| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| #include "SkIntersections.h" |
| #include "SkOpSegment.h" |
| #include "SkPathWriter.h" |
| #include "SkTSort.h" |
| |
| #define F (false) // discard the edge |
| #define T (true) // keep the edge |
| |
| static const bool gUnaryActiveEdge[2][2] = { |
| // from=0 from=1 |
| // to=0,1 to=0,1 |
| {F, T}, {T, F}, |
| }; |
| |
| static const bool gActiveEdge[kXOR_PathOp + 1][2][2][2][2] = { |
| // miFrom=0 miFrom=1 |
| // miTo=0 miTo=1 miTo=0 miTo=1 |
| // suFrom=0 1 suFrom=0 1 suFrom=0 1 suFrom=0 1 |
| // suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 |
| {{{{F, F}, {F, F}}, {{T, F}, {T, F}}}, {{{T, T}, {F, F}}, {{F, T}, {T, F}}}}, // mi - su |
| {{{{F, F}, {F, F}}, {{F, T}, {F, T}}}, {{{F, F}, {T, T}}, {{F, T}, {T, F}}}}, // mi & su |
| {{{{F, T}, {T, F}}, {{T, T}, {F, F}}}, {{{T, F}, {T, F}}, {{F, F}, {F, F}}}}, // mi | su |
| {{{{F, T}, {T, F}}, {{T, F}, {F, T}}}, {{{T, F}, {F, T}}, {{F, T}, {T, F}}}}, // mi ^ su |
| }; |
| |
| #undef F |
| #undef T |
| |
| // OPTIMIZATION: does the following also work, and is it any faster? |
| // return outerWinding * innerWinding > 0 |
| // || ((outerWinding + innerWinding < 0) ^ ((outerWinding - innerWinding) < 0))) |
| bool SkOpSegment::UseInnerWinding(int outerWinding, int innerWinding) { |
| SkASSERT(outerWinding != SK_MaxS32); |
| SkASSERT(innerWinding != SK_MaxS32); |
| int absOut = abs(outerWinding); |
| int absIn = abs(innerWinding); |
| bool result = absOut == absIn ? outerWinding < 0 : absOut < absIn; |
| return result; |
| } |
| |
| bool SkOpSegment::activeAngle(int index, int* done, SkTDArray<SkOpAngle>* angles) { |
| if (activeAngleInner(index, done, angles)) { |
| return true; |
| } |
| int lesser = index; |
| while (--lesser >= 0 && equalPoints(index, lesser)) { |
| if (activeAngleOther(lesser, done, angles)) { |
| return true; |
| } |
| } |
| lesser = index; |
| do { |
| if (activeAngleOther(index, done, angles)) { |
| return true; |
| } |
| } while (++index < fTs.count() && equalPoints(index, lesser)); |
| return false; |
| } |
| |
| bool SkOpSegment::activeAngleOther(int index, int* done, SkTDArray<SkOpAngle>* angles) { |
| SkOpSpan* span = &fTs[index]; |
| SkOpSegment* other = span->fOther; |
| int oIndex = span->fOtherIndex; |
| return other->activeAngleInner(oIndex, done, angles); |
| } |
| |
| bool SkOpSegment::activeAngleInner(int index, int* done, SkTDArray<SkOpAngle>* angles) { |
| int next = nextExactSpan(index, 1); |
| if (next > 0) { |
| SkOpSpan& upSpan = fTs[index]; |
| if (upSpan.fWindValue || upSpan.fOppValue) { |
| addAngle(angles, index, next); |
| if (upSpan.fDone || upSpan.fUnsortableEnd) { |
| (*done)++; |
| } else if (upSpan.fWindSum != SK_MinS32) { |
| return true; |
| } |
| } else if (!upSpan.fDone) { |
| upSpan.fDone = true; |
| fDoneSpans++; |
| } |
| } |
| int prev = nextExactSpan(index, -1); |
| // edge leading into junction |
| if (prev >= 0) { |
| SkOpSpan& downSpan = fTs[prev]; |
| if (downSpan.fWindValue || downSpan.fOppValue) { |
| addAngle(angles, index, prev); |
| if (downSpan.fDone) { |
| (*done)++; |
| } else if (downSpan.fWindSum != SK_MinS32) { |
| return true; |
| } |
| } else if (!downSpan.fDone) { |
| downSpan.fDone = true; |
| fDoneSpans++; |
| } |
| } |
| return false; |
| } |
| |
| SkPoint SkOpSegment::activeLeftTop(bool onlySortable, int* firstT) const { |
| SkASSERT(!done()); |
