| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkGpuDevice.h" |
| |
| #include "GrBlurUtils.h" |
| #include "GrContext.h" |
| #include "GrDrawContext.h" |
| #include "GrFontScaler.h" |
| #include "GrGpu.h" |
| #include "GrGpuResourcePriv.h" |
| #include "GrLayerHoister.h" |
| #include "GrRecordReplaceDraw.h" |
| #include "GrStrokeInfo.h" |
| #include "GrTextContext.h" |
| #include "GrTracing.h" |
| #include "SkCanvasPriv.h" |
| #include "SkDrawProcs.h" |
| #include "SkErrorInternals.h" |
| #include "SkGlyphCache.h" |
| #include "SkGrTexturePixelRef.h" |
| #include "SkGr.h" |
| #include "SkGrPriv.h" |
| #include "SkImage_Base.h" |
| #include "SkImageFilter.h" |
| #include "SkLayerInfo.h" |
| #include "SkMaskFilter.h" |
| #include "SkPathEffect.h" |
| #include "SkPicture.h" |
| #include "SkPictureData.h" |
| #include "SkRRect.h" |
| #include "SkRecord.h" |
| #include "SkStroke.h" |
| #include "SkSurface.h" |
| #include "SkSurface_Gpu.h" |
| #include "SkTLazy.h" |
| #include "SkUtils.h" |
| #include "SkVertState.h" |
| #include "SkXfermode.h" |
| #include "batches/GrRectBatchFactory.h" |
| #include "effects/GrBicubicEffect.h" |
| #include "effects/GrDashingEffect.h" |
| #include "effects/GrSimpleTextureEffect.h" |
| #include "effects/GrTextureDomain.h" |
| |
| #if SK_SUPPORT_GPU |
| |
| enum { kDefaultImageFilterCacheSize = 32 * 1024 * 1024 }; |
| |
| #if 0 |
| extern bool (*gShouldDrawProc)(); |
| #define CHECK_SHOULD_DRAW(draw) \ |
| do { \ |
| if (gShouldDrawProc && !gShouldDrawProc()) return; \ |
| this->prepareDraw(draw); \ |
| } while (0) |
| #else |
| #define CHECK_SHOULD_DRAW(draw) this->prepareDraw(draw) |
| #endif |
| |
| // This constant represents the screen alignment criterion in texels for |
| // requiring texture domain clamping to prevent color bleeding when drawing |
| // a sub region of a larger source image. |
| #define COLOR_BLEED_TOLERANCE 0.001f |
| |
| #define DO_DEFERRED_CLEAR() \ |
| do { \ |
| if (fNeedClear) { \ |
| this->clearAll(); \ |
| } \ |
| } while (false) \ |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #define CHECK_FOR_ANNOTATION(paint) \ |
| do { if (paint.getAnnotation()) { return; } } while (0) |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| // Helper for turning a bitmap into a texture. If the bitmap is GrTexture backed this |
| // just accesses the backing GrTexture. Otherwise, it creates a cached texture |
| // representation and releases it in the destructor. |
| class AutoBitmapTexture : public SkNoncopyable { |
| public: |
| AutoBitmapTexture() {} |
| |
| AutoBitmapTexture(GrContext* context, |
| const SkBitmap& bitmap, |
| const GrTextureParams& params, |
| GrTexture** texture) { |
| SkASSERT(texture); |
| *texture = this->set(context, bitmap, params); |
| } |
| |
| GrTexture* set(GrContext* context, |
| const SkBitmap& bitmap, |
| const GrTextureParams& params) { |
| // Either get the texture directly from the bitmap, or else use the cache and |
| // remember to unref it. |
| if (GrTexture* bmpTexture = bitmap.getTexture()) { |
| fTexture.reset(nullptr); |
| return bmpTexture; |
| } else { |
| fTexture.reset(GrRefCachedBitmapTexture(context, bitmap, params)); |
| return fTexture.get(); |
| } |
| } |
| |
| private: |
| SkAutoTUnref<GrTexture> fTexture; |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| struct GrSkDrawProcs : public SkDrawProcs { |
| public: |
| GrContext* fContext; |
| GrTextContext* fTextContext; |
| GrFontScaler* fFontScaler; // cached in the skia glyphcache |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /** Checks that the alpha type is legal and gets constructor flags. Returns false if device creation |
| should fail. */ |
| bool SkGpuDevice::CheckAlphaTypeAndGetFlags( |
| const SkImageInfo* info, SkGpuDevice::InitContents init, unsigned* flags) { |
| *flags = 0; |
| if (info) { |
| switch (info->alphaType()) { |
| case kPremul_SkAlphaType: |
| break; |
| case kOpaque_SkAlphaType: |
| *flags |= SkGpuDevice::kIsOpaque_Flag; |
| break; |
| default: // If it is unpremul or unknown don't try to render |
| return false; |
| } |
| } |
| if (kClear_InitContents == init) { |
| *flags |= kNeedClear_Flag; |
| } |
| return true; |
| } |
| |
| SkGpuDevice* SkGpuDevice::Create(GrRenderTarget* rt, const SkSurfaceProps* props, |
| InitContents init) { |
| return SkGpuDevice::Create(rt, rt->width(), rt->height(), props, init); |
| } |
| |
| SkGpuDevice* SkGpuDevice::Create(GrRenderTarget* rt, int width, int height, |
| const SkSurfaceProps* props, InitContents init) { |
| if (!rt || rt->wasDestroyed()) { |
| return nullptr; |
| } |
| unsigned flags; |
| if (!CheckAlphaTypeAndGetFlags(nullptr, init, &flags)) { |
| return nullptr; |
| } |
| return new SkGpuDevice(rt, width, height, props, flags); |
| } |
| |
| SkGpuDevice* SkGpuDevice::Create(GrContext* context, SkSurface::Budgeted budgeted, |
| const SkImageInfo& info, int sampleCount, |
| const SkSurfaceProps* props, InitContents init) { |
| unsigned flags; |
| if (!CheckAlphaTypeAndGetFlags(&info, init, &flags)) { |
| return nullptr; |
| } |
| |
| SkAutoTUnref<GrRenderTarget> rt(CreateRenderTarget(context, budgeted, info, sampleCount)); |
| if (nullptr == rt) { |
| return nullptr; |
| } |
| |
| return new SkGpuDevice(rt, info.width(), info.height(), props, flags); |
| } |
| |
| SkGpuDevice::SkGpuDevice(GrRenderTarget* rt, int width, int height, |
| const SkSurfaceProps* props, unsigned flags) |
| : INHERITED(SkSurfacePropsCopyOrDefault(props)) |
| { |
| fDrawProcs = nullptr; |
| |
| fContext = SkRef(rt->getContext()); |
| fNeedClear = SkToBool(flags & kNeedClear_Flag); |
| fOpaque = SkToBool(flags & kIsOpaque_Flag); |
| |
| fRenderTarget = SkRef(rt); |
| |
| SkAlphaType at = fOpaque ? kOpaque_SkAlphaType : kPremul_SkAlphaType; |
| SkImageInfo info = rt->surfacePriv().info(at).makeWH(width, height); |
| SkPixelRef* pr = new SkGrPixelRef(info, rt); |
| fLegacyBitmap.setInfo(info); |
| fLegacyBitmap.setPixelRef(pr)->unref(); |
| |
| fDrawContext.reset(this->context()->drawContext(rt, &this->surfaceProps())); |
| } |
| |
| GrRenderTarget* SkGpuDevice::CreateRenderTarget(GrContext* context, SkSurface::Budgeted budgeted, |
| const SkImageInfo& origInfo, int sampleCount) { |
| if (kUnknown_SkColorType == origInfo.colorType() || |
| origInfo.width() < 0 || origInfo.height() < 0) { |
| return nullptr; |
| } |
| |
| if (!context) { |
| return nullptr; |
| } |
| |
| SkColorType ct = origInfo.colorType(); |
| SkAlphaType at = origInfo.alphaType(); |
| if (kRGB_565_SkColorType == ct) { |
| at = kOpaque_SkAlphaType; // force this setting |
| } else if (ct != kBGRA_8888_SkColorType && ct != kRGBA_8888_SkColorType) { |
| // Fall back from whatever ct was to default of kRGBA or kBGRA which is aliased as kN32 |
| ct = kN32_SkColorType; |
| } |
| if (kOpaque_SkAlphaType != at) { |
| at = kPremul_SkAlphaType; // force this setting |
| } |
| const SkImageInfo info = SkImageInfo::Make(origInfo.width(), origInfo.height(), ct, at); |
| |
| GrSurfaceDesc desc; |
| desc.fFlags = kRenderTarget_GrSurfaceFlag; |
| desc.fWidth = info.width(); |
| desc.fHeight = info.height(); |
| desc.fConfig = SkImageInfo2GrPixelConfig(info); |
| desc.fSampleCnt = sampleCount; |
| GrTexture* texture = context->textureProvider()->createTexture( |
| desc, SkToBool(budgeted), nullptr, 0); |
| if (nullptr == texture) { |
| return nullptr; |
| } |
| SkASSERT(nullptr != texture->asRenderTarget()); |
| return texture->asRenderTarget(); |
| } |
| |
| SkGpuDevice::~SkGpuDevice() { |
| if (fDrawProcs) { |
| delete fDrawProcs; |
| } |
| |
| fRenderTarget->unref(); |
| fContext->unref(); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| bool SkGpuDevice::onReadPixels(const SkImageInfo& dstInfo, void* dstPixels, size_t dstRowBytes, |
| int x, int y) { |
| DO_DEFERRED_CLEAR(); |
| |
| // TODO: teach fRenderTarget to take ImageInfo directly to specify the src pixels |
| GrPixelConfig config = SkImageInfo2GrPixelConfig(dstInfo); |
| if (kUnknown_GrPixelConfig == config) { |
| return false; |
| } |
| |
| uint32_t flags = 0; |
| if (kUnpremul_SkAlphaType == dstInfo.alphaType()) { |
| flags = GrContext::kUnpremul_PixelOpsFlag; |
| } |
| return fRenderTarget->readPixels(x, y, dstInfo.width(), dstInfo.height(), config, dstPixels, |
| dstRowBytes, flags); |
| } |
| |
| bool SkGpuDevice::onWritePixels(const SkImageInfo& info, const void* pixels, size_t rowBytes, |
| int x, int y) { |
