| |
| /* |
| * Copyright 2013 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| // This test only works with the GPU backend. |
| |
| #include "gm.h" |
| |
| #if SK_SUPPORT_GPU |
| |
| #include "GrBatchTarget.h" |
| #include "GrBufferAllocPool.h" |
| #include "GrContext.h" |
| #include "GrPathUtils.h" |
| #include "GrTest.h" |
| #include "GrTestBatch.h" |
| #include "SkColorPriv.h" |
| #include "SkDevice.h" |
| #include "SkGeometry.h" |
| |
| #include "effects/GrBezierEffect.h" |
| |
| static inline SkScalar eval_line(const SkPoint& p, const SkScalar lineEq[3], SkScalar sign) { |
| return sign * (lineEq[0] * p.fX + lineEq[1] * p.fY + lineEq[2]); |
| } |
| |
| namespace skiagm { |
| |
| class BezierCubicOrConicTestBatch : public GrTestBatch { |
| public: |
| struct Geometry : public GrTestBatch::Geometry { |
| SkRect fBounds; |
| }; |
| |
| const char* name() const SK_OVERRIDE { return "BezierCubicOrConicTestBatch"; } |
| |
| static GrBatch* Create(const GrGeometryProcessor* gp, const Geometry& geo, |
| const SkScalar klmEqs[9], SkScalar sign) { |
| return SkNEW_ARGS(BezierCubicOrConicTestBatch, (gp, geo, klmEqs, sign)); |
| } |
| |
| private: |
| BezierCubicOrConicTestBatch(const GrGeometryProcessor* gp, const Geometry& geo, |
| const SkScalar klmEqs[9], SkScalar sign) |
| : INHERITED(gp) { |
| for (int i = 0; i < 9; i++) { |
| fKlmEqs[i] = klmEqs[i]; |
| } |
| |
| fGeometry = geo; |
| fSign = sign; |
| } |
| |
| struct Vertex { |
| SkPoint fPosition; |
| float fKLM[4]; // The last value is ignored. The effect expects a vec4f. |
| }; |
| |
| Geometry* geoData(int index) SK_OVERRIDE { |
| SkASSERT(0 == index); |
| return &fGeometry; |
| } |
| |
| void onGenerateGeometry(GrBatchTarget* batchTarget, const GrPipeline* pipeline) SK_OVERRIDE { |
| size_t vertexStride = this->geometryProcessor()->getVertexStride(); |
| |
| const GrVertexBuffer* vertexBuffer; |
| int firstVertex; |
| |
| void* vertices = batchTarget->vertexPool()->makeSpace(vertexStride, |
| kVertsPerCubic, |
| &vertexBuffer, |
| &firstVertex); |
| |
| if (!vertices || !batchTarget->quadIndexBuffer()) { |
| SkDebugf("Could not allocate buffers\n"); |
| return; |
| } |
| |
| SkASSERT(vertexStride == sizeof(Vertex)); |
| Vertex* verts = reinterpret_cast<Vertex*>(vertices); |
| |
| verts[0].fPosition.setRectFan(fGeometry.fBounds.fLeft, fGeometry.fBounds.fTop, |
| fGeometry.fBounds.fRight, fGeometry.fBounds.fBottom, |
| sizeof(Vertex)); |
| for (int v = 0; v < 4; ++v) { |
| verts[v].fKLM[0] = eval_line(verts[v].fPosition, fKlmEqs + 0, fSign); |
| verts[v].fKLM[1] = eval_line(verts[v].fPosition, fKlmEqs + 3, fSign); |
| verts[v].fKLM[2] = eval_line(verts[v].fPosition, fKlmEqs + 6, 1.f); |
| } |
| |
| GrDrawTarget::DrawInfo drawInfo; |
| drawInfo.setPrimitiveType(kTriangleFan_GrPrimitiveType); |
| drawInfo.setVertexBuffer(vertexBuffer); |
| drawInfo.setStartVertex(firstVertex); |
| drawInfo.setVertexCount(kVertsPerCubic); |
| drawInfo.setStartIndex(0); |
| drawInfo.setIndexCount(kIndicesPerCubic); |
| drawInfo.setIndexBuffer(batchTarget->quadIndexBuffer()); |
| batchTarget->draw(drawInfo); |
| } |
| |
| Geometry fGeometry; |
| SkScalar fKlmEqs[9]; |
| SkScalar fSign; |
| |
| static const int kVertsPerCubic = 4; |
