| /* |
| * Copyright 2016 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "include/core/SkTypes.h" |
| #include "tests/Test.h" |
| |
| #include "include/gpu/GrContext.h" |
| #include "include/gpu/GrGpuResource.h" |
| #include "src/gpu/GrClip.h" |
| #include "src/gpu/GrContextPriv.h" |
| #include "src/gpu/GrMemoryPool.h" |
| #include "src/gpu/GrProxyProvider.h" |
| #include "src/gpu/GrRenderTargetContext.h" |
| #include "src/gpu/GrRenderTargetContextPriv.h" |
| #include "src/gpu/GrResourceProvider.h" |
| #include "src/gpu/glsl/GrGLSLFragmentProcessor.h" |
| #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h" |
| #include "src/gpu/ops/GrFillRectOp.h" |
| #include "src/gpu/ops/GrMeshDrawOp.h" |
| #include "tests/TestUtils.h" |
| |
| #include <atomic> |
| #include <random> |
| |
| namespace { |
| class TestOp : public GrMeshDrawOp { |
| public: |
| DEFINE_OP_CLASS_ID |
| static std::unique_ptr<GrDrawOp> Make(GrContext* context, |
| std::unique_ptr<GrFragmentProcessor> fp) { |
| GrOpMemoryPool* pool = context->priv().opMemoryPool(); |
| |
| return pool->allocate<TestOp>(std::move(fp)); |
| } |
| |
| const char* name() const override { return "TestOp"; } |
| |
| void visitProxies(const VisitProxyFunc& func) const override { |
| fProcessors.visitProxies(func); |
| } |
| |
| FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; } |
| |
| GrProcessorSet::Analysis finalize( |
| const GrCaps& caps, const GrAppliedClip* clip, bool hasMixedSampledCoverage, |
| GrClampType clampType) override { |
| static constexpr GrProcessorAnalysisColor kUnknownColor; |
| SkPMColor4f overrideColor; |
| return fProcessors.finalize( |
| kUnknownColor, GrProcessorAnalysisCoverage::kNone, clip, |
| &GrUserStencilSettings::kUnused, hasMixedSampledCoverage, caps, clampType, |
| &overrideColor); |
| } |
| |
| private: |
| friend class ::GrOpMemoryPool; // for ctor |
| |
| TestOp(std::unique_ptr<GrFragmentProcessor> fp) |
| : INHERITED(ClassID()), fProcessors(std::move(fp)) { |
| this->setBounds(SkRect::MakeWH(100, 100), HasAABloat::kNo, IsZeroArea::kNo); |
| } |
| |
| void onPrepareDraws(Target* target) override { return; } |
| void onExecute(GrOpFlushState*, const SkRect&) override { return; } |
| |
| GrProcessorSet fProcessors; |
| |
| typedef GrMeshDrawOp INHERITED; |
| }; |
| |
| /** |
| * FP used to test ref counts on owned GrGpuResources. Can also be a parent FP to test counts |
| * of resources owned by child FPs. |
| */ |
| class TestFP : public GrFragmentProcessor { |
| public: |
| static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> child) { |
| return std::unique_ptr<GrFragmentProcessor>(new TestFP(std::move(child))); |
| } |
| static std::unique_ptr<GrFragmentProcessor> Make(const SkTArray<sk_sp<GrTextureProxy>>& proxies, |
| const SkTArray<sk_sp<GrGpuBuffer>>& buffers) { |
| return std::unique_ptr<GrFragmentProcessor>(new TestFP(proxies, buffers)); |
| } |
| |
| const char* name() const override { return "test"; } |
| |
| void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const override { |
| static std::atomic<int32_t> nextKey{0}; |
| b->add32(nextKey++); |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> clone() const override { |
| return std::unique_ptr<GrFragmentProcessor>(new TestFP(*this)); |
| } |
| |
| private: |
| TestFP(const SkTArray<sk_sp<GrTextureProxy>>& proxies, |
| const SkTArray<sk_sp<GrGpuBuffer>>& buffers) |
| : INHERITED(kTestFP_ClassID, kNone_OptimizationFlags), fSamplers(4) { |
| for (const auto& proxy : proxies) { |
| fSamplers.emplace_back(proxy); |
| } |
| this->setTextureSamplerCnt(fSamplers.count()); |
| } |
| |
| TestFP(std::unique_ptr<GrFragmentProcessor> child) |
| : INHERITED(kTestFP_ClassID, kNone_OptimizationFlags), fSamplers(4) { |