| // TODO: teach fRenderTarget to take ImageInfo directly to specify the src pixels |
| GrPixelConfig config = SkImageInfo2GrPixelConfig(info); |
| if (kUnknown_GrPixelConfig == config) { |
| return false; |
| } |
| uint32_t flags = 0; |
| if (kUnpremul_SkAlphaType == info.alphaType()) { |
| flags = GrContext::kUnpremul_PixelOpsFlag; |
| } |
| fRenderTarget->writePixels(x, y, info.width(), info.height(), config, pixels, rowBytes, flags); |
| |
| // need to bump our genID for compatibility with clients that "know" we have a bitmap |
| fLegacyBitmap.notifyPixelsChanged(); |
| |
| return true; |
| } |
| |
| const SkBitmap& SkGpuDevice::onAccessBitmap() { |
| DO_DEFERRED_CLEAR(); |
| return fLegacyBitmap; |
| } |
| |
| bool SkGpuDevice::onAccessPixels(SkPixmap* pmap) { |
| DO_DEFERRED_CLEAR(); |
| // For compatibility with clients the know we're backed w/ a bitmap, and want to inspect its |
| // genID. When we can hide/remove that fact, we can eliminate this call to notify. |
| // ... ugh. |
| fLegacyBitmap.notifyPixelsChanged(); |
| return false; |
| } |
| |
| void SkGpuDevice::onAttachToCanvas(SkCanvas* canvas) { |
| INHERITED::onAttachToCanvas(canvas); |
| |
| // Canvas promises that this ptr is valid until onDetachFromCanvas is called |
| fClipStack.reset(SkRef(canvas->getClipStack())); |
| } |
| |
| void SkGpuDevice::onDetachFromCanvas() { |
| INHERITED::onDetachFromCanvas(); |
| fClip.reset(); |
| fClipStack.reset(nullptr); |
| } |
| |
| // call this every draw call, to ensure that the context reflects our state, |
| // and not the state from some other canvas/device |
| void SkGpuDevice::prepareDraw(const SkDraw& draw) { |
| SkASSERT(fClipStack.get()); |
| |
| SkASSERT(draw.fClipStack && draw.fClipStack == fClipStack); |
| |
| fClip.setClipStack(fClipStack, &this->getOrigin()); |
| |
| DO_DEFERRED_CLEAR(); |
| } |
| |
| GrRenderTarget* SkGpuDevice::accessRenderTarget() { |
| DO_DEFERRED_CLEAR(); |
| return fRenderTarget; |
| } |
| |
| void SkGpuDevice::clearAll() { |
| GrColor color = 0; |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::clearAll", fContext); |
| SkIRect rect = SkIRect::MakeWH(this->width(), this->height()); |
| fDrawContext->clear(&rect, color, true); |
| fNeedClear = false; |
| } |
| |
| void SkGpuDevice::replaceRenderTarget(bool shouldRetainContent) { |
| // Caller must have accessed the render target, because it knows the rt must be replaced. |
| SkASSERT(!fNeedClear); |
| |
| SkSurface::Budgeted budgeted = |
| fRenderTarget->resourcePriv().isBudgeted() ? SkSurface::kYes_Budgeted |
| : SkSurface::kNo_Budgeted; |
| |
| SkAutoTUnref<GrRenderTarget> newRT(CreateRenderTarget( |
| this->context(), budgeted, this->imageInfo(), fRenderTarget->desc().fSampleCnt)); |
| |
| if (nullptr == newRT) { |
| return; |
| } |
| |
| if (shouldRetainContent) { |
| if (fRenderTarget->wasDestroyed()) { |
| return; |
| } |
| this->context()->copySurface(newRT, fRenderTarget); |
| } |
| |
| SkASSERT(fRenderTarget != newRT); |
| |
| fRenderTarget->unref(); |
| fRenderTarget = newRT.detach(); |
| |
| #ifdef SK_DEBUG |
| SkImageInfo info = fRenderTarget->surfacePriv().info(fOpaque ? kOpaque_SkAlphaType : |
| kPremul_SkAlphaType); |
| SkASSERT(info == fLegacyBitmap.info()); |
| #endif |
| SkPixelRef* pr = new SkGrPixelRef(fLegacyBitmap.info(), fRenderTarget); |
| fLegacyBitmap.setPixelRef(pr)->unref(); |
| |
| fDrawContext.reset(this->context()->drawContext(fRenderTarget, &this->surfaceProps())); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkGpuDevice::drawPaint(const SkDraw& draw, const SkPaint& paint) { |
| CHECK_SHOULD_DRAW(draw); |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawPaint", fContext); |
| |
| GrPaint grPaint; |
| if (!SkPaintToGrPaint(this->context(), paint, *draw.fMatrix, &grPaint)) { |
| return; |
| } |
| |
| fDrawContext->drawPaint(fClip, grPaint, *draw.fMatrix); |
| } |
| |
| // must be in SkCanvas::PointMode order |
| static const GrPrimitiveType gPointMode2PrimtiveType[] = { |
| kPoints_GrPrimitiveType, |
| kLines_GrPrimitiveType, |
| kLineStrip_GrPrimitiveType |
| }; |
| |
| // suppress antialiasing on axis-aligned integer-coordinate lines |
| static bool needs_antialiasing(SkCanvas::PointMode mode, size_t count, const SkPoint pts[]) { |
| if (mode == SkCanvas::PointMode::kPoints_PointMode) { |
| return false; |
| } |
| if (count == 2) { |
| // We do not antialias as long as the primary axis of the line is integer-aligned, even if |
| // the other coordinates are not. This does mean the two end pixels of the line will be |
| // sharp even when they shouldn't be, but turning antialiasing on (as things stand |
| // currently) means that the line will turn into a two-pixel-wide blur. While obviously a |
| // more complete fix is possible down the road, for the time being we accept the error on |
| // the two end pixels as being the lesser of two evils. |
| if (pts[0].fX == pts[1].fX) { |
| return ((int) pts[0].fX) != pts[0].fX; |
| } |
| if (pts[0].fY == pts[1].fY) { |
| return ((int) pts[0].fY) != pts[0].fY; |
| } |
| } |
| return true; |
| } |
| |
| void SkGpuDevice::drawPoints(const SkDraw& draw, SkCanvas::PointMode mode, |
| size_t count, const SkPoint pts[], const SkPaint& paint) { |
| CHECK_FOR_ANNOTATION(paint); |
| CHECK_SHOULD_DRAW(draw); |
| |
| SkScalar width = paint.getStrokeWidth(); |
| if (width < 0) { |
| return; |
| } |
| |
| if (paint.getPathEffect() && 2 == count && SkCanvas::kLines_PointMode == mode) { |
| GrStrokeInfo strokeInfo(paint, SkPaint::kStroke_Style); |
| GrPaint grPaint; |
| if (!SkPaintToGrPaint(this->context(), paint, *draw.fMatrix, &grPaint)) { |
| return; |
| } |
| SkPath path; |
| path.setIsVolatile(true); |
| path.moveTo(pts[0]); |
| path.lineTo(pts[1]); |
| fDrawContext->drawPath(fClip, grPaint, *draw.fMatrix, path, strokeInfo); |
| return; |
| } |
| |
| // we only handle non-antialiased hairlines and paints without path effects or mask filters, |
| // else we let the SkDraw call our drawPath() |
| if (width > 0 || paint.getPathEffect() || paint.getMaskFilter() || |
| (paint.isAntiAlias() && needs_antialiasing(mode, count, pts))) { |
| draw.drawPoints(mode, count, pts, paint, true); |
| return; |
| } |
| |
| GrPaint grPaint; |
| if (!SkPaintToGrPaint(this->context(), paint, *draw.fMatrix, &grPaint)) { |
| return; |
| } |
| |
| fDrawContext->drawVertices(fClip, |
| grPaint, |
| *draw.fMatrix, |
| gPointMode2PrimtiveType[mode], |
| SkToS32(count), |
| (SkPoint*)pts, |
| nullptr, |
| nullptr, |
| nullptr, |
| 0); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkGpuDevice::drawRect(const SkDraw& draw, const SkRect& rect, |
| const SkPaint& paint) { |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawRect", fContext); |
| |
| CHECK_FOR_ANNOTATION(paint); |
| CHECK_SHOULD_DRAW(draw); |
| |
| bool doStroke = paint.getStyle() != SkPaint::kFill_Style; |
| SkScalar width = paint.getStrokeWidth(); |
| |
| /* |
| We have special code for hairline strokes, miter-strokes, bevel-stroke |
| and fills. Anything else we just call our path code. |
| */ |
| bool usePath = doStroke && width > 0 && |
| (paint.getStrokeJoin() == SkPaint::kRound_Join || |
| (paint.getStrokeJoin() == SkPaint::kBevel_Join && rect.isEmpty())); |
| |
| // a few other reasons we might need to call drawPath... |
| if (paint.getMaskFilter() || |
| paint.getStyle() == SkPaint::kStrokeAndFill_Style) { // we can't both stroke and fill rects |
| usePath = true; |
| } |
| |
| if (!usePath && paint.isAntiAlias() && !draw.fMatrix->rectStaysRect()) { |
| usePath = true; |
| } |
| |
| GrStrokeInfo strokeInfo(paint); |
| |
| const SkPathEffect* pe = paint.getPathEffect(); |
| if (!usePath && pe && !strokeInfo.isDashed()) { |
| usePath = true; |
| } |
| |
| if (usePath) { |
| SkPath path; |
| path.setIsVolatile(true); |
| path.addRect(rect); |
| this->drawPath(draw, path, paint, nullptr, true); |
| return; |
| } |
| |
| GrPaint grPaint; |
| if (!SkPaintToGrPaint(this->context(), paint, *draw.fMatrix, &grPaint)) { |
| return; |
| } |
| |
| fDrawContext->drawRect(fClip, grPaint, *draw.fMatrix, rect, &strokeInfo); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkGpuDevice::drawRRect(const SkDraw& draw, const SkRRect& rect, |
| const SkPaint& paint) { |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawRRect", fContext); |
| CHECK_FOR_ANNOTATION(paint); |
| CHECK_SHOULD_DRAW(draw); |
| |
| GrPaint grPaint; |