| static const int kIndicesPerCubic = 6; |
| |
| typedef GrTestBatch INHERITED; |
| }; |
| |
| /** |
| * This GM directly exercises effects that draw Bezier curves in the GPU backend. |
| */ |
| class BezierCubicEffects : public GM { |
| public: |
| BezierCubicEffects() { |
| this->setBGColor(0xFFFFFFFF); |
| } |
| |
| protected: |
| SkString onShortName() SK_OVERRIDE { |
| return SkString("bezier_cubic_effects"); |
| } |
| |
| SkISize onISize() SK_OVERRIDE { |
| return SkISize::Make(800, 800); |
| } |
| |
| void onDraw(SkCanvas* canvas) SK_OVERRIDE { |
| GrRenderTarget* rt = canvas->internal_private_accessTopLayerRenderTarget(); |
| if (NULL == rt) { |
| this->drawGpuOnlyMessage(canvas); |
| return; |
| } |
| GrContext* context = rt->getContext(); |
| if (NULL == context) { |
| return; |
| } |
| |
| struct Vertex { |
| SkPoint fPosition; |
| float fKLM[4]; // The last value is ignored. The effect expects a vec4f. |
| }; |
| |
| static const int kNumCubics = 15; |
| SkRandom rand; |
| |
| // Mult by 3 for each edge effect type |
| int numCols = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(kNumCubics*3))); |
| int numRows = SkScalarCeilToInt(SkIntToScalar(kNumCubics*3) / numCols); |
| SkScalar w = SkIntToScalar(rt->width()) / numCols; |
| SkScalar h = SkIntToScalar(rt->height()) / numRows; |
| int row = 0; |
| int col = 0; |
| |
| for (int i = 0; i < kNumCubics; ++i) { |
| SkPoint baseControlPts[] = { |
| {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}, |
| {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}, |
| {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}, |
| {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)} |
| }; |
| for(int edgeType = 0; edgeType < kGrProcessorEdgeTypeCnt; ++edgeType) { |
| SkAutoTUnref<GrGeometryProcessor> gp; |
| { // scope to contain GrTestTarget |
| GrTestTarget tt; |
| context->getTestTarget(&tt); |
| if (NULL == tt.target()) { |
| continue; |
| } |
| GrPrimitiveEdgeType et = (GrPrimitiveEdgeType)edgeType; |
| gp.reset(GrCubicEffect::Create(0xff000000, SkMatrix::I(), et, |
| *tt.target()->caps())); |
| if (!gp) { |
| continue; |
| } |
| } |
| |
| SkScalar x = SkScalarMul(col, w); |
| SkScalar y = SkScalarMul(row, h); |
| SkPoint controlPts[] = { |
| {x + baseControlPts[0].fX, y + baseControlPts[0].fY}, |
| {x + baseControlPts[1].fX, y + baseControlPts[1].fY}, |
| {x + baseControlPts[2].fX, y + baseControlPts[2].fY}, |
| {x + baseControlPts[3].fX, y + baseControlPts[3].fY} |
| }; |
| SkPoint chopped[10]; |
| SkScalar klmEqs[9]; |
| SkScalar klmSigns[3]; |
| int cnt = GrPathUtils::chopCubicAtLoopIntersection(controlPts, |
| chopped, |
| klmEqs, |
| klmSigns); |
| |
| SkPaint ctrlPtPaint; |
| ctrlPtPaint.setColor(rand.nextU() | 0xFF000000); |
| for (int i = 0; i < 4; ++i) { |
| canvas->drawCircle(controlPts[i].fX, controlPts[i].fY, 6.f, ctrlPtPaint); |
| } |
| |
| SkPaint polyPaint; |
| polyPaint.setColor(0xffA0A0A0); |
| polyPaint.setStrokeWidth(0); |
| polyPaint.setStyle(SkPaint::kStroke_Style); |
| canvas->drawPoints(SkCanvas::kPolygon_PointMode, 4, controlPts, polyPaint); |
| |
| SkPaint choppedPtPaint; |
| choppedPtPaint.setColor(~ctrlPtPaint.getColor() | 0xFF000000); |
| |