| this->registerChildProcessor(std::move(child)); |
| } |
| |
| explicit TestFP(const TestFP& that) |
| : INHERITED(kTestFP_ClassID, that.optimizationFlags()), fSamplers(4) { |
| for (int i = 0; i < that.fSamplers.count(); ++i) { |
| fSamplers.emplace_back(that.fSamplers[i]); |
| } |
| for (int i = 0; i < that.numChildProcessors(); ++i) { |
| this->registerChildProcessor(that.childProcessor(i).clone()); |
| } |
| this->setTextureSamplerCnt(fSamplers.count()); |
| } |
| |
| virtual GrGLSLFragmentProcessor* onCreateGLSLInstance() const override { |
| class TestGLSLFP : public GrGLSLFragmentProcessor { |
| public: |
| TestGLSLFP() {} |
| void emitCode(EmitArgs& args) override { |
| GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| fragBuilder->codeAppendf("%s = %s;", args.fOutputColor, args.fInputColor); |
| } |
| |
| private: |
| }; |
| return new TestGLSLFP(); |
| } |
| |
| bool onIsEqual(const GrFragmentProcessor&) const override { return false; } |
| const TextureSampler& onTextureSampler(int i) const override { return fSamplers[i]; } |
| |
| GrTAllocator<TextureSampler> fSamplers; |
| typedef GrFragmentProcessor INHERITED; |
| }; |
| } |
| |
| static void check_refs(skiatest::Reporter* reporter, |
| GrTextureProxy* proxy, |
| int32_t expectedProxyRefs, |
| int32_t expectedBackingRefs) { |
| int32_t actualProxyRefs = proxy->priv().getProxyRefCnt(); |
| int32_t actualBackingRefs = proxy->testingOnly_getBackingRefCnt(); |
| |
| SkASSERT(actualProxyRefs == expectedProxyRefs); |
| SkASSERT(actualBackingRefs == expectedBackingRefs); |
| |
| REPORTER_ASSERT(reporter, actualProxyRefs == expectedProxyRefs); |
| REPORTER_ASSERT(reporter, actualBackingRefs == expectedBackingRefs); |
| } |
| |
| DEF_GPUTEST_FOR_ALL_CONTEXTS(ProcessorRefTest, reporter, ctxInfo) { |
| GrContext* context = ctxInfo.grContext(); |
| GrProxyProvider* proxyProvider = context->priv().proxyProvider(); |
| |
| GrSurfaceDesc desc; |
| desc.fWidth = 10; |
| desc.fHeight = 10; |
| desc.fConfig = kRGBA_8888_GrPixelConfig; |
| |
| const GrBackendFormat format = |
| context->priv().caps()->getDefaultBackendFormat(GrColorType::kRGBA_8888, |
| GrRenderable::kNo); |
| |
| for (bool makeClone : {false, true}) { |
| for (int parentCnt = 0; parentCnt < 2; parentCnt++) { |
| sk_sp<GrRenderTargetContext> renderTargetContext( |
| context->priv().makeDeferredRenderTargetContext( |
| SkBackingFit::kApprox, 1, 1, GrColorType::kRGBA_8888, nullptr)); |
| { |
| sk_sp<GrTextureProxy> proxy = proxyProvider->createProxy( |
| format, desc, GrRenderable::kNo, 1, kTopLeft_GrSurfaceOrigin, |
| SkBackingFit::kExact, SkBudgeted::kYes, GrProtected::kNo); |
| |
| { |
| SkTArray<sk_sp<GrTextureProxy>> proxies; |
| SkTArray<sk_sp<GrGpuBuffer>> buffers; |
| proxies.push_back(proxy); |
| auto fp = TestFP::Make(std::move(proxies), std::move(buffers)); |
| for (int i = 0; i < parentCnt; ++i) { |
| fp = TestFP::Make(std::move(fp)); |
| } |
| std::unique_ptr<GrFragmentProcessor> clone; |
| if (makeClone) { |
| clone = fp->clone(); |
| } |
| std::unique_ptr<GrDrawOp> op(TestOp::Make(context, std::move(fp))); |
| renderTargetContext->priv().testingOnly_addDrawOp(std::move(op)); |
| if (clone) { |
| op = TestOp::Make(context, std::move(clone)); |
| renderTargetContext->priv().testingOnly_addDrawOp(std::move(op)); |
| } |
| } |
| |
| // If the fp is cloned the number of refs should increase by one (for the clone) |
| int expectedProxyRefs = makeClone ? 3 : 2; |
| |
| check_refs(reporter, proxy.get(), expectedProxyRefs, -1); |
| |
| context->flush(); |
| |
| check_refs(reporter, proxy.get(), 1, 1); // just one from the 'proxy' sk_sp |
| } |
| } |
| } |
| } |
| |
| #include "tools/flags/CommandLineFlags.h" |
| static DEFINE_bool(randomProcessorTest, false, |