| if (!SkPaintToGrPaint(this->context(), paint, *draw.fMatrix, &grPaint)) { |
| return; |
| } |
| |
| GrStrokeInfo strokeInfo(paint); |
| if (paint.getMaskFilter()) { |
| // try to hit the fast path for drawing filtered round rects |
| |
| SkRRect devRRect; |
| if (rect.transform(*draw.fMatrix, &devRRect)) { |
| if (devRRect.allCornersCircular()) { |
| SkRect maskRect; |
| if (paint.getMaskFilter()->canFilterMaskGPU(devRRect, |
| draw.fClip->getBounds(), |
| *draw.fMatrix, |
| &maskRect)) { |
| SkIRect finalIRect; |
| maskRect.roundOut(&finalIRect); |
| if (draw.fClip->quickReject(finalIRect)) { |
| // clipped out |
| return; |
| } |
| if (paint.getMaskFilter()->directFilterRRectMaskGPU(fContext->textureProvider(), |
| fDrawContext, |
| &grPaint, |
| fClip, |
| *draw.fMatrix, |
| strokeInfo, |
| devRRect)) { |
| return; |
| } |
| } |
| |
| } |
| } |
| |
| } |
| |
| bool usePath = false; |
| |
| if (paint.getMaskFilter()) { |
| usePath = true; |
| } else { |
| const SkPathEffect* pe = paint.getPathEffect(); |
| if (pe && !strokeInfo.isDashed()) { |
| usePath = true; |
| } |
| } |
| |
| |
| if (usePath) { |
| SkPath path; |
| path.setIsVolatile(true); |
| path.addRRect(rect); |
| this->drawPath(draw, path, paint, nullptr, true); |
| return; |
| } |
| |
| fDrawContext->drawRRect(fClip, grPaint, *draw.fMatrix, rect, strokeInfo); |
| } |
| |
| void SkGpuDevice::drawDRRect(const SkDraw& draw, const SkRRect& outer, |
| const SkRRect& inner, const SkPaint& paint) { |
| SkStrokeRec stroke(paint); |
| if (stroke.isFillStyle()) { |
| |
| CHECK_FOR_ANNOTATION(paint); |
| CHECK_SHOULD_DRAW(draw); |
| |
| GrPaint grPaint; |
| if (!SkPaintToGrPaint(this->context(), paint, *draw.fMatrix, &grPaint)) { |
| return; |
| } |
| |
| if (nullptr == paint.getMaskFilter() && nullptr == paint.getPathEffect()) { |
| fDrawContext->drawDRRect(fClip, grPaint, *draw.fMatrix, outer, inner); |
| return; |
| } |
| } |
| |
| SkPath path; |
| path.setIsVolatile(true); |
| path.addRRect(outer); |
| path.addRRect(inner); |
| path.setFillType(SkPath::kEvenOdd_FillType); |
| |
| this->drawPath(draw, path, paint, nullptr, true); |
| } |
| |
| |
| ///////////////////////////////////////////////////////////////////////////// |
| |
| void SkGpuDevice::drawOval(const SkDraw& draw, const SkRect& oval, |
| const SkPaint& paint) { |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawOval", fContext); |
| CHECK_FOR_ANNOTATION(paint); |
| CHECK_SHOULD_DRAW(draw); |
| |
| GrStrokeInfo strokeInfo(paint); |
| |
| bool usePath = false; |
| // some basic reasons we might need to call drawPath... |
| if (paint.getMaskFilter()) { |
| // The RRect path can handle special case blurring |
| SkRRect rr = SkRRect::MakeOval(oval); |
| return this->drawRRect(draw, rr, paint); |
| } else { |
| const SkPathEffect* pe = paint.getPathEffect(); |
| if (pe && !strokeInfo.isDashed()) { |
| usePath = true; |
| } |
| } |
| |
| if (usePath) { |
| SkPath path; |
| path.setIsVolatile(true); |
| path.addOval(oval); |
| this->drawPath(draw, path, paint, nullptr, true); |
| return; |
| } |
| |
| GrPaint grPaint; |
| if (!SkPaintToGrPaint(this->context(), paint, *draw.fMatrix, &grPaint)) { |
| return; |
| } |
| |
| fDrawContext->drawOval(fClip, grPaint, *draw.fMatrix, oval, strokeInfo); |
| } |
| |
| #include "SkMaskFilter.h" |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| static SkBitmap wrap_texture(GrTexture* texture, int width, int height) { |
| SkBitmap result; |
| result.setInfo(SkImageInfo::MakeN32Premul(width, height)); |
| result.setPixelRef(new SkGrPixelRef(result.info(), texture))->unref(); |
| return result; |
| } |
| |
| void SkGpuDevice::drawPath(const SkDraw& draw, const SkPath& origSrcPath, |
| const SkPaint& paint, const SkMatrix* prePathMatrix, |
| bool pathIsMutable) { |
| CHECK_FOR_ANNOTATION(paint); |
| CHECK_SHOULD_DRAW(draw); |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawPath", fContext); |
| |
| GrBlurUtils::drawPathWithMaskFilter(fContext, fDrawContext, fRenderTarget, |
| fClip, origSrcPath, paint, |
| *draw.fMatrix, prePathMatrix, |
| draw.fClip->getBounds(), pathIsMutable); |
| } |
| |
| static const int kBmpSmallTileSize = 1 << 10; |
| |
| static inline int get_tile_count(const SkIRect& srcRect, int tileSize) { |
| int tilesX = (srcRect.fRight / tileSize) - (srcRect.fLeft / tileSize) + 1; |
| int tilesY = (srcRect.fBottom / tileSize) - (srcRect.fTop / tileSize) + 1; |
| return tilesX * tilesY; |
| } |
| |
| static int determine_tile_size(const SkIRect& src, int maxTileSize) { |
| if (maxTileSize <= kBmpSmallTileSize) { |
| return maxTileSize; |
| } |
| |
| size_t maxTileTotalTileSize = get_tile_count(src, maxTileSize); |
| size_t smallTotalTileSize = get_tile_count(src, kBmpSmallTileSize); |
| |
| maxTileTotalTileSize *= maxTileSize * maxTileSize; |
| smallTotalTileSize *= kBmpSmallTileSize * kBmpSmallTileSize; |
| |
| if (maxTileTotalTileSize > 2 * smallTotalTileSize) { |
| return kBmpSmallTileSize; |
| } else { |
| return maxTileSize; |
| } |
| } |
| |
| // Given a bitmap, an optional src rect, and a context with a clip and matrix determine what |
| // pixels from the bitmap are necessary. |
| static void determine_clipped_src_rect(const GrRenderTarget* rt, |
| const GrClip& clip, |
| const SkMatrix& viewMatrix, |
| const SkISize& imageSize, |
| const SkRect* srcRectPtr, |
| SkIRect* clippedSrcIRect) { |
| clip.getConservativeBounds(rt, clippedSrcIRect, nullptr); |
| SkMatrix inv; |
| if (!viewMatrix.invert(&inv)) { |
| clippedSrcIRect->setEmpty(); |
| return; |
| } |
| SkRect clippedSrcRect = SkRect::Make(*clippedSrcIRect); |
| inv.mapRect(&clippedSrcRect); |
| if (srcRectPtr) { |
| // we've setup src space 0,0 to map to the top left of the src rect. |
| clippedSrcRect.offset(srcRectPtr->fLeft, srcRectPtr->fTop); |
| if (!clippedSrcRect.intersect(*srcRectPtr)) { |
| clippedSrcIRect->setEmpty(); |
| return; |
| } |
| } |
| clippedSrcRect.roundOut(clippedSrcIRect); |
| SkIRect bmpBounds = SkIRect::MakeSize(imageSize); |
| if (!clippedSrcIRect->intersect(bmpBounds)) { |
| clippedSrcIRect->setEmpty(); |
| } |
| } |
| |
| bool SkGpuDevice::shouldTileImageID(uint32_t imageID, const SkIRect& imageRect, |
| const SkMatrix& viewMatrix, |
| const GrTextureParams& params, |
| const SkRect* srcRectPtr, |
| int maxTileSize, |
| int* tileSize, |
| SkIRect* clippedSubset) const { |
| // if it's larger than the max tile size, then we have no choice but tiling. |
| if (imageRect.width() > maxTileSize || imageRect.height() > maxTileSize) { |
| determine_clipped_src_rect(fRenderTarget, fClip, viewMatrix, imageRect.size(), |
| srcRectPtr, clippedSubset); |
| *tileSize = determine_tile_size(*clippedSubset, maxTileSize); |
| return true; |
| } |
| |
| // If the image would only produce 4 tiles of the smaller size, don't bother tiling it. |
| const size_t area = imageRect.width() * imageRect.height(); |
| if (area < 4 * kBmpSmallTileSize * kBmpSmallTileSize) { |
| return false; |
| } |
| |
| // At this point we know we could do the draw by uploading the entire bitmap |
| // as a texture. However, if the texture would be large compared to the |
| // cache size and we don't require most of it for this draw then tile to |
| // reduce the amount of upload and cache spill. |
| |
| // assumption here is that sw bitmap size is a good proxy for its size as |
| // a texture |
| size_t bmpSize = area * sizeof(SkPMColor); // assume 32bit pixels |
| size_t cacheSize; |
| fContext->getResourceCacheLimits(nullptr, &cacheSize); |
| if (bmpSize < cacheSize / 2) { |
| return false; |
| } |
| |
| // Figure out how much of the src we will need based on the src rect and clipping. Reject if |
| // tiling memory savings would be < 50%. |
| determine_clipped_src_rect(fRenderTarget, fClip, viewMatrix, imageRect.size(), srcRectPtr, |
| clippedSubset); |
| *tileSize = kBmpSmallTileSize; // already know whole bitmap fits in one max sized tile. |
| size_t usedTileBytes = get_tile_count(*clippedSubset, kBmpSmallTileSize) * |
| kBmpSmallTileSize * kBmpSmallTileSize; |
| |
| return usedTileBytes < 2 * bmpSize; |
| } |
| |
| bool SkGpuDevice::shouldTileBitmap(const SkBitmap& bitmap, |
| const SkMatrix& viewMatrix, |
| const GrTextureParams& params, |
| const SkRect* srcRectPtr, |
| int maxTileSize, |
| int* tileSize, |
| SkIRect* clippedSrcRect) const { |
| // if bitmap is explictly texture backed then just use the texture |
| if (bitmap.getTexture()) { |
| return false; |