| SkPoint topPt = {SK_ScalarMax, SK_ScalarMax}; |
| int count = fTs.count(); |
| // see if either end is not done since we want smaller Y of the pair |
| bool lastDone = true; |
| bool lastUnsortable = false; |
| double lastT = -1; |
| for (int index = 0; index < count; ++index) { |
| const SkOpSpan& span = fTs[index]; |
| if (onlySortable && (span.fUnsortableStart || lastUnsortable)) { |
| goto next; |
| } |
| if (span.fDone && lastDone) { |
| goto next; |
| } |
| if (approximately_negative(span.fT - lastT)) { |
| goto next; |
| } |
| { |
| const SkPoint& xy = xyAtT(&span); |
| if (topPt.fY > xy.fY || (topPt.fY == xy.fY && topPt.fX > xy.fX)) { |
| topPt = xy; |
| if (firstT) { |
| *firstT = index; |
| } |
| } |
| if (fVerb != SkPath::kLine_Verb && !lastDone) { |
| SkPoint curveTop = (*CurveTop[fVerb])(fPts, lastT, span.fT); |
| if (topPt.fY > curveTop.fY || (topPt.fY == curveTop.fY |
| && topPt.fX > curveTop.fX)) { |
| topPt = curveTop; |
| if (firstT) { |
| *firstT = index; |
| } |
| } |
| } |
| lastT = span.fT; |
| } |
| next: |
| lastDone = span.fDone; |
| lastUnsortable = span.fUnsortableEnd; |
| } |
| return topPt; |
| } |
| |
| bool SkOpSegment::activeOp(int index, int endIndex, int xorMiMask, int xorSuMask, SkPathOp op) { |
| int sumMiWinding = updateWinding(endIndex, index); |
| int sumSuWinding = updateOppWinding(endIndex, index); |
| if (fOperand) { |
| SkTSwap<int>(sumMiWinding, sumSuWinding); |
| } |
| int maxWinding, sumWinding, oppMaxWinding, oppSumWinding; |
| return activeOp(xorMiMask, xorSuMask, index, endIndex, op, &sumMiWinding, &sumSuWinding, |
| &maxWinding, &sumWinding, &oppMaxWinding, &oppSumWinding); |
| } |
| |
| bool SkOpSegment::activeOp(int xorMiMask, int xorSuMask, int index, int endIndex, SkPathOp op, |
| int* sumMiWinding, int* sumSuWinding, |
| int* maxWinding, int* sumWinding, int* oppMaxWinding, int* oppSumWinding) { |
| setUpWindings(index, endIndex, sumMiWinding, sumSuWinding, |
| maxWinding, sumWinding, oppMaxWinding, oppSumWinding); |
| bool miFrom; |
| bool miTo; |
| bool suFrom; |
| bool suTo; |
| if (operand()) { |
| miFrom = (*oppMaxWinding & xorMiMask) != 0; |
| miTo = (*oppSumWinding & xorMiMask) != 0; |
| suFrom = (*maxWinding & xorSuMask) != 0; |
| suTo = (*sumWinding & xorSuMask) != 0; |
| } else { |
| miFrom = (*maxWinding & xorMiMask) != 0; |
| miTo = (*sumWinding & xorMiMask) != 0; |
| suFrom = (*oppMaxWinding & xorSuMask) != 0; |
| suTo = (*oppSumWinding & xorSuMask) != 0; |
| } |
| bool result = gActiveEdge[op][miFrom][miTo][suFrom][suTo]; |
| #if DEBUG_ACTIVE_OP |
| SkDebugf("%s op=%s miFrom=%d miTo=%d suFrom=%d suTo=%d result=%d\n", __FUNCTION__, |
| kPathOpStr[op], miFrom, miTo, suFrom, suTo, result); |
| #endif |
| return result; |
| } |
| |
| bool SkOpSegment::activeWinding(int index, int endIndex) { |
| int sumWinding = updateWinding(endIndex, index); |
| int maxWinding; |
| return activeWinding(index, endIndex, &maxWinding, &sumWinding); |
| } |
| |
| bool SkOpSegment::activeWinding(int index, int endIndex, int* maxWinding, int* sumWinding) { |
| setUpWinding(index, endIndex, maxWinding, sumWinding); |
| bool from = *maxWinding != 0; |
| bool to = *sumWinding != 0; |
| bool result = gUnaryActiveEdge[from][to]; |
| return result; |
| } |
| |
| void SkOpSegment::addAngle(SkTDArray<SkOpAngle>* anglesPtr, int start, int end) const { |
| SkASSERT(start != end); |
| SkOpAngle* angle = anglesPtr->append(); |
| #if DEBUG_ANGLE |