| "Use non-deterministic seed for random processor tests?"); |
| static DEFINE_int(processorSeed, 0, |
| "Use specific seed for processor tests. Overridden by --randomProcessorTest."); |
| |
| #if GR_TEST_UTILS |
| |
| static GrColor input_texel_color(int i, int j, SkScalar delta) { |
| // Delta must be less than 0.5 to prevent over/underflow issues with the input color |
| SkASSERT(delta <= 0.5); |
| |
| SkColor color = SkColorSetARGB((uint8_t)(i & 0xFF), |
| (uint8_t)(j & 0xFF), |
| (uint8_t)((i + j) & 0xFF), |
| (uint8_t)((2 * j - i) & 0xFF)); |
| SkColor4f color4f = SkColor4f::FromColor(color); |
| for (int i = 0; i < 4; i++) { |
| if (color4f[i] > 0.5) { |
| color4f[i] -= delta; |
| } else { |
| color4f[i] += delta; |
| } |
| } |
| return color4f.premul().toBytes_RGBA(); |
| } |
| |
| void test_draw_op(GrContext* context, |
| GrRenderTargetContext* rtc, |
| std::unique_ptr<GrFragmentProcessor> fp, |
| sk_sp<GrTextureProxy> inputDataProxy) { |
| GrPaint paint; |
| paint.addColorTextureProcessor(std::move(inputDataProxy), SkMatrix::I()); |
| paint.addColorFragmentProcessor(std::move(fp)); |
| paint.setPorterDuffXPFactory(SkBlendMode::kSrc); |
| |
| auto op = GrFillRectOp::MakeNonAARect(context, std::move(paint), SkMatrix::I(), |
| SkRect::MakeWH(rtc->width(), rtc->height())); |
| rtc->addDrawOp(GrNoClip(), std::move(op)); |
| } |
| |
| // This assumes that the output buffer will be the same size as inputDataProxy |
| void render_fp(GrContext* context, GrRenderTargetContext* rtc, GrFragmentProcessor* fp, |
| sk_sp<GrTextureProxy> inputDataProxy, GrColor* buffer) { |
| int width = inputDataProxy->width(); |
| int height = inputDataProxy->height(); |
| |
| // test_draw_op needs to take ownership of an FP, so give it a clone that it can own |
| test_draw_op(context, rtc, fp->clone(), inputDataProxy); |
| memset(buffer, 0x0, sizeof(GrColor) * width * height); |
| rtc->readPixels(SkImageInfo::Make(width, height, kRGBA_8888_SkColorType, kPremul_SkAlphaType), |
| buffer, 0, {0, 0}); |
| } |
| |
| /** Initializes the two test texture proxies that are available to the FP test factories. */ |
| bool init_test_textures(GrResourceProvider* resourceProvider, |
| GrProxyProvider* proxyProvider, |
| SkRandom* random, |
| sk_sp<GrTextureProxy> proxies[2]) { |
| static const int kTestTextureSize = 256; |
| |
| { |
| // Put premul data into the RGBA texture that the test FPs can optionally use. |
| std::unique_ptr<GrColor[]> rgbaData(new GrColor[kTestTextureSize * kTestTextureSize]); |
| for (int y = 0; y < kTestTextureSize; ++y) { |
| for (int x = 0; x < kTestTextureSize; ++x) { |
| rgbaData[kTestTextureSize * y + x] = input_texel_color( |
| random->nextULessThan(256), random->nextULessThan(256), 0.0f); |
| } |
| } |
| |
| SkImageInfo ii = SkImageInfo::Make(kTestTextureSize, kTestTextureSize, |
| kRGBA_8888_SkColorType, kPremul_SkAlphaType); |
| SkPixmap pixmap(ii, rgbaData.get(), ii.minRowBytes()); |
| sk_sp<SkImage> img = SkImage::MakeRasterCopy(pixmap); |
| proxies[0] = proxyProvider->createTextureProxy(img, GrRenderable::kNo, 1, SkBudgeted::kYes, |
| SkBackingFit::kExact); |
| proxies[0]->instantiate(resourceProvider); |
| } |
| |
| { |
| // Put random values into the alpha texture that the test FPs can optionally use. |
| std::unique_ptr<uint8_t[]> alphaData(new uint8_t[kTestTextureSize * kTestTextureSize]); |
| for (int y = 0; y < kTestTextureSize; ++y) { |
| for (int x = 0; x < kTestTextureSize; ++x) { |
| alphaData[kTestTextureSize * y + x] = random->nextULessThan(256); |
| } |
| } |
| |
| SkImageInfo ii = SkImageInfo::Make(kTestTextureSize, kTestTextureSize, |
| kAlpha_8_SkColorType, kPremul_SkAlphaType); |
| SkPixmap pixmap(ii, alphaData.get(), ii.minRowBytes()); |
| sk_sp<SkImage> img = SkImage::MakeRasterCopy(pixmap); |