| } |
| |
| return this->shouldTileImageID(bitmap.getGenerationID(), bitmap.getSubset(), viewMatrix, params, |
| srcRectPtr, maxTileSize, tileSize, clippedSrcRect); |
| } |
| |
| bool SkGpuDevice::shouldTileImage(const SkImage* image, const SkRect* srcRectPtr, |
| SkCanvas::SrcRectConstraint constraint, SkFilterQuality quality, |
| const SkMatrix& viewMatrix) const { |
| // if image is explictly texture backed then just use the texture |
| if (as_IB(image)->peekTexture()) { |
| return false; |
| } |
| |
| GrTextureParams params; |
| bool doBicubic; |
| GrTextureParams::FilterMode textureFilterMode = |
| GrSkFilterQualityToGrFilterMode(quality, viewMatrix, SkMatrix::I(), &doBicubic); |
| |
| int tileFilterPad; |
| if (doBicubic) { |
| tileFilterPad = GrBicubicEffect::kFilterTexelPad; |
| } else if (GrTextureParams::kNone_FilterMode == textureFilterMode) { |
| tileFilterPad = 0; |
| } else { |
| tileFilterPad = 1; |
| } |
| params.setFilterMode(textureFilterMode); |
| |
| int maxTileSize = fContext->caps()->maxTileSize() - 2 * tileFilterPad; |
| |
| // these are output, which we safely ignore, as we just want to know the predicate |
| int outTileSize; |
| SkIRect outClippedSrcRect; |
| |
| return this->shouldTileImageID(image->unique(), image->bounds(), viewMatrix, params, srcRectPtr, |
| maxTileSize, &outTileSize, &outClippedSrcRect); |
| } |
| |
| void SkGpuDevice::drawBitmap(const SkDraw& origDraw, |
| const SkBitmap& bitmap, |
| const SkMatrix& m, |
| const SkPaint& paint) { |
| SkMatrix concat; |
| SkTCopyOnFirstWrite<SkDraw> draw(origDraw); |
| if (!m.isIdentity()) { |
| concat.setConcat(*draw->fMatrix, m); |
| draw.writable()->fMatrix = &concat; |
| } |
| this->drawBitmapCommon(*draw, bitmap, nullptr, nullptr, paint, SkCanvas::kStrict_SrcRectConstraint); |
| } |
| |
| // This method outsets 'iRect' by 'outset' all around and then clamps its extents to |
| // 'clamp'. 'offset' is adjusted to remain positioned over the top-left corner |
| // of 'iRect' for all possible outsets/clamps. |
| static inline void clamped_outset_with_offset(SkIRect* iRect, |
| int outset, |
| SkPoint* offset, |
| const SkIRect& clamp) { |
| iRect->outset(outset, outset); |
| |
| int leftClampDelta = clamp.fLeft - iRect->fLeft; |
| if (leftClampDelta > 0) { |
| offset->fX -= outset - leftClampDelta; |
| iRect->fLeft = clamp.fLeft; |
| } else { |
| offset->fX -= outset; |
| } |
| |
| int topClampDelta = clamp.fTop - iRect->fTop; |
| if (topClampDelta > 0) { |
| offset->fY -= outset - topClampDelta; |
| iRect->fTop = clamp.fTop; |
| } else { |
| offset->fY -= outset; |
| } |
| |
| if (iRect->fRight > clamp.fRight) { |
| iRect->fRight = clamp.fRight; |
| } |
| if (iRect->fBottom > clamp.fBottom) { |
| iRect->fBottom = clamp.fBottom; |
| } |
| } |
| |
| static bool has_aligned_samples(const SkRect& srcRect, |
| const SkRect& transformedRect) { |
| // detect pixel disalignment |
| if (SkScalarAbs(SkScalarRoundToScalar(transformedRect.left()) - |
| transformedRect.left()) < COLOR_BLEED_TOLERANCE && |
| SkScalarAbs(SkScalarRoundToScalar(transformedRect.top()) - |
| transformedRect.top()) < COLOR_BLEED_TOLERANCE && |
| SkScalarAbs(transformedRect.width() - srcRect.width()) < |
| COLOR_BLEED_TOLERANCE && |
| SkScalarAbs(transformedRect.height() - srcRect.height()) < |
| COLOR_BLEED_TOLERANCE) { |
| return true; |
| } |
| return false; |
| } |
| |
| static bool may_color_bleed(const SkRect& srcRect, |
| const SkRect& transformedRect, |
| const SkMatrix& m, |
| bool isMSAA) { |
| // Only gets called if has_aligned_samples returned false. |
| // So we can assume that sampling is axis aligned but not texel aligned. |
| SkASSERT(!has_aligned_samples(srcRect, transformedRect)); |
| SkRect innerSrcRect(srcRect), innerTransformedRect, |
| outerTransformedRect(transformedRect); |
| if (isMSAA) { |
| innerSrcRect.inset(SK_Scalar1, SK_Scalar1); |
| } else { |
| innerSrcRect.inset(SK_ScalarHalf, SK_ScalarHalf); |
| } |
| m.mapRect(&innerTransformedRect, innerSrcRect); |
| |
| // The gap between outerTransformedRect and innerTransformedRect |
| // represents the projection of the source border area, which is |
| // problematic for color bleeding. We must check whether any |
| // destination pixels sample the border area. |
| outerTransformedRect.inset(COLOR_BLEED_TOLERANCE, COLOR_BLEED_TOLERANCE); |
| innerTransformedRect.outset(COLOR_BLEED_TOLERANCE, COLOR_BLEED_TOLERANCE); |
| SkIRect outer, inner; |
| outerTransformedRect.round(&outer); |
| innerTransformedRect.round(&inner); |
| // If the inner and outer rects round to the same result, it means the |
| // border does not overlap any pixel centers. Yay! |
| return inner != outer; |
| } |
| |
| static bool needs_texture_domain(const SkBitmap& bitmap, |
| const SkRect& srcRect, |
| GrTextureParams ¶ms, |
| const SkMatrix& contextMatrix, |
| bool bicubic, |
| bool isMSAA) { |
| bool needsTextureDomain = false; |
| GrTexture* tex = bitmap.getTexture(); |
| int width = tex ? tex->width() : bitmap.width(); |
| int height = tex ? tex->height() : bitmap.height(); |
| |
| if (bicubic || params.filterMode() != GrTextureParams::kNone_FilterMode) { |
| // Need texture domain if drawing a sub rect |
| needsTextureDomain = srcRect.width() < width || |
| srcRect.height() < height; |
| if (!bicubic && needsTextureDomain && contextMatrix.rectStaysRect()) { |
| // sampling is axis-aligned |
| SkRect transformedRect; |
| contextMatrix.mapRect(&transformedRect, srcRect); |
| |
| if (has_aligned_samples(srcRect, transformedRect)) { |
| params.setFilterMode(GrTextureParams::kNone_FilterMode); |
| needsTextureDomain = false; |
| } else { |
| needsTextureDomain = may_color_bleed(srcRect, transformedRect, |
| contextMatrix, isMSAA); |
| } |
| } |
| } |
| return needsTextureDomain; |
| } |
| |
| static void draw_aa_bitmap(GrDrawContext* drawContext, GrContext* context, |
| GrRenderTarget* renderTarget, const GrClip& clip, |
| const SkMatrix& viewMatrix, const SkMatrix& srcRectToDstRect, |
| const SkPaint& paint, const SkBitmap* bitmapPtr, const SkSize& dstSize) { |
| SkShader::TileMode tm[] = { |
| SkShader::kClamp_TileMode, |
| SkShader::kClamp_TileMode, |
| }; |
| |
| bool doBicubic; |
| GrTextureParams::FilterMode textureFilterMode = |
| GrSkFilterQualityToGrFilterMode(paint.getFilterQuality(), viewMatrix, |
| srcRectToDstRect, |
| &doBicubic); |
| |
| // Setup texture to wrap bitmap |
| GrTextureParams params(tm, textureFilterMode); |
| SkAutoTUnref<GrTexture> texture(GrRefCachedBitmapTexture(context, *bitmapPtr, params)); |
| |
| if (!texture) { |
| SkErrorInternals::SetError(kInternalError_SkError, |
| "Couldn't convert bitmap to texture."); |
| return; |
| } |
| |
| |
| GrPaint grPaint; |
| |
| // Create and insert texture effect |
| SkAutoTUnref<const GrFragmentProcessor> fp; |
| if (doBicubic) { |
| fp.reset(GrBicubicEffect::Create(texture, SkMatrix::I(), tm)); |
| } else { |
| fp.reset(GrSimpleTextureEffect::Create(texture, SkMatrix::I(), params)); |
| } |
| |
| if (kAlpha_8_SkColorType == bitmapPtr->colorType()) { |
| fp.reset(GrFragmentProcessor::MulOutputByInputUnpremulColor(fp)); |
| } else { |
| fp.reset(GrFragmentProcessor::MulOutputByInputAlpha(fp)); |
| } |
| |
| if (!SkPaintToGrPaintReplaceShader(context, paint, fp, &grPaint)) { |
| return; |
| } |
| |
| // Setup dst rect and final matrix |
| SkRect dstRect = {0, 0, dstSize.fWidth, dstSize.fHeight}; |
| |
| SkRect devRect; |
| viewMatrix.mapRect(&devRect, dstRect); |
| |
| SkMatrix matrix; |
| matrix.setIDiv(bitmapPtr->width(), bitmapPtr->height()); |
| |
| SkMatrix dstRectToSrcRect; |
| if (!srcRectToDstRect.invert(&dstRectToSrcRect)) { |
| return; |
| } |
| matrix.preConcat(dstRectToSrcRect); |
| |
| SkAutoTUnref<GrDrawBatch> batch(GrRectBatchFactory::CreateAAFill(grPaint.getColor(), |
| viewMatrix, |
| matrix, |
| dstRect, |
| devRect)); |
| |
| drawContext->drawBatch(clip, grPaint, batch); |
| } |
| |
| static bool can_ignore_strict_subset_constraint(const SkBitmap& bitmap, const SkRect& subset) { |
| GrTexture* tex = bitmap.getTexture(); |
| int width = tex ? tex->width() : bitmap.width(); |
| int height = tex ? tex->height() : bitmap.height(); |
| return subset.contains(SkRect::MakeIWH(width, height)); |
| } |
| |
| void SkGpuDevice::drawBitmapCommon(const SkDraw& draw, |
| const SkBitmap& bitmap, |
| const SkRect* srcRectPtr, |
| const SkSize* dstSizePtr, |
| const SkPaint& paint, |