| SkTDArray<SkOpAngle>& angles = *anglesPtr; |
| if (angles.count() > 1 && !fTs[start].fTiny) { |
| SkPoint angle0Pt = (*CurvePointAtT[angles[0].verb()])(angles[0].pts(), |
| (*angles[0].spans())[angles[0].start()].fT); |
| SkPoint newPt = (*CurvePointAtT[fVerb])(fPts, fTs[start].fT); |
| bool match = AlmostEqualUlps(angle0Pt.fX, newPt.fX); |
| match &= AlmostEqualUlps(angle0Pt.fY, newPt.fY); |
| if (!match) { |
| SkDebugf("%s no match\n", __FUNCTION__); |
| SkASSERT(0); |
| } |
| } |
| #endif |
| angle->set(fPts, fVerb, this, start, end, fTs); |
| } |
| |
| void SkOpSegment::addCancelOutsides(double tStart, double oStart, SkOpSegment* other, double oEnd) { |
| int tIndex = -1; |
| int tCount = fTs.count(); |
| int oIndex = -1; |
| int oCount = other->fTs.count(); |
| do { |
| ++tIndex; |
| } while (!approximately_negative(tStart - fTs[tIndex].fT) && tIndex < tCount); |
| int tIndexStart = tIndex; |
| do { |
| ++oIndex; |
| } while (!approximately_negative(oStart - other->fTs[oIndex].fT) && oIndex < oCount); |
| int oIndexStart = oIndex; |
| double nextT; |
| do { |
| nextT = fTs[++tIndex].fT; |
| } while (nextT < 1 && approximately_negative(nextT - tStart)); |
| double oNextT; |
| do { |
| oNextT = other->fTs[++oIndex].fT; |
| } while (oNextT < 1 && approximately_negative(oNextT - oStart)); |
| // at this point, spans before and after are at: |
| // fTs[tIndexStart - 1], fTs[tIndexStart], fTs[tIndex] |
| // if tIndexStart == 0, no prior span |
| // if nextT == 1, no following span |
| |
| // advance the span with zero winding |
| // if the following span exists (not past the end, non-zero winding) |
| // connect the two edges |
| if (!fTs[tIndexStart].fWindValue) { |
| if (tIndexStart > 0 && fTs[tIndexStart - 1].fWindValue) { |
| #if DEBUG_CONCIDENT |
| SkDebugf("%s 1 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n", |
| __FUNCTION__, fID, other->fID, tIndexStart - 1, |
| fTs[tIndexStart].fT, xyAtT(tIndexStart).fX, |
| xyAtT(tIndexStart).fY); |
| #endif |
| addTPair(fTs[tIndexStart].fT, other, other->fTs[oIndex].fT, false, |
| fTs[tIndexStart].fPt); |
| } |
| if (nextT < 1 && fTs[tIndex].fWindValue) { |
| #if DEBUG_CONCIDENT |
| SkDebugf("%s 2 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n", |
| __FUNCTION__, fID, other->fID, tIndex, |
| fTs[tIndex].fT, xyAtT(tIndex).fX, |
| xyAtT(tIndex).fY); |
| #endif |
| addTPair(fTs[tIndex].fT, other, other->fTs[oIndexStart].fT, false, fTs[tIndex].fPt); |
| } |
| } else { |
| SkASSERT(!other->fTs[oIndexStart].fWindValue); |
| if (oIndexStart > 0 && other->fTs[oIndexStart - 1].fWindValue) { |
| #if DEBUG_CONCIDENT |
| SkDebugf("%s 3 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n", |
| __FUNCTION__, fID, other->fID, oIndexStart - 1, |
| other->fTs[oIndexStart].fT, other->xyAtT(oIndexStart).fX, |
| other->xyAtT(oIndexStart).fY); |
| other->debugAddTPair(other->fTs[oIndexStart].fT, *this, fTs[tIndex].fT); |
| #endif |
| } |
| if (oNextT < 1 && other->fTs[oIndex].fWindValue) { |
| #if DEBUG_CONCIDENT |
| SkDebugf("%s 4 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n", |
| __FUNCTION__, fID, other->fID, oIndex, |
| other->fTs[oIndex].fT, other->xyAtT(oIndex).fX, |
| other->xyAtT(oIndex).fY); |
| other->debugAddTPair(other->fTs[oIndex].fT, *this, fTs[tIndexStart].fT); |
| #endif |
| } |
| } |
| } |
| |
| void SkOpSegment::addCoinOutsides(const SkTDArray<double>& outsideTs, SkOpSegment* other, |
| double oEnd) { |