| proxies[1] = proxyProvider->createTextureProxy(img, GrRenderable::kNo, 1, SkBudgeted::kYes, |
| SkBackingFit::kExact); |
| proxies[1]->instantiate(resourceProvider); |
| } |
| |
| return proxies[0] && proxies[1]; |
| } |
| |
| // Creates a texture of premul colors used as the output of the fragment processor that precedes |
| // the fragment processor under test. Color values are those provided by input_texel_color(). |
| sk_sp<GrTextureProxy> make_input_texture(GrProxyProvider* proxyProvider, int width, int height, |
| SkScalar delta) { |
| std::unique_ptr<GrColor[]> data(new GrColor[width * height]); |
| for (int y = 0; y < width; ++y) { |
| for (int x = 0; x < height; ++x) { |
| data.get()[width * y + x] = input_texel_color(x, y, delta); |
| } |
| } |
| |
| SkImageInfo ii = SkImageInfo::Make(width, height, kRGBA_8888_SkColorType, kPremul_SkAlphaType); |
| SkPixmap pixmap(ii, data.get(), ii.minRowBytes()); |
| sk_sp<SkImage> img = SkImage::MakeRasterCopy(pixmap); |
| return proxyProvider->createTextureProxy(img, GrRenderable::kNo, 1, SkBudgeted::kYes, |
| SkBackingFit::kExact); |
| } |
| |
| bool log_surface_context(sk_sp<GrSurfaceContext> src, SkString* dst) { |
| SkImageInfo ii = SkImageInfo::Make(src->width(), src->height(), kRGBA_8888_SkColorType, |
| kPremul_SkAlphaType); |
| SkBitmap bm; |
| SkAssertResult(bm.tryAllocPixels(ii)); |
| SkAssertResult(src->readPixels(ii, bm.getPixels(), bm.rowBytes(), {0, 0})); |
| |
| return bitmap_to_base64_data_uri(bm, dst); |
| } |
| |
| bool log_surface_proxy(GrContext* context, sk_sp<GrSurfaceProxy> src, SkString* dst) { |
| // All the inputs are made from kRGBA_8888_SkColorType/kPremul_SkAlphaType bitmaps. |
| sk_sp<GrSurfaceContext> sContext(context->priv().makeWrappedSurfaceContext( |
| src, GrColorType::kRGBA_8888, kPremul_SkAlphaType)); |
| return log_surface_context(sContext, dst); |
| } |
| |
| bool fuzzy_color_equals(const SkPMColor4f& c1, const SkPMColor4f& c2) { |
| // With the loss of precision of rendering into 32-bit color, then estimating the FP's output |
| // from that, it is not uncommon for a valid output to differ from estimate by up to 0.01 |
| // (really 1/128 ~ .0078, but frequently floating point issues make that tolerance a little |
| // too unforgiving). |
| static constexpr SkScalar kTolerance = 0.01f; |
| for (int i = 0; i < 4; i++) { |
| if (!SkScalarNearlyEqual(c1[i], c2[i], kTolerance)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| int modulation_index(int channelIndex, bool alphaModulation) { |
| return alphaModulation ? 3 : channelIndex; |
| } |
| |
| // Given three input colors (color preceding the FP being tested), and the output of the FP, this |
| // ensures that the out1 = fp * in1.a, out2 = fp * in2.a, and out3 = fp * in3.a, where fp is the |
| // pre-modulated color that should not be changing across frames (FP's state doesn't change). |
| // |
| // When alphaModulation is false, this tests the very similar conditions that out1 = fp * in1, |
| // etc. using per-channel modulation instead of modulation by just the input alpha channel. |
| // - This estimates the pre-modulated fp color from one of the input/output pairs and confirms the |
| // conditions hold for the other two pairs. |
| bool legal_modulation(const GrColor& in1, const GrColor& in2, const GrColor& in3, |
| const GrColor& out1, const GrColor& out2, const GrColor& out3, |
| bool alphaModulation) { |
| // Convert to floating point, which is the number space the FP operates in (more or less) |
| SkPMColor4f in1f = SkPMColor4f::FromBytes_RGBA(in1); |
| SkPMColor4f in2f = SkPMColor4f::FromBytes_RGBA(in2); |
| SkPMColor4f in3f = SkPMColor4f::FromBytes_RGBA(in3); |
| SkPMColor4f out1f = SkPMColor4f::FromBytes_RGBA(out1); |