| SkCanvas::SrcRectConstraint constraint) { |
| CHECK_SHOULD_DRAW(draw); |
| |
| SkRect srcRect; |
| SkSize dstSize; |
| // If there is no src rect, or the src rect contains the entire bitmap then we're effectively |
| // in the (easier) bleed case, so update flags. |
| if (nullptr == srcRectPtr) { |
| SkScalar w = SkIntToScalar(bitmap.width()); |
| SkScalar h = SkIntToScalar(bitmap.height()); |
| dstSize.fWidth = w; |
| dstSize.fHeight = h; |
| srcRect.set(0, 0, w, h); |
| } else { |
| SkASSERT(dstSizePtr); |
| srcRect = *srcRectPtr; |
| dstSize = *dstSizePtr; |
| } |
| |
| if (can_ignore_strict_subset_constraint(bitmap, srcRect)) { |
| constraint = SkCanvas::kFast_SrcRectConstraint; |
| } |
| |
| // If the render target is not msaa and draw is antialiased, we call |
| // drawRect instead of drawing on the render target directly. |
| // FIXME: the tiled bitmap code path doesn't currently support |
| // anti-aliased edges, we work around that for now by drawing directly |
| // if the image size exceeds maximum texture size. |
| int maxTileSize = fContext->caps()->maxTileSize(); |
| bool drawAA = !fRenderTarget->isUnifiedMultisampled() && |
| paint.isAntiAlias() && |
| bitmap.width() <= maxTileSize && |
| bitmap.height() <= maxTileSize; |
| |
| if (paint.getMaskFilter() || drawAA) { |
| // Convert the bitmap to a shader so that the rect can be drawn |
| // through drawRect, which supports mask filters. |
| SkBitmap tmp; // subset of bitmap, if necessary |
| const SkBitmap* bitmapPtr = &bitmap; |
| SkMatrix srcRectToDstRect; |
| if (srcRectPtr) { |
| srcRectToDstRect.setTranslate(-srcRectPtr->fLeft, -srcRectPtr->fTop); |
| srcRectToDstRect.postScale(dstSize.fWidth / srcRectPtr->width(), |
| dstSize.fHeight / srcRectPtr->height()); |
| // In bleed mode we position and trim the bitmap based on the src rect which is |
| // already accounted for in 'm' and 'srcRect'. In clamp mode we need to chop out |
| // the desired portion of the bitmap and then update 'm' and 'srcRect' to |
| // compensate. |
| if (SkCanvas::kStrict_SrcRectConstraint == constraint) { |
| SkIRect iSrc; |
| srcRect.roundOut(&iSrc); |
| |
| SkPoint offset = SkPoint::Make(SkIntToScalar(iSrc.fLeft), |
| SkIntToScalar(iSrc.fTop)); |
| |
| if (!bitmap.extractSubset(&tmp, iSrc)) { |
| return; // extraction failed |
| } |
| bitmapPtr = &tmp; |
| srcRect.offset(-offset.fX, -offset.fY); |
| |
| // The source rect has changed so update the matrix |
| srcRectToDstRect.preTranslate(offset.fX, offset.fY); |
| } |
| } else { |
| srcRectToDstRect.reset(); |
| } |
| |
| // If we have a maskfilter then we can't batch, so we take a slow path. However, we fast |
| // path the case where we are drawing an AA rect so we can batch many drawImageRect calls |
| if (paint.getMaskFilter()) { |
| SkPaint paintWithShader(paint); |
| paintWithShader.setShader(SkShader::CreateBitmapShader(*bitmapPtr, |
| SkShader::kClamp_TileMode, SkShader::kClamp_TileMode, |
| &srcRectToDstRect))->unref(); |
| SkRect dstRect = {0, 0, dstSize.fWidth, dstSize.fHeight}; |
| this->drawRect(draw, dstRect, paintWithShader); |
| } else { |
| draw_aa_bitmap(fDrawContext, fContext, fRenderTarget, fClip, *draw.fMatrix, |
| srcRectToDstRect, paint, bitmapPtr, dstSize); |
| } |
| |
| return; |
| } |
| |
| // If there is no mask filter than it is OK to handle the src rect -> dst rect scaling using |
| // the view matrix rather than a local matrix. |
| SkMatrix viewM = *draw.fMatrix; |
| viewM.preScale(dstSize.fWidth / srcRect.width(), |
| dstSize.fHeight / srcRect.height()); |
| |
| GrTextureParams params; |
| bool doBicubic; |
| GrTextureParams::FilterMode textureFilterMode = |
| GrSkFilterQualityToGrFilterMode(paint.getFilterQuality(), viewM, SkMatrix::I(), |
| &doBicubic); |
| |
| int tileFilterPad; |
| if (doBicubic) { |
| tileFilterPad = GrBicubicEffect::kFilterTexelPad; |
| } else if (GrTextureParams::kNone_FilterMode == textureFilterMode) { |
| tileFilterPad = 0; |
| } else { |
| tileFilterPad = 1; |
| } |
| params.setFilterMode(textureFilterMode); |
| |
| maxTileSize = fContext->caps()->maxTileSize() - 2 * tileFilterPad; |
| int tileSize; |
| |
| SkIRect clippedSrcRect; |
| if (this->shouldTileBitmap(bitmap, viewM, params, srcRectPtr, maxTileSize, &tileSize, |
| &clippedSrcRect)) { |
| this->drawTiledBitmap(bitmap, viewM, srcRect, clippedSrcRect, params, paint, constraint, |
| tileSize, doBicubic); |
| } else { |
| // take the simple case |
| bool needsTextureDomain = needs_texture_domain(bitmap, |
| srcRect, |
| params, |
| viewM, |
| doBicubic, |
| fRenderTarget->isUnifiedMultisampled()); |
| this->internalDrawBitmap(bitmap, |
| viewM, |
| srcRect, |
| params, |
| paint, |
| constraint, |
| doBicubic, |
| needsTextureDomain); |
| } |
| } |
| |
| // Break 'bitmap' into several tiles to draw it since it has already |
| // been determined to be too large to fit in VRAM |
| void SkGpuDevice::drawTiledBitmap(const SkBitmap& bitmap, |
| const SkMatrix& viewMatrix, |
| const SkRect& srcRect, |
| const SkIRect& clippedSrcIRect, |
| const GrTextureParams& params, |
| const SkPaint& paint, |
| SkCanvas::SrcRectConstraint constraint, |
| int tileSize, |
| bool bicubic) { |
| // The following pixel lock is technically redundant, but it is desirable |
| // to lock outside of the tile loop to prevent redecoding the whole image |
| // at each tile in cases where 'bitmap' holds an SkDiscardablePixelRef that |
| // is larger than the limit of the discardable memory pool. |
| SkAutoLockPixels alp(bitmap); |
| SkRect clippedSrcRect = SkRect::Make(clippedSrcIRect); |
| |
| int nx = bitmap.width() / tileSize; |
| int ny = bitmap.height() / tileSize; |
| for (int x = 0; x <= nx; x++) { |
| for (int y = 0; y <= ny; y++) { |
| SkRect tileR; |
| tileR.set(SkIntToScalar(x * tileSize), |
| SkIntToScalar(y * tileSize), |
| SkIntToScalar((x + 1) * tileSize), |
| SkIntToScalar((y + 1) * tileSize)); |
| |
| if (!SkRect::Intersects(tileR, clippedSrcRect)) { |
| continue; |
| } |
| |
| if (!tileR.intersect(srcRect)) { |
| continue; |
| } |
| |
| SkBitmap tmpB; |
| SkIRect iTileR; |
| tileR.roundOut(&iTileR); |
| SkPoint offset = SkPoint::Make(SkIntToScalar(iTileR.fLeft), |
| SkIntToScalar(iTileR.fTop)); |
| |
| // Adjust the context matrix to draw at the right x,y in device space |
| SkMatrix viewM = viewMatrix; |
| SkMatrix tmpM; |
| tmpM.setTranslate(offset.fX - srcRect.fLeft, offset.fY - srcRect.fTop); |
| viewM.preConcat(tmpM); |
| |
| if (GrTextureParams::kNone_FilterMode != params.filterMode() || bicubic) { |
| SkIRect iClampRect; |
| |
| if (SkCanvas::kFast_SrcRectConstraint == constraint) { |
| // In bleed mode we want to always expand the tile on all edges |
| // but stay within the bitmap bounds |
| iClampRect = SkIRect::MakeWH(bitmap.width(), bitmap.height()); |
| } else { |
| // In texture-domain/clamp mode we only want to expand the |
| // tile on edges interior to "srcRect" (i.e., we want to |
| // not bleed across the original clamped edges) |
| srcRect.roundOut(&iClampRect); |
| } |
| int outset = bicubic ? GrBicubicEffect::kFilterTexelPad : 1; |
| clamped_outset_with_offset(&iTileR, outset, &offset, iClampRect); |
| } |
| |
| if (bitmap.extractSubset(&tmpB, iTileR)) { |
| // now offset it to make it "local" to our tmp bitmap |
| tileR.offset(-offset.fX, -offset.fY); |
| GrTextureParams paramsTemp = params; |
| bool needsTextureDomain = needs_texture_domain( |
| bitmap, srcRect, paramsTemp, |
| viewM, bicubic, |
| fRenderTarget->isUnifiedMultisampled()); |
| this->internalDrawBitmap(tmpB, |
| viewM, |
| tileR, |
| paramsTemp, |
| paint, |
| constraint, |
| bicubic, |
| needsTextureDomain); |
| } |
| } |
| } |
| } |
| |
| |
| /* |
| * This is called by drawBitmap(), which has to handle images that may be too |
| * large to be represented by a single texture. |
| * |
| * internalDrawBitmap assumes that the specified bitmap will fit in a texture |
| * and that non-texture portion of the GrPaint has already been setup. |
| */ |
| void SkGpuDevice::internalDrawBitmap(const SkBitmap& bitmap, |
| const SkMatrix& viewMatrix, |
| const SkRect& srcRect, |
| const GrTextureParams& params, |
| const SkPaint& paint, |
| SkCanvas::SrcRectConstraint constraint, |
| bool bicubic, |
| bool needsTextureDomain) { |
| // We should have already handled bitmaps larger than the max texture size. |
| SkASSERT(bitmap.width() <= fContext->caps()->maxTextureSize() && |
| bitmap.height() <= fContext->caps()->maxTextureSize()); |