| // walk this to outsideTs[0] |
| // walk other to outsideTs[1] |
| // if either is > 0, add a pointer to the other, copying adjacent winding |
| int tIndex = -1; |
| int oIndex = -1; |
| double tStart = outsideTs[0]; |
| double oStart = outsideTs[1]; |
| do { |
| ++tIndex; |
| } while (!approximately_negative(tStart - fTs[tIndex].fT)); |
| SkPoint ptStart = fTs[tIndex].fPt; |
| do { |
| ++oIndex; |
| } while (!approximately_negative(oStart - other->fTs[oIndex].fT)); |
| if (tIndex > 0 || oIndex > 0 || fOperand != other->fOperand) { |
| addTPair(tStart, other, oStart, false, ptStart); |
| } |
| tStart = fTs[tIndex].fT; |
| oStart = other->fTs[oIndex].fT; |
| do { |
| double nextT; |
| do { |
| nextT = fTs[++tIndex].fT; |
| } while (approximately_negative(nextT - tStart)); |
| tStart = nextT; |
| ptStart = fTs[tIndex].fPt; |
| do { |
| nextT = other->fTs[++oIndex].fT; |
| } while (approximately_negative(nextT - oStart)); |
| oStart = nextT; |
| if (tStart == 1 && oStart == 1 && fOperand == other->fOperand) { |
| break; |
| } |
| addTPair(tStart, other, oStart, false, ptStart); |
| } while (tStart < 1 && oStart < 1 && !approximately_negative(oEnd - oStart)); |
| } |
| |
| void SkOpSegment::addCubic(const SkPoint pts[4], bool operand, bool evenOdd) { |
| init(pts, SkPath::kCubic_Verb, operand, evenOdd); |
| fBounds.setCubicBounds(pts); |
| } |
| |
| void SkOpSegment::addCurveTo(int start, int end, SkPathWriter* path, bool active) const { |
| SkPoint edge[4]; |
| const SkPoint* ePtr; |
| int lastT = fTs.count() - 1; |
| if (lastT < 0 || (start == 0 && end == lastT) || (start == lastT && end == 0)) { |
| ePtr = fPts; |
| } else { |
| // OPTIMIZE? if not active, skip remainder and return xyAtT(end) |
| subDivide(start, end, edge); |
| ePtr = edge; |
| } |
| if (active) { |
| bool reverse = ePtr == fPts && start != 0; |
| if (reverse) { |
| path->deferredMoveLine(ePtr[fVerb]); |
| switch (fVerb) { |
| case SkPath::kLine_Verb: |
| path->deferredLine(ePtr[0]); |
| break; |
| case SkPath::kQuad_Verb: |
| path->quadTo(ePtr[1], ePtr[0]); |
| break; |
| case SkPath::kCubic_Verb: |
| path->cubicTo(ePtr[2], ePtr[1], ePtr[0]); |
| break; |
| default: |
| SkASSERT(0); |
| } |
| // return ePtr[0]; |
| } else { |
| path->deferredMoveLine(ePtr[0]); |
| switch (fVerb) { |
| case SkPath::kLine_Verb: |
| path->deferredLine(ePtr[1]); |
| break; |
| case SkPath::kQuad_Verb: |
| path->quadTo(ePtr[1], ePtr[2]); |
| break; |
| case SkPath::kCubic_Verb: |
| path->cubicTo(ePtr[1], ePtr[2], ePtr[3]); |
| break; |
| default: |
| SkASSERT(0); |
| } |
| } |
| } |
| // return ePtr[fVerb]; |
| } |
| |
| void SkOpSegment::addLine(const SkPoint pts[2], bool operand, bool evenOdd) { |
| init(pts, SkPath::kLine_Verb, operand, evenOdd); |
| fBounds.set(pts, 2); |
| } |
| |
| // add 2 to edge or out of range values to get T extremes |
| void SkOpSegment::addOtherT(int index, double otherT, int otherIndex) { |
| SkOpSpan& span = fTs[index]; |
| if (precisely_zero(otherT)) { |
| otherT = 0; |
| } else if (precisely_equal(otherT, 1)) { |
| otherT = 1; |
| } |
| span.fOtherT = otherT; |
| span.fOtherIndex = otherIndex; |
| } |
| |
| void SkOpSegment::addQuad(const SkPoint pts[3], bool operand, bool evenOdd) { |
| init(pts, SkPath::kQuad_Verb, operand, evenOdd); |
| fBounds.setQuadBounds(pts); |
| } |
| |
| // Defer all coincident edge processing until |
| // after normal intersections have been computed |