| SkPMColor4f out2f = SkPMColor4f::FromBytes_RGBA(out2); |
| SkPMColor4f out3f = SkPMColor4f::FromBytes_RGBA(out3); |
| |
| // Reconstruct the output of the FP before the shader modulated its color with the input value. |
| // When the original input is very small, it may cause the final output color to round |
| // to 0, in which case we estimate the pre-modulated color using one of the stepped frames that |
| // will then have a guaranteed larger channel value (since the offset will be added to it). |
| SkPMColor4f fpPreModulation; |
| for (int i = 0; i < 4; i++) { |
| int modulationIndex = modulation_index(i, alphaModulation); |
| if (in1f[modulationIndex] < 0.2f) { |
| // Use the stepped frame |
| fpPreModulation[i] = out2f[i] / in2f[modulationIndex]; |
| } else { |
| fpPreModulation[i] = out1f[i] / in1f[modulationIndex]; |
| } |
| } |
| |
| // With reconstructed pre-modulated FP output, derive the expected value of fp * input for each |
| // of the transformed input colors. |
| SkPMColor4f expected1 = alphaModulation ? (fpPreModulation * in1f.fA) |
| : (fpPreModulation * in1f); |
| SkPMColor4f expected2 = alphaModulation ? (fpPreModulation * in2f.fA) |
| : (fpPreModulation * in2f); |
| SkPMColor4f expected3 = alphaModulation ? (fpPreModulation * in3f.fA) |
| : (fpPreModulation * in3f); |
| |
| return fuzzy_color_equals(out1f, expected1) && |
| fuzzy_color_equals(out2f, expected2) && |
| fuzzy_color_equals(out3f, expected3); |
| } |
| |
| DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(ProcessorOptimizationValidationTest, reporter, ctxInfo) { |
| GrContext* context = ctxInfo.grContext(); |
| GrProxyProvider* proxyProvider = context->priv().proxyProvider(); |
| auto resourceProvider = context->priv().resourceProvider(); |
| using FPFactory = GrFragmentProcessorTestFactory; |
| |
| uint32_t seed = FLAGS_processorSeed; |
| if (FLAGS_randomProcessorTest) { |
| std::random_device rd; |
| seed = rd(); |
| } |
| // If a non-deterministic bot fails this test, check the output to see what seed it used, then |
| // use --processorSeed <seed> (without --randomProcessorTest) to reproduce. |
| SkRandom random(seed); |
| |
| // Make the destination context for the test. |
| static constexpr int kRenderSize = 256; |
| sk_sp<GrRenderTargetContext> rtc = context->priv().makeDeferredRenderTargetContext( |
| SkBackingFit::kExact, kRenderSize, kRenderSize, GrColorType::kRGBA_8888, nullptr); |
| |
| sk_sp<GrTextureProxy> proxies[2]; |
| if (!init_test_textures(resourceProvider, proxyProvider, &random, proxies)) { |
| ERRORF(reporter, "Could not create test textures"); |
| return; |
| } |
| GrProcessorTestData testData(&random, context, rtc.get(), proxies); |
| |
| // Coverage optimization uses three frames with a linearly transformed input texture. The first |
| // frame has no offset, second frames add .2 and .4, which should then be present as a fixed |
| // difference between the frame outputs if the FP is properly following the modulation |
| // requirements of the coverage optimization. |
| static constexpr SkScalar kInputDelta = 0.2f; |
| auto inputTexture1 = make_input_texture(proxyProvider, kRenderSize, kRenderSize, 0.0f); |
| auto inputTexture2 = make_input_texture(proxyProvider, kRenderSize, kRenderSize, kInputDelta); |
| auto inputTexture3 = make_input_texture(proxyProvider, kRenderSize, kRenderSize, 2*kInputDelta); |
| |
| // Encoded images are very verbose and this tests many potential images, so only export the |
| // first failure (subsequent failures have a reasonable chance of being related). |
| bool loggedFirstFailure = false; |
| bool loggedFirstWarning = false; |
| |
| // Storage for the three frames required for coverage compatibility optimization. Each frame |
| // uses the correspondingly numbered inputTextureX. |