| // Unless the bitmap is inherently texture-backed, we should be respecting the max tile size |
| // by the time we get here. |
| SkASSERT(bitmap.getTexture() || |
| (bitmap.width() <= fContext->caps()->maxTileSize() && |
| bitmap.height() <= fContext->caps()->maxTileSize())); |
| |
| GrTexture* texture; |
| AutoBitmapTexture abt(fContext, bitmap, params, &texture); |
| if (nullptr == texture) { |
| return; |
| } |
| |
| SkRect dstRect = {0, 0, srcRect.width(), srcRect.height() }; |
| SkRect paintRect; |
| SkScalar wInv = SkScalarInvert(SkIntToScalar(texture->width())); |
| SkScalar hInv = SkScalarInvert(SkIntToScalar(texture->height())); |
| paintRect.setLTRB(SkScalarMul(srcRect.fLeft, wInv), |
| SkScalarMul(srcRect.fTop, hInv), |
| SkScalarMul(srcRect.fRight, wInv), |
| SkScalarMul(srcRect.fBottom, hInv)); |
| |
| SkMatrix texMatrix; |
| texMatrix.reset(); |
| if (kAlpha_8_SkColorType == bitmap.colorType() && paint.getShader()) { |
| // In cases where we are doing an A8 bitmap draw with a shader installed, we cannot use |
| // local coords with the bitmap draw since it may mess up texture look ups for the shader. |
| // Thus we need to pass in the transform matrix directly to the texture processor used for |
| // the bitmap draw. |
| texMatrix.setScale(wInv, hInv); |
| } |
| |
| SkRect textureDomain = SkRect::MakeEmpty(); |
| |
| // Construct a GrPaint by setting the bitmap texture as the first effect and then configuring |
| // the rest from the SkPaint. |
| GrPaint grPaint; |
| SkAutoTUnref<const GrFragmentProcessor> fp; |
| |
| if (needsTextureDomain && (SkCanvas::kStrict_SrcRectConstraint == constraint)) { |
| // Use a constrained texture domain to avoid color bleeding |
| SkScalar left, top, right, bottom; |
| if (srcRect.width() > SK_Scalar1) { |
| SkScalar border = SK_ScalarHalf / texture->width(); |
| left = paintRect.left() + border; |
| right = paintRect.right() - border; |
| } else { |
| left = right = SkScalarHalf(paintRect.left() + paintRect.right()); |
| } |
| if (srcRect.height() > SK_Scalar1) { |
| SkScalar border = SK_ScalarHalf / texture->height(); |
| top = paintRect.top() + border; |
| bottom = paintRect.bottom() - border; |
| } else { |
| top = bottom = SkScalarHalf(paintRect.top() + paintRect.bottom()); |
| } |
| textureDomain.setLTRB(left, top, right, bottom); |
| if (bicubic) { |
| fp.reset(GrBicubicEffect::Create(texture, texMatrix, textureDomain)); |
| } else { |
| fp.reset(GrTextureDomainEffect::Create(texture, |
| texMatrix, |
| textureDomain, |
| GrTextureDomain::kClamp_Mode, |
| params.filterMode())); |
| } |
| } else if (bicubic) { |
| SkASSERT(GrTextureParams::kNone_FilterMode == params.filterMode()); |
| SkShader::TileMode tileModes[2] = { params.getTileModeX(), params.getTileModeY() }; |
| fp.reset(GrBicubicEffect::Create(texture, texMatrix, tileModes)); |
| } else { |
| fp.reset(GrSimpleTextureEffect::Create(texture, texMatrix, params)); |
| } |
| |
| SkAutoTUnref<const GrFragmentProcessor> shaderFP; |
| |
| if (kAlpha_8_SkColorType == bitmap.colorType()) { |
| if (const SkShader* shader = paint.getShader()) { |
| shaderFP.reset(shader->asFragmentProcessor(this->context(), |
| viewMatrix, |
| nullptr, |
| paint.getFilterQuality())); |
| if (!shaderFP) { |
| return; |
| } |
| const GrFragmentProcessor* fpSeries[] = { shaderFP.get(), fp.get() }; |
| fp.reset(GrFragmentProcessor::RunInSeries(fpSeries, 2)); |
| } else { |
| fp.reset(GrFragmentProcessor::MulOutputByInputUnpremulColor(fp)); |
| } |
| } else { |
| fp.reset(GrFragmentProcessor::MulOutputByInputAlpha(fp)); |
| } |
| |
| if (!SkPaintToGrPaintReplaceShader(this->context(), paint, fp, &grPaint)) { |
| return; |
| } |
| |
| if (kAlpha_8_SkColorType == bitmap.colorType() && paint.getShader()) { |
| // We don't have local coords in this case and have previously set the transform |
| // matrices directly on the texture processor. |
| fDrawContext->drawRect(fClip, grPaint, viewMatrix, dstRect); |
| } else { |
| fDrawContext->drawNonAARectToRect(fClip, grPaint, viewMatrix, dstRect, paintRect); |
| } |
| } |
| |
| bool SkGpuDevice::filterTexture(GrContext* context, GrTexture* texture, |
| int width, int height, |
| const SkImageFilter* filter, |
| const SkImageFilter::Context& ctx, |
| SkBitmap* result, SkIPoint* offset) { |
| SkASSERT(filter); |
| |
| SkImageFilter::DeviceProxy proxy(this); |
| |
| if (filter->canFilterImageGPU()) { |
| return filter->filterImageGPU(&proxy, wrap_texture(texture, width, height), |
| ctx, result, offset); |
| } else { |
| return false; |
| } |
| } |
| |
| void SkGpuDevice::drawSprite(const SkDraw& draw, const SkBitmap& bitmap, |
| int left, int top, const SkPaint& paint) { |
| // drawSprite is defined to be in device coords. |
| CHECK_SHOULD_DRAW(draw); |
| |
| SkAutoLockPixels alp(bitmap, !bitmap.getTexture()); |
| if (!bitmap.getTexture() && !bitmap.readyToDraw()) { |
| return; |
| } |
| |
| int w = bitmap.width(); |
| int h = bitmap.height(); |
| |
| GrTexture* texture; |
| // draw sprite neither filters nor tiles. |
| AutoBitmapTexture abt(fContext, bitmap, GrTextureParams::ClampNoFilter(), &texture); |
| if (!texture) { |
| return; |
| } |
| |
| bool alphaOnly = kAlpha_8_SkColorType == bitmap.colorType(); |
| |
| SkImageFilter* filter = paint.getImageFilter(); |
| // This bitmap will own the filtered result as a texture. |
| SkBitmap filteredBitmap; |
| |
| if (filter) { |
| SkIPoint offset = SkIPoint::Make(0, 0); |
| SkMatrix matrix(*draw.fMatrix); |
| matrix.postTranslate(SkIntToScalar(-left), SkIntToScalar(-top)); |
| SkIRect clipBounds = SkIRect::MakeWH(bitmap.width(), bitmap.height()); |
| SkAutoTUnref<SkImageFilter::Cache> cache(getImageFilterCache()); |
| // This cache is transient, and is freed (along with all its contained |
| // textures) when it goes out of scope. |
| SkImageFilter::Context ctx(matrix, clipBounds, cache, SkImageFilter::kApprox_SizeConstraint); |
| if (this->filterTexture(fContext, texture, w, h, filter, ctx, &filteredBitmap, |
| &offset)) { |
| texture = (GrTexture*) filteredBitmap.getTexture(); |
| w = filteredBitmap.width(); |
| h = filteredBitmap.height(); |
| left += offset.x(); |
| top += offset.y(); |
| } else { |
| return; |
| } |
| SkASSERT(!GrPixelConfigIsAlphaOnly(texture->config())); |
| alphaOnly = false; |
| } |
| |
| GrPaint grPaint; |
| SkAutoTUnref<const GrFragmentProcessor> fp( |
| GrSimpleTextureEffect::Create(texture, SkMatrix::I())); |
| if (alphaOnly) { |
| fp.reset(GrFragmentProcessor::MulOutputByInputUnpremulColor(fp)); |
| } else { |
| fp.reset(GrFragmentProcessor::MulOutputByInputAlpha(fp)); |
| } |
| if (!SkPaintToGrPaintReplaceShader(this->context(), paint, fp, &grPaint)) { |
| return; |
| } |
| |
| fDrawContext->drawNonAARectToRect(fClip, |
| grPaint, |
| SkMatrix::I(), |
| SkRect::MakeXYWH(SkIntToScalar(left), |
| SkIntToScalar(top), |
| SkIntToScalar(w), |
| SkIntToScalar(h)), |
| SkRect::MakeXYWH(0, |
| 0, |
| SK_Scalar1 * w / texture->width(), |
| SK_Scalar1 * h / texture->height())); |
| } |
| |
| void SkGpuDevice::drawBitmapRect(const SkDraw& origDraw, const SkBitmap& bitmap, |
| const SkRect* src, const SkRect& dst, |
| const SkPaint& paint, SkCanvas::SrcRectConstraint constraint) { |
| SkMatrix matrix; |
| SkRect bitmapBounds, tmpSrc; |
| |
| bitmapBounds.set(0, 0, |
| SkIntToScalar(bitmap.width()), |
| SkIntToScalar(bitmap.height())); |
| |
| // Compute matrix from the two rectangles |
| if (src) { |
| tmpSrc = *src; |
| } else { |
| tmpSrc = bitmapBounds; |
| } |
| |
| matrix.setRectToRect(tmpSrc, dst, SkMatrix::kFill_ScaleToFit); |
| |
| // clip the tmpSrc to the bounds of the bitmap. No check needed if src==null. |
| if (src) { |
| if (!bitmapBounds.contains(tmpSrc)) { |
| if (!tmpSrc.intersect(bitmapBounds)) { |
| return; // nothing to draw |
| } |
| } |
| } |
| |
| SkRect tmpDst; |
| matrix.mapRect(&tmpDst, tmpSrc); |
| |
| SkTCopyOnFirstWrite<SkDraw> draw(origDraw); |
| if (0 != tmpDst.fLeft || 0 != tmpDst.fTop) { |
| // Translate so that tempDst's top left is at the origin. |
| matrix = *origDraw.fMatrix; |
| matrix.preTranslate(tmpDst.fLeft, tmpDst.fTop); |
| draw.writable()->fMatrix = &matrix; |
| } |
| SkSize dstSize; |
| dstSize.fWidth = tmpDst.width(); |
| dstSize.fHeight = tmpDst.height(); |
| |
| this->drawBitmapCommon(*draw, bitmap, &tmpSrc, &dstSize, paint, constraint); |
| } |
| |
| void SkGpuDevice::drawDevice(const SkDraw& draw, SkBaseDevice* device, |