| for (int c = 0; c < cnt; ++c) { |
| SkPoint* pts = chopped + 3 * c; |
| |
| for (int i = 0; i < 4; ++i) { |
| canvas->drawCircle(pts[i].fX, pts[i].fY, 3.f, choppedPtPaint); |
| } |
| |
| SkRect bounds; |
| bounds.set(pts, 4); |
| |
| SkPaint boundsPaint; |
| boundsPaint.setColor(0xff808080); |
| boundsPaint.setStrokeWidth(0); |
| boundsPaint.setStyle(SkPaint::kStroke_Style); |
| canvas->drawRect(bounds, boundsPaint); |
| |
| GrTestTarget tt; |
| context->getTestTarget(&tt); |
| SkASSERT(tt.target()); |
| |
| GrPipelineBuilder pipelineBuilder; |
| pipelineBuilder.setRenderTarget(rt); |
| |
| BezierCubicOrConicTestBatch::Geometry geometry; |
| geometry.fColor = gp->color(); |
| geometry.fBounds = bounds; |
| |
| SkAutoTUnref<GrBatch> batch( |
| BezierCubicOrConicTestBatch::Create(gp, geometry, klmEqs, klmSigns[c])); |
| |
| tt.target()->drawBatch(&pipelineBuilder, batch, NULL); |
| } |
| ++col; |
| if (numCols == col) { |
| col = 0; |
| ++row; |
| } |
| } |
| } |
| } |
| |
| private: |
| typedef GM INHERITED; |
| }; |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * This GM directly exercises effects that draw Bezier curves in the GPU backend. |
| */ |
| class BezierConicEffects : public GM { |
| public: |
| BezierConicEffects() { |
| this->setBGColor(0xFFFFFFFF); |
| } |
| |
| protected: |
| SkString onShortName() SK_OVERRIDE { |
| return SkString("bezier_conic_effects"); |
| } |
| |
| SkISize onISize() SK_OVERRIDE { |
| return SkISize::Make(800, 800); |
| } |
| |
| |
| void onDraw(SkCanvas* canvas) SK_OVERRIDE { |
| GrRenderTarget* rt = canvas->internal_private_accessTopLayerRenderTarget(); |
| if (NULL == rt) { |
| this->drawGpuOnlyMessage(canvas); |
| return; |
| } |
| GrContext* context = rt->getContext(); |
| if (NULL == context) { |
| return; |
| } |
| |
| struct Vertex { |
| SkPoint fPosition; |
| float fKLM[4]; // The last value is ignored. The effect expects a vec4f. |
| }; |
| |
| static const int kNumConics = 10; |
| SkRandom rand; |
| |
| // Mult by 3 for each edge effect type |
| int numCols = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(kNumConics*3))); |
| int numRows = SkScalarCeilToInt(SkIntToScalar(kNumConics*3) / numCols); |
| SkScalar w = SkIntToScalar(rt->width()) / numCols; |
| SkScalar h = SkIntToScalar(rt->height()) / numRows; |
| int row = 0; |
| int col = 0; |
| |
| for (int i = 0; i < kNumConics; ++i) { |
| SkPoint baseControlPts[] = { |
| {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}, |
| {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}, |
| {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)} |
| }; |
| SkScalar weight = rand.nextRangeF(0.f, 2.f); |
| for(int edgeType = 0; edgeType < kGrProcessorEdgeTypeCnt; ++edgeType) { |
| SkAutoTUnref<GrGeometryProcessor> gp; |
| { // scope to contain GrTestTarget |
| GrTestTarget tt; |
| context->getTestTarget(&tt); |
| if (NULL == tt.target()) { |
| continue; |
| } |
| GrPrimitiveEdgeType et = (GrPrimitiveEdgeType)edgeType; |
| gp.reset(GrConicEffect::Create(0xff000000, SkMatrix::I(), et, |
| *tt.target()->caps(), SkMatrix::I())); |
| if (!gp) { |
| continue; |
| } |
| } |
| |
| SkScalar x = SkScalarMul(col, w); |
| SkScalar y = SkScalarMul(row, h); |
| SkPoint controlPts[] = { |