| std::unique_ptr<GrColor[]> readData1(new GrColor[kRenderSize * kRenderSize]); |
| std::unique_ptr<GrColor[]> readData2(new GrColor[kRenderSize * kRenderSize]); |
| std::unique_ptr<GrColor[]> readData3(new GrColor[kRenderSize * kRenderSize]); |
| |
| // Because processor factories configure themselves in random ways, this is not exhaustive. |
| for (int i = 0; i < FPFactory::Count(); ++i) { |
| int timesToInvokeFactory = 5; |
| // Increase the number of attempts if the FP has child FPs since optimizations likely depend |
| // on child optimizations being present. |
| std::unique_ptr<GrFragmentProcessor> fp = FPFactory::MakeIdx(i, &testData); |
| for (int j = 0; j < fp->numChildProcessors(); ++j) { |
| // This value made a reasonable trade off between time and coverage when this test was |
| // written. |
| timesToInvokeFactory *= FPFactory::Count() / 2; |
| } |
| #if defined(__MSVC_RUNTIME_CHECKS) |
| // This test is infuriatingly slow with MSVC runtime checks enabled |
| timesToInvokeFactory = 1; |
| #endif |
| for (int j = 0; j < timesToInvokeFactory; ++j) { |
| fp = FPFactory::MakeIdx(i, &testData); |
| |
| if (!fp->hasConstantOutputForConstantInput() && !fp->preservesOpaqueInput() && |
| !fp->compatibleWithCoverageAsAlpha()) { |
| continue; |
| } |
| |
| if (fp->compatibleWithCoverageAsAlpha()) { |
| // 2nd and 3rd frames are only used when checking coverage optimization |
| render_fp(context, rtc.get(), fp.get(), inputTexture2, readData2.get()); |
| render_fp(context, rtc.get(), fp.get(), inputTexture3, readData3.get()); |
| } |
| // Draw base frame last so that rtc holds the original FP behavior if we need to |
| // dump the image to the log. |
| render_fp(context, rtc.get(), fp.get(), inputTexture1, readData1.get()); |
| |
| if (0) { // Useful to see what FPs are being tested. |
| SkString children; |
| for (int c = 0; c < fp->numChildProcessors(); ++c) { |
| if (!c) { |
| children.append("("); |
| } |
| children.append(fp->childProcessor(c).name()); |
| children.append(c == fp->numChildProcessors() - 1 ? ")" : ", "); |
| } |
| SkDebugf("%s %s\n", fp->name(), children.c_str()); |
| } |
| |
| // This test has a history of being flaky on a number of devices. If an FP is logically |
| // violating the optimizations, it's reasonable to expect it to violate requirements on |
| // a large number of pixels in the image. Sporadic pixel violations are more indicative |
| // of device errors and represents a separate problem. |
| #if defined(SK_BUILD_FOR_SKQP) |
| static constexpr int kMaxAcceptableFailedPixels = 0; // Strict when running as SKQP |
| #else |
| static constexpr int kMaxAcceptableFailedPixels = 2 * kRenderSize; // ~0.7% of the image |
| #endif |
| |
| int failedPixelCount = 0; |
| // Collect first optimization failure message, to be output later as a warning or an |
| // error depending on whether the rendering "passed" or failed. |
| SkString coverageMessage; |
| SkString opaqueMessage; |
| SkString constMessage; |
| for (int y = 0; y < kRenderSize; ++y) { |
| for (int x = 0; x < kRenderSize; ++x) { |
| bool passing = true; |
| GrColor input = input_texel_color(x, y, 0.0f); |
| GrColor output = readData1.get()[y * kRenderSize + x]; |
| |
| if (fp->compatibleWithCoverageAsAlpha()) { |
| GrColor i2 = input_texel_color(x, y, kInputDelta); |
| GrColor i3 = input_texel_color(x, y, 2 * kInputDelta); |
| |
| GrColor o2 = readData2.get()[y * kRenderSize + x]; |
| GrColor o3 = readData3.get()[y * kRenderSize + x]; |
| |
| // A compatible processor is allowed to modulate either the input color or |
| // just the input alpha. |
| bool legalAlphaModulation = legal_modulation(input, i2, i3, output, o2, o3, |
| /* alpha */ true); |
| bool legalColorModulation = legal_modulation(input, i2, i3, output, o2, o3, |