| int x, int y, const SkPaint& paint) { |
| // clear of the source device must occur before CHECK_SHOULD_DRAW |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawDevice", fContext); |
| SkGpuDevice* dev = static_cast<SkGpuDevice*>(device); |
| |
| // TODO: If the source device covers the whole of this device, we could |
| // omit fNeedsClear -related flushing. |
| // TODO: if source needs clear, we could maybe omit the draw fully. |
| |
| // drawDevice is defined to be in device coords. |
| CHECK_SHOULD_DRAW(draw); |
| |
| GrRenderTarget* devRT = dev->accessRenderTarget(); |
| GrTexture* devTex; |
| if (nullptr == (devTex = devRT->asTexture())) { |
| return; |
| } |
| |
| const SkImageInfo ii = dev->imageInfo(); |
| int w = ii.width(); |
| int h = ii.height(); |
| |
| SkImageFilter* filter = paint.getImageFilter(); |
| // This bitmap will own the filtered result as a texture. |
| SkBitmap filteredBitmap; |
| |
| if (filter) { |
| SkIPoint offset = SkIPoint::Make(0, 0); |
| SkMatrix matrix(*draw.fMatrix); |
| matrix.postTranslate(SkIntToScalar(-x), SkIntToScalar(-y)); |
| SkIRect clipBounds = SkIRect::MakeWH(devTex->width(), devTex->height()); |
| // This cache is transient, and is freed (along with all its contained |
| // textures) when it goes out of scope. |
| SkAutoTUnref<SkImageFilter::Cache> cache(getImageFilterCache()); |
| SkImageFilter::Context ctx(matrix, clipBounds, cache, SkImageFilter::kApprox_SizeConstraint); |
| if (this->filterTexture(fContext, devTex, device->width(), device->height(), |
| filter, ctx, &filteredBitmap, &offset)) { |
| devTex = filteredBitmap.getTexture(); |
| w = filteredBitmap.width(); |
| h = filteredBitmap.height(); |
| x += offset.fX; |
| y += offset.fY; |
| } else { |
| return; |
| } |
| } |
| |
| GrPaint grPaint; |
| SkAutoTUnref<const GrFragmentProcessor> fp( |
| GrSimpleTextureEffect::Create(devTex, SkMatrix::I())); |
| if (GrPixelConfigIsAlphaOnly(devTex->config())) { |
| // Can this happen? |
| fp.reset(GrFragmentProcessor::MulOutputByInputUnpremulColor(fp)); |
| } else { |
| fp.reset(GrFragmentProcessor::MulOutputByInputAlpha(fp)); |
| } |
| |
| if (!SkPaintToGrPaintReplaceShader(this->context(), paint, fp, &grPaint)) { |
| return; |
| } |
| |
| SkRect dstRect = SkRect::MakeXYWH(SkIntToScalar(x), |
| SkIntToScalar(y), |
| SkIntToScalar(w), |
| SkIntToScalar(h)); |
| |
| // The device being drawn may not fill up its texture (e.g. saveLayer uses approximate |
| // scratch texture). |
| SkRect srcRect = SkRect::MakeWH(SK_Scalar1 * w / devTex->width(), |
| SK_Scalar1 * h / devTex->height()); |
| |
| fDrawContext->drawNonAARectToRect(fClip, grPaint, SkMatrix::I(), dstRect, srcRect); |
| } |
| |
| bool SkGpuDevice::canHandleImageFilter(const SkImageFilter* filter) { |
| return filter->canFilterImageGPU(); |
| } |
| |
| bool SkGpuDevice::filterImage(const SkImageFilter* filter, const SkBitmap& src, |
| const SkImageFilter::Context& ctx, |
| SkBitmap* result, SkIPoint* offset) { |
| // want explicitly our impl, so guard against a subclass of us overriding it |
| if (!this->SkGpuDevice::canHandleImageFilter(filter)) { |
| return false; |
| } |
| |
| SkAutoLockPixels alp(src, !src.getTexture()); |
| if (!src.getTexture() && !src.readyToDraw()) { |
| return false; |
| } |
| |
| GrTexture* texture; |
| // We assume here that the filter will not attempt to tile the src. Otherwise, this cache lookup |
| // must be pushed upstack. |
| AutoBitmapTexture abt(fContext, src, GrTextureParams::ClampNoFilter(), &texture); |
| if (!texture) { |
| return false; |
| } |
| |
| return this->filterTexture(fContext, texture, src.width(), src.height(), |
| filter, ctx, result, offset); |
| } |
| |
| static bool wrap_as_bm(GrContext* ctx, const SkImage* image, SkBitmap* bm) { |
| // TODO: It is wrong to assume these texture params here. |
| SkAutoTUnref<GrTexture> tex(as_IB(image)->asTextureRef(ctx, GrTextureParams::ClampNoFilter())); |
| if (tex) { |
| GrWrapTextureInBitmap(tex, image->width(), image->height(), image->isOpaque(), bm); |
| return true; |
| } else { |
| return as_IB(image)->getROPixels(bm); |
| } |
| } |
| |
| void SkGpuDevice::drawImage(const SkDraw& draw, const SkImage* image, SkScalar x, SkScalar y, |
| const SkPaint& paint) { |
| SkBitmap bm; |
| if (GrTexture* tex = as_IB(image)->peekTexture()) { |
| GrWrapTextureInBitmap(tex, image->width(), image->height(), image->isOpaque(), &bm); |
| } else { |
| if (this->shouldTileImage(image, nullptr, SkCanvas::kFast_SrcRectConstraint, |
| paint.getFilterQuality(), *draw.fMatrix)) { |
| // only support tiling as bitmap at the moment, so force raster-version |
| if (!as_IB(image)->getROPixels(&bm)) { |
| return; |
| } |
| } else { |
| if (!wrap_as_bm(this->context(), image, &bm)) { |
| return; |
| } |
| } |
| } |
| this->drawBitmap(draw, bm, SkMatrix::MakeTrans(x, y), paint); |
| } |
| |
| void SkGpuDevice::drawImageRect(const SkDraw& draw, const SkImage* image, const SkRect* src, |
| const SkRect& dst, const SkPaint& paint, |
| SkCanvas::SrcRectConstraint constraint) { |
| SkBitmap bm; |
| if (GrTexture* tex = as_IB(image)->peekTexture()) { |
| GrWrapTextureInBitmap(tex, image->width(), image->height(), image->isOpaque(), &bm); |
| } else { |
| SkMatrix viewMatrix = *draw.fMatrix; |
| viewMatrix.preScale(dst.width() / (src ? src->width() : image->width()), |
| dst.height() / (src ? src->height() : image->height())); |
| |
| if (this->shouldTileImage(image, src, constraint, paint.getFilterQuality(), viewMatrix)) { |
| // only support tiling as bitmap at the moment, so force raster-version |
| if (!as_IB(image)->getROPixels(&bm)) { |
| return; |
| } |
| } else { |
| if (!wrap_as_bm(this->context(), image, &bm)) { |
| return; |
| } |
| } |
| } |
| this->drawBitmapRect(draw, bm, src, dst, paint, constraint); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| // must be in SkCanvas::VertexMode order |
| static const GrPrimitiveType gVertexMode2PrimitiveType[] = { |
| kTriangles_GrPrimitiveType, |
| kTriangleStrip_GrPrimitiveType, |
| kTriangleFan_GrPrimitiveType, |
| }; |
| |
| void SkGpuDevice::drawVertices(const SkDraw& draw, SkCanvas::VertexMode vmode, |
| int vertexCount, const SkPoint vertices[], |
| const SkPoint texs[], const SkColor colors[], |
| SkXfermode* xmode, |
| const uint16_t indices[], int indexCount, |
| const SkPaint& paint) { |
| CHECK_SHOULD_DRAW(draw); |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawVertices", fContext); |
| |
| // If both textures and vertex-colors are nullptr, strokes hairlines with the paint's color. |
| if ((nullptr == texs || nullptr == paint.getShader()) && nullptr == colors) { |
| |
| texs = nullptr; |
| |
| SkPaint copy(paint); |
| copy.setStyle(SkPaint::kStroke_Style); |
| copy.setStrokeWidth(0); |
| |
| GrPaint grPaint; |
| // we ignore the shader if texs is null. |
| if (!SkPaintToGrPaintNoShader(this->context(), copy, &grPaint)) { |
| return; |
| } |
| |
| int triangleCount = 0; |
| int n = (nullptr == indices) ? vertexCount : indexCount; |
| switch (vmode) { |
| case SkCanvas::kTriangles_VertexMode: |
| triangleCount = n / 3; |
| break; |
| case SkCanvas::kTriangleStrip_VertexMode: |
| case SkCanvas::kTriangleFan_VertexMode: |
| triangleCount = n - 2; |
| break; |
| } |
| |
| VertState state(vertexCount, indices, indexCount); |
| VertState::Proc vertProc = state.chooseProc(vmode); |
| |
| //number of indices for lines per triangle with kLines |
| indexCount = triangleCount * 6; |
| |
| SkAutoTDeleteArray<uint16_t> lineIndices(new uint16_t[indexCount]); |
| int i = 0; |
| while (vertProc(&state)) { |
| lineIndices[i] = state.f0; |
| lineIndices[i + 1] = state.f1; |
| lineIndices[i + 2] = state.f1; |
| lineIndices[i + 3] = state.f2; |
| lineIndices[i + 4] = state.f2; |
| lineIndices[i + 5] = state.f0; |
| i += 6; |
| } |
| fDrawContext->drawVertices(fClip, |
| grPaint, |
| *draw.fMatrix, |
| kLines_GrPrimitiveType, |
| vertexCount, |
| vertices, |
| texs, |
| colors, |
| lineIndices.get(), |
| indexCount); |
| return; |
| } |
| |
| GrPrimitiveType primType = gVertexMode2PrimitiveType[vmode]; |
| |
| SkAutoSTMalloc<128, GrColor> convertedColors(0); |
| if (colors) { |
| // need to convert byte order and from non-PM to PM. TODO: Keep unpremul until after |
| // interpolation. |
| convertedColors.reset(vertexCount); |
| for (int i = 0; i < vertexCount; ++i) { |
| convertedColors[i] = SkColorToPremulGrColor(colors[i]); |