| |
| // no need to be tricky; insert in normal T order |
| // resolve overlapping ts when considering coincidence later |
| |
| // add non-coincident intersection. Resulting edges are sorted in T. |
| int SkOpSegment::addT(SkOpSegment* other, const SkPoint& pt, double newT) { |
| if (precisely_zero(newT)) { |
| newT = 0; |
| } else if (precisely_equal(newT, 1)) { |
| newT = 1; |
| } |
| // FIXME: in the pathological case where there is a ton of intercepts, |
| // binary search? |
| int insertedAt = -1; |
| size_t tCount = fTs.count(); |
| for (size_t index = 0; index < tCount; ++index) { |
| // OPTIMIZATION: if there are three or more identical Ts, then |
| // the fourth and following could be further insertion-sorted so |
| // that all the edges are clockwise or counterclockwise. |
| // This could later limit segment tests to the two adjacent |
| // neighbors, although it doesn't help with determining which |
| // circular direction to go in. |
| if (newT < fTs[index].fT) { |
| insertedAt = index; |
| break; |
| } |
| } |
| SkOpSpan* span; |
| if (insertedAt >= 0) { |
| span = fTs.insert(insertedAt); |
| } else { |
| insertedAt = tCount; |
| span = fTs.append(); |
| } |
| span->fT = newT; |
| span->fOther = other; |
| span->fPt = pt; |
| span->fWindSum = SK_MinS32; |
| span->fOppSum = SK_MinS32; |
| span->fWindValue = 1; |
| span->fOppValue = 0; |
| span->fTiny = false; |
| span->fLoop = false; |
| if ((span->fDone = newT == 1)) { |
| ++fDoneSpans; |
| } |
| span->fUnsortableStart = false; |
| span->fUnsortableEnd = false; |
| int less = -1; |
| while (&span[less + 1] - fTs.begin() > 0 && xyAtT(&span[less]) == xyAtT(span)) { |
| if (span[less].fDone) { |
| break; |
| } |
| double tInterval = newT - span[less].fT; |
| if (precisely_negative(tInterval)) { |
| break; |
| } |
| if (fVerb == SkPath::kCubic_Verb) { |
| double tMid = newT - tInterval / 2; |
| SkDPoint midPt = dcubic_xy_at_t(fPts, tMid); |
| if (!midPt.approximatelyEqual(xyAtT(span))) { |
| break; |
| } |
| } |
| span[less].fTiny = true; |
| span[less].fDone = true; |
| if (approximately_negative(newT - span[less].fT)) { |
| if (approximately_greater_than_one(newT)) { |
| SkASSERT(&span[less] - fTs.begin() < fTs.count()); |
| span[less].fUnsortableStart = true; |
| if (&span[less - 1] - fTs.begin() >= 0) { |
| span[less - 1].fUnsortableEnd = true; |
| } |
| } |
| if (approximately_less_than_zero(span[less].fT)) { |
| SkASSERT(&span[less + 1] - fTs.begin() < fTs.count()); |
| SkASSERT(&span[less] - fTs.begin() >= 0); |
| span[less + 1].fUnsortableStart = true; |
| span[less].fUnsortableEnd = true; |
| } |
| } |
| ++fDoneSpans; |
| --less; |
| } |
| int more = 1; |
| while (fTs.end() - &span[more - 1] > 1 && xyAtT(&span[more]) == xyAtT(span)) { |
| if (span[more - 1].fDone) { |
| break; |
| } |
| double tEndInterval = span[more].fT - newT; |
| if (precisely_negative(tEndInterval)) { |
| break; |
| } |
| if (fVerb == SkPath::kCubic_Verb) { |
| double tMid = newT - tEndInterval / 2; |
| SkDPoint midEndPt = dcubic_xy_at_t(fPts, tMid); |
| if (!midEndPt.approximatelyEqual(xyAtT(span))) { |
| break; |
| } |
| } |
| span[more - 1].fTiny = true; |
| span[more - 1].fDone = true; |
| if (approximately_negative(span[more].fT - newT)) { |
| if (approximately_greater_than_one(span[more].fT)) { |
| span[more + 1].fUnsortableStart = true; |
| span[more].fUnsortableEnd = true; |
| } |
| if (approximately_less_than_zero(newT)) { |