| /* alpha */ false); |
| |
| if (!legalColorModulation && !legalAlphaModulation) { |
| passing = false; |
| |
| if (coverageMessage.isEmpty()) { |
| coverageMessage.printf("\"Modulating\" processor %s did not match " |
| "alpha-modulation nor color-modulation rules. " |
| "Input: 0x%08x, Output: 0x%08x, pixel (%d, %d).", |
| fp->name(), input, output, x, y); |
| } |
| } |
| } |
| |
| SkPMColor4f input4f = SkPMColor4f::FromBytes_RGBA(input); |
| SkPMColor4f output4f = SkPMColor4f::FromBytes_RGBA(output); |
| SkPMColor4f expected4f; |
| if (fp->hasConstantOutputForConstantInput(input4f, &expected4f)) { |
| float rDiff = fabsf(output4f.fR - expected4f.fR); |
| float gDiff = fabsf(output4f.fG - expected4f.fG); |
| float bDiff = fabsf(output4f.fB - expected4f.fB); |
| float aDiff = fabsf(output4f.fA - expected4f.fA); |
| static constexpr float kTol = 4 / 255.f; |
| if (rDiff > kTol || gDiff > kTol || bDiff > kTol || aDiff > kTol) { |
| if (constMessage.isEmpty()) { |
| passing = false; |
| |
| constMessage.printf("Processor %s claimed output for const input " |
| "doesn't match actual output. Error: %f, Tolerance: %f, " |
| "input: (%f, %f, %f, %f), actual: (%f, %f, %f, %f), " |
| "expected(%f, %f, %f, %f)", fp->name(), |
| SkTMax(rDiff, SkTMax(gDiff, SkTMax(bDiff, aDiff))), kTol, |
| input4f.fR, input4f.fG, input4f.fB, input4f.fA, |
| output4f.fR, output4f.fG, output4f.fB, output4f.fA, |
| expected4f.fR, expected4f.fG, expected4f.fB, expected4f.fA); |
| } |
| } |
| } |
| if (input4f.isOpaque() && fp->preservesOpaqueInput() && !output4f.isOpaque()) { |
| passing = false; |
| |
| if (opaqueMessage.isEmpty()) { |
| opaqueMessage.printf("Processor %s claimed opaqueness is preserved but " |
| "it is not. Input: 0x%08x, Output: 0x%08x.", |
| fp->name(), input, output); |
| } |
| } |
| |
| if (!passing) { |
| // Regardless of how many optimizations the pixel violates, count it as a |
| // single bad pixel. |
| failedPixelCount++; |
| } |
| } |
| } |
| |
| // Finished analyzing the entire image, see if the number of pixel failures meets the |
| // threshold for an FP violating the optimization requirements. |
| if (failedPixelCount > kMaxAcceptableFailedPixels) { |
| ERRORF(reporter, "Processor violated %d of %d pixels, seed: 0x%08x, processor: %s" |
| ", first failing pixel details are below:", |
| failedPixelCount, kRenderSize * kRenderSize, seed, |
| fp->dumpInfo().c_str()); |
| |
| // Print first failing pixel's details. |
| if (!coverageMessage.isEmpty()) { |
| ERRORF(reporter, coverageMessage.c_str()); |
| } |
| if (!constMessage.isEmpty()) { |
| ERRORF(reporter, constMessage.c_str()); |
| } |
| if (!opaqueMessage.isEmpty()) { |
| ERRORF(reporter, opaqueMessage.c_str()); |
| } |
| |
| if (!loggedFirstFailure) { |
| // Print with ERRORF to make sure the encoded image is output |
| SkString input; |
| log_surface_proxy(context, inputTexture1, &input); |
| SkString output; |
| log_surface_context(rtc, &output); |
| ERRORF(reporter, "Input image: %s\n\n" |
| "===========================================================\n\n" |
| "Output image: %s\n", input.c_str(), output.c_str()); |
| loggedFirstFailure = true; |
| } |
| } else if(failedPixelCount > 0) { |
| // Don't trigger an error, but don't just hide the failures either. |
| INFOF(reporter, "Processor violated %d of %d pixels (below error threshold), seed: " |
| "0x%08x, processor: %s", failedPixelCount, kRenderSize * kRenderSize, |
| seed, fp->dumpInfo().c_str()); |
| if (!coverageMessage.isEmpty()) { |
| INFOF(reporter, coverageMessage.c_str()); |
| } |
| if (!constMessage.isEmpty()) { |
| INFOF(reporter, constMessage.c_str()); |
| } |
| if (!opaqueMessage.isEmpty()) { |
| INFOF(reporter, opaqueMessage.c_str()); |