| } |
| colors = convertedColors.get(); |
| } |
| GrPaint grPaint; |
| if (texs && paint.getShader()) { |
| if (colors) { |
| // When there are texs and colors the shader and colors are combined using xmode. A null |
| // xmode is defined to mean modulate. |
| SkXfermode::Mode colorMode; |
| if (xmode) { |
| if (!xmode->asMode(&colorMode)) { |
| return; |
| } |
| } else { |
| colorMode = SkXfermode::kModulate_Mode; |
| } |
| if (!SkPaintToGrPaintWithXfermode(this->context(), paint, *draw.fMatrix, colorMode, |
| false, &grPaint)) { |
| return; |
| } |
| } else { |
| // We have a shader, but no colors to blend it against. |
| if (!SkPaintToGrPaint(this->context(), paint, *draw.fMatrix, &grPaint)) { |
| return; |
| } |
| } |
| } else { |
| if (colors) { |
| // We have colors, but either have no shader or no texture coords (which implies that |
| // we should ignore the shader). |
| if (!SkPaintToGrPaintWithPrimitiveColor(this->context(), paint, &grPaint)) { |
| return; |
| } |
| } else { |
| // No colors and no shaders. Just draw with the paint color. |
| if (!SkPaintToGrPaintNoShader(this->context(), paint, &grPaint)) { |
| return; |
| } |
| } |
| } |
| |
| fDrawContext->drawVertices(fClip, |
| grPaint, |
| *draw.fMatrix, |
| primType, |
| vertexCount, |
| vertices, |
| texs, |
| colors, |
| indices, |
| indexCount); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkGpuDevice::drawAtlas(const SkDraw& draw, const SkImage* atlas, const SkRSXform xform[], |
| const SkRect texRect[], const SkColor colors[], int count, |
| SkXfermode::Mode mode, const SkPaint& paint) { |
| if (paint.isAntiAlias()) { |
| this->INHERITED::drawAtlas(draw, atlas, xform, texRect, colors, count, mode, paint); |
| return; |
| } |
| |
| CHECK_SHOULD_DRAW(draw); |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawText", fContext); |
| |
| SkPaint p(paint); |
| p.setShader(atlas->newShader(SkShader::kClamp_TileMode, SkShader::kClamp_TileMode))->unref(); |
| |
| GrPaint grPaint; |
| if (colors) { |
| if (!SkPaintToGrPaintWithXfermode(this->context(), p, *draw.fMatrix, mode, true, |
| &grPaint)) { |
| return; |
| } |
| } else { |
| if (!SkPaintToGrPaint(this->context(), p, *draw.fMatrix, &grPaint)) { |
| return; |
| } |
| } |
| |
| SkDEBUGCODE(this->validate();) |
| fDrawContext->drawAtlas(fClip, grPaint, *draw.fMatrix, count, xform, texRect, colors); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkGpuDevice::drawText(const SkDraw& draw, const void* text, |
| size_t byteLength, SkScalar x, SkScalar y, |
| const SkPaint& paint) { |
| CHECK_SHOULD_DRAW(draw); |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawText", fContext); |
| |
| GrPaint grPaint; |
| if (!SkPaintToGrPaint(this->context(), paint, *draw.fMatrix, &grPaint)) { |
| return; |
| } |
| |
| SkDEBUGCODE(this->validate();) |
| |
| fDrawContext->drawText(fClip, grPaint, paint, *draw.fMatrix, |
| (const char *)text, byteLength, x, y, draw.fClip->getBounds()); |
| } |
| |
| void SkGpuDevice::drawPosText(const SkDraw& draw, const void* text, size_t byteLength, |
| const SkScalar pos[], int scalarsPerPos, |
| const SkPoint& offset, const SkPaint& paint) { |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawPosText", fContext); |
| CHECK_SHOULD_DRAW(draw); |
| |
| GrPaint grPaint; |
| if (!SkPaintToGrPaint(this->context(), paint, *draw.fMatrix, &grPaint)) { |
| return; |
| } |
| |
| SkDEBUGCODE(this->validate();) |
| |
| fDrawContext->drawPosText(fClip, grPaint, paint, *draw.fMatrix, |
| (const char *)text, byteLength, pos, scalarsPerPos, offset, |
| draw.fClip->getBounds()); |
| } |
| |
| void SkGpuDevice::drawTextBlob(const SkDraw& draw, const SkTextBlob* blob, SkScalar x, SkScalar y, |
| const SkPaint& paint, SkDrawFilter* drawFilter) { |
| GR_CREATE_TRACE_MARKER_CONTEXT("SkGpuDevice::drawTextBlob", fContext); |
| CHECK_SHOULD_DRAW(draw); |
| |
| SkDEBUGCODE(this->validate();) |
| |
| fDrawContext->drawTextBlob(fClip, paint, *draw.fMatrix, |
| blob, x, y, drawFilter, draw.fClip->getBounds()); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| bool SkGpuDevice::onShouldDisableLCD(const SkPaint& paint) const { |
| return GrTextContext::ShouldDisableLCD(paint); |
| } |
| |
| void SkGpuDevice::flush() { |
| DO_DEFERRED_CLEAR(); |
| fRenderTarget->prepareForExternalIO(); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| SkBaseDevice* SkGpuDevice::onCreateDevice(const CreateInfo& cinfo, const SkPaint*) { |
| GrSurfaceDesc desc; |
| desc.fConfig = fRenderTarget->config(); |
| desc.fFlags = kRenderTarget_GrSurfaceFlag; |
| desc.fWidth = cinfo.fInfo.width(); |
| desc.fHeight = cinfo.fInfo.height(); |
| desc.fSampleCnt = fRenderTarget->desc().fSampleCnt; |
| |
| SkAutoTUnref<GrTexture> texture; |
| // Skia's convention is to only clear a device if it is non-opaque. |
| InitContents init = cinfo.fInfo.isOpaque() ? kUninit_InitContents : kClear_InitContents; |
| |
| // layers are never draw in repeat modes, so we can request an approx |
| // match and ignore any padding. |
| if (kNever_TileUsage == cinfo.fTileUsage) { |
| texture.reset(fContext->textureProvider()->createApproxTexture(desc)); |
| } else { |
| texture.reset(fContext->textureProvider()->createTexture(desc, true)); |
| } |
| |
| if (texture) { |
| SkSurfaceProps props(this->surfaceProps().flags(), cinfo.fPixelGeometry); |
| return SkGpuDevice::Create( |
| texture->asRenderTarget(), cinfo.fInfo.width(), cinfo.fInfo.height(), &props, init); |
| } else { |
| SkErrorInternals::SetError( kInternalError_SkError, |
| "---- failed to create gpu device texture [%d %d]\n", |
| cinfo.fInfo.width(), cinfo.fInfo.height()); |
| return nullptr; |
| } |
| } |
| |
| SkSurface* SkGpuDevice::newSurface(const SkImageInfo& info, const SkSurfaceProps& props) { |
| // TODO: Change the signature of newSurface to take a budgeted parameter. |
| static const SkSurface::Budgeted kBudgeted = SkSurface::kNo_Budgeted; |
| return SkSurface::NewRenderTarget(fContext, kBudgeted, info, fRenderTarget->desc().fSampleCnt, |
| &props); |
| } |
| |
| bool SkGpuDevice::EXPERIMENTAL_drawPicture(SkCanvas* mainCanvas, const SkPicture* mainPicture, |
| const SkMatrix* matrix, const SkPaint* paint) { |
| #ifndef SK_IGNORE_GPU_LAYER_HOISTING |
| // todo: should handle this natively |
| if (paint) { |
| return false; |
| } |
| |
| const SkBigPicture::AccelData* data = nullptr; |
| if (const SkBigPicture* bp = mainPicture->asSkBigPicture()) { |
| data = bp->accelData(); |
| } |
| if (!data) { |
| return false; |
| } |
| |
| const SkLayerInfo *gpuData = static_cast<const SkLayerInfo*>(data); |
| if (0 == gpuData->numBlocks()) { |
| return false; |
| } |
| |
| SkTDArray<GrHoistedLayer> atlasedNeedRendering, atlasedRecycled; |
| |
| SkIRect iBounds; |
| if (!mainCanvas->getClipDeviceBounds(&iBounds)) { |
| return false; |
| } |
| |
| SkRect clipBounds = SkRect::Make(iBounds); |
| |
| SkMatrix initialMatrix = mainCanvas->getTotalMatrix(); |
| |
| GrLayerHoister::FindLayersToAtlas(fContext, mainPicture, |
| initialMatrix, |
| clipBounds, |
| &atlasedNeedRendering, &atlasedRecycled, |
| fRenderTarget->numColorSamples()); |
| |
| GrLayerHoister::DrawLayersToAtlas(fContext, atlasedNeedRendering); |
| |
| SkTDArray<GrHoistedLayer> needRendering, recycled; |
| |
| SkAutoCanvasMatrixPaint acmp(mainCanvas, matrix, paint, mainPicture->cullRect()); |
| |
| GrLayerHoister::FindLayersToHoist(fContext, mainPicture, |
| initialMatrix, |
| clipBounds, |
| &needRendering, &recycled, |
| fRenderTarget->numColorSamples()); |
| |
| GrLayerHoister::DrawLayers(fContext, needRendering); |
| |
| // Render the entire picture using new layers |
| GrRecordReplaceDraw(mainPicture, mainCanvas, fContext->getLayerCache(), |
| initialMatrix, nullptr); |
| |
| GrLayerHoister::UnlockLayers(fContext, needRendering); |
| GrLayerHoister::UnlockLayers(fContext, recycled); |
| GrLayerHoister::UnlockLayers(fContext, atlasedNeedRendering); |
| GrLayerHoister::UnlockLayers(fContext, atlasedRecycled); |
| |
| return true; |
| #else |
| return false; |
| #endif |
| } |
| |
| SkImageFilter::Cache* SkGpuDevice::NewImageFilterCache() { |
| return SkImageFilter::Cache::Create(kDefaultImageFilterCacheSize); |
| } |
| |
| SkImageFilter::Cache* SkGpuDevice::getImageFilterCache() { |
| // We always return a transient cache, so it is freed after each |
| // filter traversal. |
| return SkGpuDevice::NewImageFilterCache(); |
| } |
| |
| #endif |