| span[more].fUnsortableStart = true; |
| span[more - 1].fUnsortableEnd = true; |
| } |
| } |
| ++fDoneSpans; |
| ++more; |
| } |
| return insertedAt; |
| } |
| |
| // set spans from start to end to decrement by one |
| // note this walks other backwards |
| // FIMXE: there's probably an edge case that can be constructed where |
| // two span in one segment are separated by float epsilon on one span but |
| // not the other, if one segment is very small. For this |
| // case the counts asserted below may or may not be enough to separate the |
| // spans. Even if the counts work out, what if the spans aren't correctly |
| // sorted? It feels better in such a case to match the span's other span |
| // pointer since both coincident segments must contain the same spans. |
| void SkOpSegment::addTCancel(double startT, double endT, SkOpSegment* other, |
| double oStartT, double oEndT) { |
| SkASSERT(!approximately_negative(endT - startT)); |
| SkASSERT(!approximately_negative(oEndT - oStartT)); |
| bool binary = fOperand != other->fOperand; |
| int index = 0; |
| while (!approximately_negative(startT - fTs[index].fT)) { |
| ++index; |
| } |
| int oIndex = other->fTs.count(); |
| while (approximately_positive(other->fTs[--oIndex].fT - oEndT)) |
| ; |
| double tRatio = (oEndT - oStartT) / (endT - startT); |
| SkOpSpan* test = &fTs[index]; |
| SkOpSpan* oTest = &other->fTs[oIndex]; |
| SkTDArray<double> outsideTs; |
| SkTDArray<double> oOutsideTs; |
| do { |
| bool decrement = test->fWindValue && oTest->fWindValue && !binary; |
| bool track = test->fWindValue || oTest->fWindValue; |
| double testT = test->fT; |
| double oTestT = oTest->fT; |
| SkOpSpan* span = test; |
| do { |
| if (decrement) { |
| decrementSpan(span); |
| } else if (track && span->fT < 1 && oTestT < 1) { |
| TrackOutside(&outsideTs, span->fT, oTestT); |
| } |
| span = &fTs[++index]; |
| } while (approximately_negative(span->fT - testT)); |
| SkOpSpan* oSpan = oTest; |
| double otherTMatchStart = oEndT - (span->fT - startT) * tRatio; |
| double otherTMatchEnd = oEndT - (test->fT - startT) * tRatio; |
| SkDEBUGCODE(int originalWindValue = oSpan->fWindValue); |
| while (approximately_negative(otherTMatchStart - oSpan->fT) |
| && !approximately_negative(otherTMatchEnd - oSpan->fT)) { |
| #ifdef SK_DEBUG |
| SkASSERT(originalWindValue == oSpan->fWindValue); |
| #endif |
| if (decrement) { |
| other->decrementSpan(oSpan); |
| } else if (track && oSpan->fT < 1 && testT < 1) { |
| TrackOutside(&oOutsideTs, oSpan->fT, testT); |
| } |
| if (!oIndex) { |
| break; |
| } |
| oSpan = &other->fTs[--oIndex]; |
| } |
| test = span; |
| oTest = oSpan; |
| } while (!approximately_negative(endT - test->fT)); |
| SkASSERT(!oIndex || approximately_negative(oTest->fT - oStartT)); |
| // FIXME: determine if canceled edges need outside ts added |
| if (!done() && outsideTs.count()) { |
| double tStart = outsideTs[0]; |
| double oStart = outsideTs[1]; |
| addCancelOutsides(tStart, oStart, other, oEndT); |
| int count = outsideTs.count(); |
| if (count > 2) { |
| double tStart = outsideTs[count - 2]; |
| double oStart = outsideTs[count - 1]; |
| addCancelOutsides(tStart, oStart, other, oEndT); |
| } |
| } |
| if (!other->done() && oOutsideTs.count()) { |
| double tStart = oOutsideTs[0]; |
| double oStart = oOutsideTs[1]; |
| other->addCancelOutsides(tStart, oStart, this, endT); |
| } |
| } |
| |