| {x + baseControlPts[0].fX, y + baseControlPts[0].fY}, |
| {x + baseControlPts[1].fX, y + baseControlPts[1].fY}, |
| {x + baseControlPts[2].fX, y + baseControlPts[2].fY} |
| }; |
| SkConic dst[4]; |
| SkScalar klmEqs[9]; |
| int cnt = chop_conic(controlPts, dst, weight); |
| GrPathUtils::getConicKLM(controlPts, weight, klmEqs); |
| |
| SkPaint ctrlPtPaint; |
| ctrlPtPaint.setColor(rand.nextU() | 0xFF000000); |
| for (int i = 0; i < 3; ++i) { |
| canvas->drawCircle(controlPts[i].fX, controlPts[i].fY, 6.f, ctrlPtPaint); |
| } |
| |
| SkPaint polyPaint; |
| polyPaint.setColor(0xffA0A0A0); |
| polyPaint.setStrokeWidth(0); |
| polyPaint.setStyle(SkPaint::kStroke_Style); |
| canvas->drawPoints(SkCanvas::kPolygon_PointMode, 3, controlPts, polyPaint); |
| |
| SkPaint choppedPtPaint; |
| choppedPtPaint.setColor(~ctrlPtPaint.getColor() | 0xFF000000); |
| |
| for (int c = 0; c < cnt; ++c) { |
| SkPoint* pts = dst[c].fPts; |
| for (int i = 0; i < 3; ++i) { |
| canvas->drawCircle(pts[i].fX, pts[i].fY, 3.f, choppedPtPaint); |
| } |
| |
| SkRect bounds; |
| //SkPoint bPts[] = {{0.f, 0.f}, {800.f, 800.f}}; |
| //bounds.set(bPts, 2); |
| bounds.set(pts, 3); |
| |
| SkPaint boundsPaint; |
| boundsPaint.setColor(0xff808080); |
| boundsPaint.setStrokeWidth(0); |
| boundsPaint.setStyle(SkPaint::kStroke_Style); |
| canvas->drawRect(bounds, boundsPaint); |
| |
| GrTestTarget tt; |
| context->getTestTarget(&tt); |
| SkASSERT(tt.target()); |
| |
| GrPipelineBuilder pipelineBuilder; |
| pipelineBuilder.setRenderTarget(rt); |
| |
| BezierCubicOrConicTestBatch::Geometry geometry; |
| geometry.fColor = gp->color(); |
| geometry.fBounds = bounds; |
| |
| SkAutoTUnref<GrBatch> batch( |
| BezierCubicOrConicTestBatch::Create(gp, geometry, klmEqs, 1.f)); |
| |
| tt.target()->drawBatch(&pipelineBuilder, batch, NULL); |
| } |
| ++col; |
| if (numCols == col) { |
| col = 0; |
| ++row; |
| } |
| } |
| } |
| } |
| |
| private: |
| // Uses the max curvature function for quads to estimate |
| // where to chop the conic. If the max curvature is not |
| // found along the curve segment it will return 1 and |
| // dst[0] is the original conic. If it returns 2 the dst[0] |
| // and dst[1] are the two new conics. |
| int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) { |
| SkScalar t = SkFindQuadMaxCurvature(src); |
| if (t == 0) { |
| if (dst) { |
| dst[0].set(src, weight); |
| } |
| return 1; |
| } else { |
| if (dst) { |
| SkConic conic; |
| conic.set(src, weight); |
| conic.chopAt(t, dst); |
| } |
| return 2; |
| } |
| } |
| |
| // Calls split_conic on the entire conic and then once more on each subsection. |
| // Most cases will result in either 1 conic (chop point is not within t range) |
| // or 3 points (split once and then one subsection is split again). |
| int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) { |
| SkConic dstTemp[2]; |
| int conicCnt = split_conic(src, dstTemp, weight); |
| if (2 == conicCnt) { |
| int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW); |
| conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW); |
| } else { |
| dst[0] = dstTemp[0]; |
| } |
| return conicCnt; |
| } |
| |
| typedef GM INHERITED; |
