValid()) { |
| pdm.set4fv(fBorderUni, 1, te.fBorder); |
| } |
| } |
| }; |
| return new Impl; |
| } |
| |
| void GrTextureEffect::onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const { |
| auto m0 = static_cast<uint32_t>(fShaderModes[0]); |
| auto m1 = static_cast<uint32_t>(fShaderModes[1]); |
| auto filter = fSampler.samplerState().filter(); |
| auto l0 = static_cast<uint32_t>(GetFilterLogic(fShaderModes[0], filter)); |
| auto l1 = static_cast<uint32_t>(GetFilterLogic(fShaderModes[1], filter)); |
| b->add32((l0 << 24) | (l1 << 16) | (m0 << 8) | m1); |
| } |
| |
| bool GrTextureEffect::onIsEqual(const GrFragmentProcessor& other) const { |
| auto that = other.cast<GrTextureEffect>(); |
| if (fShaderModes[0] != that.fShaderModes[0] || fShaderModes[1] != that.fShaderModes[1]) { |
| return false; |
| } |
| if (fSubset != that.fSubset) { |
| return false; |
| } |
| if ((fShaderModes[0] == ShaderMode::kClampToBorder || |
| fShaderModes[1] == ShaderMode::kClampToBorder) && |
| !std::equal(fBorder, fBorder + 4, that.fBorder)) { |
| return false; |
| } |
| return true; |
| } |
| |
| GrTextureEffect::GrTextureEffect(GrSurfaceProxyView view, SkAlphaType alphaType, |
| const SkMatrix& matrix, const Sampling& sampling) |
| : GrFragmentProcessor(kGrTextureEffect_ClassID, |
| ModulateForSamplerOptFlags(alphaType, sampling.hasBorderAlpha())) |
| , fCoordTransform(matrix, view.proxy(), view.origin()) |
| , fSampler(std::move(view), sampling.fHWSampler) |
| , fSubset(sampling.fShaderSubset) |
| , fClamp(sampling.fShaderClamp) |
| , fShaderModes{sampling.fShaderModes[0], sampling.fShaderModes[1]} { |
| // We always compare the range even when it isn't used so assert we have canonical don't care |
| // values. |
| SkASSERT(fShaderModes[0] != ShaderMode::kNone || (fSubset.fLeft == 0 && fSubset.fRight == 0)); |
| SkASSERT(fShaderModes[1] != ShaderMode::kNone || (fSubset.fTop == 0 && fSubset.fBottom == 0)); |
| this->setTextureSamplerCnt(1); |
| this->addCoordTransform(&fCoordTransform); |
| std::copy_n(sampling.fBorder, 4, fBorder); |
| } |
| |
| GrTextureEffect::GrTextureEffect(const GrTextureEffect& src) |
| : INHERITED(kGrTextureEffect_ClassID, src.optimizationFlags()) |
| , fCoordTransform(src.fCoordTransform) |
| , fSampler(src.fSampler) |
| , fSubset(src.fSubset) |
| , fClamp(src.fClamp) |
| , fShaderModes{src.fShaderModes[0], src.fShaderModes[1]} { |
| this->setTextureSamplerCnt(1); |
| this->addCoordTransform(&fCoordTransform); |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> GrTextureEffect::clone() const { |
| return std::unique_ptr<GrFragmentProcessor>(new GrTextureEffect(*this)); |
| } |
| |
| const GrFragmentProcessor::TextureSampler& GrTextureEffect::onTextureSampler(int) const { |
| return fSampler; |
| } |
| |
| GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrTextureEffect); |
| #if GR_TEST_UTILS |
| std::unique_ptr<GrFragmentProcessor> GrTextureEffect::TestCreate(GrProcessorTestData* testData) { |
| auto [view, ct, at] = testData->randomView(); |
| Mode wrapModes[2]; |
| GrTest::TestWrapModes(testData->fRandom, wrapModes); |
| |
| Filter filter; |
| if (view.asTextureProxy()->mipMapped() == GrMipMapped::kYes) { |
| switch (testData->fRandom->nextULessThan(3)) { |
| case 0: |
| filter = Filter::kNearest; |
| break; |
| case 1: |
| filter = Filter::kBilerp; |
| break; |
| default: |
| filter = Filter::kMipMap; |
| break; |
| } |
| } else { |
| filter = testData->fRandom->nextBool() ? Filter::kBilerp : Filter::kNearest; |
| } |
| GrSamplerState params(wrapModes, filter); |
| |
| const SkMatrix& matrix = GrTest::TestMatrix(testData->fRandom); |
| return GrTextureEffect::Make(std::move(view), at, matrix, params, *testData->caps()); |
| } |
| #endif |