| } |
| if (!loggedFirstWarning) { |
| SkString input; |
| log_surface_proxy(context, inputTexture1, &input); |
| SkString output; |
| log_surface_context(rtc, &output); |
| INFOF(reporter, "Input image: %s\n\n" |
| "===========================================================\n\n" |
| "Output image: %s\n", input.c_str(), output.c_str()); |
| loggedFirstWarning = true; |
| } |
| } |
| } |
| } |
| } |
| |
| // Tests that fragment processors returned by GrFragmentProcessor::clone() are equivalent to their |
| // progenitors. |
| DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(ProcessorCloneTest, reporter, ctxInfo) { |
| GrContext* context = ctxInfo.grContext(); |
| GrProxyProvider* proxyProvider = context->priv().proxyProvider(); |
| auto resourceProvider = context->priv().resourceProvider(); |
| |
| SkRandom random; |
| |
| // Make the destination context for the test. |
| static constexpr int kRenderSize = 1024; |
| sk_sp<GrRenderTargetContext> rtc = context->priv().makeDeferredRenderTargetContext( |
| SkBackingFit::kExact, kRenderSize, kRenderSize, GrColorType::kRGBA_8888, nullptr); |
| |
| sk_sp<GrTextureProxy> proxies[2]; |
| if (!init_test_textures(resourceProvider, proxyProvider, &random, proxies)) { |
| ERRORF(reporter, "Could not create test textures"); |
| return; |
| } |
| GrProcessorTestData testData(&random, context, rtc.get(), proxies); |
| |
| auto inputTexture = make_input_texture(proxyProvider, kRenderSize, kRenderSize, 0.0f); |
| std::unique_ptr<GrColor[]> readData1(new GrColor[kRenderSize * kRenderSize]); |
| std::unique_ptr<GrColor[]> readData2(new GrColor[kRenderSize * kRenderSize]); |
| auto readInfo = SkImageInfo::Make(kRenderSize, kRenderSize, kRGBA_8888_SkColorType, |
| kPremul_SkAlphaType); |
| |
| // Because processor factories configure themselves in random ways, this is not exhaustive. |
| for (int i = 0; i < GrFragmentProcessorTestFactory::Count(); ++i) { |
| static constexpr int kTimesToInvokeFactory = 10; |
| for (int j = 0; j < kTimesToInvokeFactory; ++j) { |
| auto fp = GrFragmentProcessorTestFactory::MakeIdx(i, &testData); |
| auto clone = fp->clone(); |
| if (!clone) { |
| ERRORF(reporter, "Clone of processor %s failed.", fp->name()); |
| continue; |
| } |
| const char* name = fp->name(); |
| REPORTER_ASSERT(reporter, !strcmp(fp->name(), clone->name())); |
| REPORTER_ASSERT(reporter, fp->compatibleWithCoverageAsAlpha() == |
| clone->compatibleWithCoverageAsAlpha()); |
| REPORTER_ASSERT(reporter, fp->isEqual(*clone)); |
| REPORTER_ASSERT(reporter, fp->preservesOpaqueInput() == clone->preservesOpaqueInput()); |
| REPORTER_ASSERT(reporter, fp->hasConstantOutputForConstantInput() == |
| clone->hasConstantOutputForConstantInput()); |
| REPORTER_ASSERT(reporter, fp->numChildProcessors() == clone->numChildProcessors()); |
| REPORTER_ASSERT(reporter, fp->usesLocalCoords() == clone->usesLocalCoords()); |
| // Draw with original and read back the results. |
| render_fp(context, rtc.get(), fp.get(), inputTexture, readData1.get()); |
| |
| // Draw with clone and read back the results. |
| render_fp(context, rtc.get(), clone.get(), inputTexture, readData2.get()); |
| |
| // Check that the results are the same. |
| bool passing = true; |
| for (int y = 0; y < kRenderSize && passing; ++y) { |
| for (int x = 0; x < kRenderSize && passing; ++x) { |
| int idx = y * kRenderSize + x; |
| if (readData1[idx] != readData2[idx]) { |
| ERRORF(reporter, |
| "Processor %s made clone produced different output. " |
| "Input color: 0x%08x, Original Output Color: 0x%08x, " |
| "Clone Output Color: 0x%08x..", |
| name, input_texel_color(x, y, 0.0f), readData1[idx], readData2[idx]); |
| passing = false; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| #endif // GR_TEST_UTILS |