| int SkOpSegment::addSelfT(SkOpSegment* other, const SkPoint& pt, double newT) { |
| int result = addT(other, pt, newT); |
| SkOpSpan* span = &fTs[result]; |
| span->fLoop = true; |
| return result; |
| } |
| |
| int SkOpSegment::addUnsortableT(SkOpSegment* other, bool start, const SkPoint& pt, double newT) { |
| int result = addT(other, pt, newT); |
| SkOpSpan* span = &fTs[result]; |
| if (start) { |
| if (result > 0) { |
| span[result - 1].fUnsortableEnd = true; |
| } |
| span[result].fUnsortableStart = true; |
| } else { |
| span[result].fUnsortableEnd = true; |
| if (result + 1 < fTs.count()) { |
| span[result + 1].fUnsortableStart = true; |
| } |
| } |
| return result; |
| } |
| |
| int SkOpSegment::bumpCoincidentThis(const SkOpSpan& oTest, bool opp, int index, |
| SkTDArray<double>* outsideTs) { |
| int oWindValue = oTest.fWindValue; |
| int oOppValue = oTest.fOppValue; |
| if (opp) { |
| SkTSwap<int>(oWindValue, oOppValue); |
| } |
| SkOpSpan* const test = &fTs[index]; |
| SkOpSpan* end = test; |
| const double oStartT = oTest.fT; |
| do { |
| if (bumpSpan(end, oWindValue, oOppValue)) { |
| TrackOutside(outsideTs, end->fT, oStartT); |
| } |
| end = &fTs[++index]; |
| } while (approximately_negative(end->fT - test->fT)); |
| return index; |
| } |
| |
| // because of the order in which coincidences are resolved, this and other |
| // may not have the same intermediate points. Compute the corresponding |
| // intermediate T values (using this as the master, other as the follower) |
| // and walk other conditionally -- hoping that it catches up in the end |
| int SkOpSegment::bumpCoincidentOther(const SkOpSpan& test, double oEndT, int& oIndex, |
| SkTDArray<double>* oOutsideTs) { |
| SkOpSpan* const oTest = &fTs[oIndex]; |
| SkOpSpan* oEnd = oTest; |
| const double startT = test.fT; |
| const double oStartT = oTest->fT; |
| while (!approximately_negative(oEndT - oEnd->fT) |
| && approximately_negative(oEnd->fT - oStartT)) { |
| zeroSpan(oEnd); |
| TrackOutside(oOutsideTs, oEnd->fT, startT); |
| oEnd = &fTs[++oIndex]; |
| } |
| return oIndex; |
| } |
| |
| // FIXME: need to test this case: |
| // contourA has two segments that are coincident |
| // contourB has two segments that are coincident in the same place |
| // each ends up with +2/0 pairs for winding count |
| // since logic below doesn't transfer count (only increments/decrements) can this be |
| // resolved to +4/0 ? |
| |
| // set spans from start to end to increment the greater by one and decrement |
| // the lesser |
| void SkOpSegment::addTCoincident(double startT, double endT, SkOpSegment* other, double oStartT, |
| double oEndT) { |
| SkASSERT(!approximately_negative(endT - startT)); |
| SkASSERT(!approximately_negative(oEndT - oStartT)); |
| bool opp = fOperand ^ other->fOperand; |
| int index = 0; |
| while (!approximately_negative(startT - fTs[index].fT)) { |
| ++index; |
| } |
| int oIndex = 0; |
| while (!approximately_negative(oStartT - other->fTs[oIndex].fT)) { |
| ++oIndex; |
| } |
| SkOpSpan* test = &fTs[index]; |
| SkOpSpan* oTest = &other->fTs[oIndex]; |
| SkTDArray<double> outsideTs; |
| SkTDArray<double> oOutsideTs; |
| do { |
| // if either span has an opposite value and the operands don't match, resolve first |
| // SkASSERT(!test->fDone || !oTest->fDone); |
| if (test->fDone || oTest->fDone) { |
| index = advanceCoincidentThis(oTest, opp, index); |
| oIndex = other->advanceCoincidentOther(test, oEndT, oIndex); |