| }; |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| class BezierQuadTestBatch : public GrTestBatch { |
| public: |
| struct Geometry : public GrTestBatch::Geometry { |
| SkRect fBounds; |
| }; |
| |
| const char* name() const SK_OVERRIDE { return "BezierQuadTestBatch"; } |
| |
| static GrBatch* Create(const GrGeometryProcessor* gp, const Geometry& geo, |
| const GrPathUtils::QuadUVMatrix& devToUV) { |
| return SkNEW_ARGS(BezierQuadTestBatch, (gp, geo, devToUV)); |
| } |
| |
| private: |
| BezierQuadTestBatch(const GrGeometryProcessor* gp, const Geometry& geo, |
| const GrPathUtils::QuadUVMatrix& devToUV) |
| : INHERITED(gp) |
| , fGeometry(geo) |
| , fDevToUV(devToUV) { |
| } |
| |
| struct Vertex { |
| SkPoint fPosition; |
| float fKLM[4]; // The last value is ignored. The effect expects a vec4f. |
| }; |
| |
| Geometry* geoData(int index) SK_OVERRIDE { |
| SkASSERT(0 == index); |
| return &fGeometry; |
| } |
| |
| void onGenerateGeometry(GrBatchTarget* batchTarget, const GrPipeline* pipeline) SK_OVERRIDE { |
| size_t vertexStride = this->geometryProcessor()->getVertexStride(); |
| |
| const GrVertexBuffer* vertexBuffer; |
| int firstVertex; |
| |
| void* vertices = batchTarget->vertexPool()->makeSpace(vertexStride, |
| kVertsPerCubic, |
| &vertexBuffer, |
| &firstVertex); |
| |
| if (!vertices || !batchTarget->quadIndexBuffer()) { |
| SkDebugf("Could not allocate buffers\n"); |
| return; |
| } |
| |
| SkASSERT(vertexStride == sizeof(Vertex)); |
| Vertex* verts = reinterpret_cast<Vertex*>(vertices); |
| |
| verts[0].fPosition.setRectFan(fGeometry.fBounds.fLeft, fGeometry.fBounds.fTop, |
| fGeometry.fBounds.fRight, fGeometry.fBounds.fBottom, |
| sizeof(Vertex)); |
| |
| fDevToUV.apply<4, sizeof(Vertex), sizeof(SkPoint)>(verts); |
| |
| |
| GrDrawTarget::DrawInfo drawInfo; |
| drawInfo.setPrimitiveType(kTriangles_GrPrimitiveType); |
| drawInfo.setVertexBuffer(vertexBuffer); |
| drawInfo.setStartVertex(firstVertex); |
| drawInfo.setVertexCount(kVertsPerCubic); |
| drawInfo.setStartIndex(0); |
| drawInfo.setIndexCount(kIndicesPerCubic); |
| drawInfo.setIndexBuffer(batchTarget->quadIndexBuffer()); |
| batchTarget->draw(drawInfo); |
| } |
| |
| Geometry fGeometry; |
| GrPathUtils::QuadUVMatrix fDevToUV; |
| |
| static const int kVertsPerCubic = 4; |
| static const int kIndicesPerCubic = 6; |
| |
| typedef GrTestBatch INHERITED; |
| }; |
| |
| /** |
| * This GM directly exercises effects that draw Bezier quad curves in the GPU backend. |
| */ |
| class BezierQuadEffects : public GM { |
| public: |
| BezierQuadEffects() { |
| this->setBGColor(0xFFFFFFFF); |
| } |
| |
| protected: |
| SkString onShortName() SK_OVERRIDE { |
| return SkString("bezier_quad_effects"); |
| } |
| |
| SkISize onISize() SK_OVERRIDE { |
| return SkISize::Make(800, 800); |
| } |
| |
| |
| void onDraw(SkCanvas* canvas) SK_OVERRIDE { |
| GrRenderTarget* rt = canvas->internal_private_accessTopLayerRenderTarget(); |
| if (NULL == rt) { |
| this->drawGpuOnlyMessage(canvas); |
| return; |
| } |
| GrContext* context = rt->getContext(); |
| if (NULL == context) { |
| return; |
| } |
| |
| struct Vertex { |
| SkPoint fPosition; |
| float fUV[4]; // The last two values are ignored. The effect expects a vec4f. |
| }; |
| |
| static const int kNumQuads = 5; |
| SkRandom rand; |
| |
| int numCols = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(kNumQuads*3))); |
| int numRows = SkScalarCeilToInt(SkIntToScalar(kNumQuads*3) / numCols); |
| SkScalar w = SkIntToScalar(rt->width()) / numCols; |
| SkScalar h = SkIntToScalar(rt->height()) / numRows; |
| int row = 0; |
| int col = 0; |
| |
| for (int i = 0; i < kNumQuads; ++i) { |
| SkPoint baseControlPts[] = { |
| {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}, |
| {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}, |
| {rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)} |
| }; |
| for(int edgeType = 0; edgeType < kGrProcessorEdgeTypeCnt; ++edgeType) { |
| SkAutoTUnref<GrGeometryProcessor> gp; |
| { // scope to contain GrTestTarget |
| GrTestTarget tt; |
| context->getTestTarget(&tt); |
| if (NULL == tt.target()) { |
| continue; |
| } |
| GrPrimitiveEdgeType et = (GrPrimitiveEdgeType)edgeType; |
| gp.reset(GrQuadEffect::Create(0xff000000, SkMatrix::I(), et, |
| *tt.target()->caps(), SkMatrix::I())); |
| if (!gp) { |
| continue; |
| } |
| } |
| |
| SkScalar x = SkScalarMul(col, w); |
| SkScalar y = SkScalarMul(row, h); |
| SkPoint controlPts[] = { |
| {x + baseControlPts[0].fX, y + baseControlPts[0].fY}, |
| {x + baseControlPts[1].fX, y + baseControlPts[1].fY}, |
| {x + baseControlPts[2].fX, y + baseControlPts[2].fY} |
| }; |
| SkPoint chopped[5]; |
| int cnt = SkChopQuadAtMaxCurvature(controlPts, chopped); |
| |
| SkPaint ctrlPtPaint; |
| ctrlPtPaint.setColor(rand.nextU() | 0xFF000000); |
| for (int i = 0; i < 3; ++i) { |
| canvas->drawCircle(controlPts[i].fX, controlPts[i].fY, 6.f, ctrlPtPaint); |
| } |
| |
| SkPaint polyPaint; |
| polyPaint.setColor(0xffA0A0A0); |
| polyPaint.setStrokeWidth(0); |
| polyPaint.setStyle(SkPaint::kStroke_Style); |
| canvas->drawPoints(SkCanvas::kPolygon_PointMode, 3, controlPts, polyPaint); |
| |
| SkPaint choppedPtPaint; |
| choppedPtPaint.setColor(~ctrlPtPaint.getColor() | 0xFF000000); |
| |
| for (int c = 0; c < cnt; ++c) { |
| SkPoint* pts = chopped + 2 * c; |
| |
| for (int i = 0; i < 3; ++i) { |
| canvas->drawCircle(pts[i].fX, pts[i].fY, 3.f, choppedPtPaint); |
| } |
| |
| SkRect bounds; |
| bounds.set(pts, 3); |
| |
| SkPaint boundsPaint; |
| boundsPaint.setColor(0xff808080); |
| boundsPaint.setStrokeWidth(0); |
| boundsPaint.setStyle(SkPaint::kStroke_Style); |
| canvas->drawRect(bounds, boundsPaint); |
| |
| GrTestTarget tt; |
| context->getTestTarget(&tt); |
| SkASSERT(tt.target()); |
| |
| GrPipelineBuilder pipelineBuilder; |
| pipelineBuilder.setRenderTarget(rt); |
| |
| GrPathUtils::QuadUVMatrix DevToUV(pts); |
| |
| BezierQuadTestBatch::Geometry geometry; |
| geometry.fColor = gp->color(); |
| geometry.fBounds = bounds; |
| |
| SkAutoTUnref<GrBatch> batch(BezierQuadTestBatch::Create(gp, geometry, DevToUV)); |
| |
| tt.target()->drawBatch(&pipelineBuilder, batch, NULL); |
| } |
| ++col; |
| if (numCols == col) { |
| col = 0; |
| ++row; |
| } |
| } |
| } |
| } |
| |
| private: |
| typedef GM INHERITED; |
| }; |
| |
| DEF_GM( return SkNEW(BezierCubicEffects); ) |
| DEF_GM( return SkNEW(BezierConicEffects); ) |
| DEF_GM( return SkNEW(BezierQuadEffects); ) |
| |
| } |
| |
| #endif |