| } else { |
| index = bumpCoincidentThis(*oTest, opp, index, &outsideTs); |
| oIndex = other->bumpCoincidentOther(*test, oEndT, oIndex, &oOutsideTs); |
| } |
| test = &fTs[index]; |
| oTest = &other->fTs[oIndex]; |
| } while (!approximately_negative(endT - test->fT)); |
| SkASSERT(approximately_negative(oTest->fT - oEndT)); |
| SkASSERT(approximately_negative(oEndT - oTest->fT)); |
| if (!done() && outsideTs.count()) { |
| addCoinOutsides(outsideTs, other, oEndT); |
| } |
| if (!other->done() && oOutsideTs.count()) { |
| other->addCoinOutsides(oOutsideTs, this, endT); |
| } |
| } |
| |
| // FIXME: this doesn't prevent the same span from being added twice |
| // fix in caller, SkASSERT here? |
| void SkOpSegment::addTPair(double t, SkOpSegment* other, double otherT, bool borrowWind, |
| const SkPoint& pt) { |
| int tCount = fTs.count(); |
| for (int tIndex = 0; tIndex < tCount; ++tIndex) { |
| const SkOpSpan& span = fTs[tIndex]; |
| if (!approximately_negative(span.fT - t)) { |
| break; |
| } |
| if (approximately_negative(span.fT - t) && span.fOther == other |
| && approximately_equal(span.fOtherT, otherT)) { |
| #if DEBUG_ADD_T_PAIR |
| SkDebugf("%s addTPair duplicate this=%d %1.9g other=%d %1.9g\n", |
| __FUNCTION__, fID, t, other->fID, otherT); |
| #endif |
| return; |
| } |
| } |
| #if DEBUG_ADD_T_PAIR |
| SkDebugf("%s addTPair this=%d %1.9g other=%d %1.9g\n", |
| __FUNCTION__, fID, t, other->fID, otherT); |
| #endif |
| int insertedAt = addT(other, pt, t); |
| int otherInsertedAt = other->addT(this, pt, otherT); |
| addOtherT(insertedAt, otherT, otherInsertedAt); |
| other->addOtherT(otherInsertedAt, t, insertedAt); |
| matchWindingValue(insertedAt, t, borrowWind); |
| other->matchWindingValue(otherInsertedAt, otherT, borrowWind); |
| } |
| |
| void SkOpSegment::addTwoAngles(int start, int end, SkTDArray<SkOpAngle>* angles) const { |
| // add edge leading into junction |
| int min = SkMin32(end, start); |
| if (fTs[min].fWindValue > 0 || fTs[min].fOppValue > 0) { |
| addAngle(angles, end, start); |
| } |
| // add edge leading away from junction |
| int step = SkSign32(end - start); |
| int tIndex = nextExactSpan(end, step); |
| min = SkMin32(end, tIndex); |
| if (tIndex >= 0 && (fTs[min].fWindValue > 0 || fTs[min].fOppValue > 0)) { |
| addAngle(angles, end, tIndex); |
| } |
| } |
| |
| int SkOpSegment::advanceCoincidentThis(const SkOpSpan* oTest, bool opp, int index) { |
| SkOpSpan* const test = &fTs[index]; |
| SkOpSpan* end; |
| do { |
| end = &fTs[++index]; |
| } while (approximately_negative(end->fT - test->fT)); |
| return index; |
| } |
| |
| int SkOpSegment::advanceCoincidentOther(const SkOpSpan* test, double oEndT, int oIndex) { |
| SkOpSpan* const oTest = &fTs[oIndex]; |
| SkOpSpan* oEnd = oTest; |
| const double oStartT = oTest->fT; |
| while (!approximately_negative(oEndT - oEnd->fT) |
| && approximately_negative(oEnd->fT - oStartT)) { |
| oEnd = &fTs[++oIndex]; |
| } |
| return oIndex; |
| } |
| |
| bool SkOpSegment::betweenTs(int lesser, double testT, int greater) const { |
| if (lesser > greater) { |
| SkTSwap<int>(lesser, greater); |
| } |
| return approximately_between(fTs[lesser].fT, testT, fTs[greater].fT); |
| } |
| |
| void SkOpSegment::buildAngles(int index, SkTDArray<SkOpAngle>* angles, bool includeOpp) const { |
| double referenceT = fTs[index].fT; |
| int lesser = index; |
| while (--lesser >= 0 && (includeOpp || fTs[lesser].fOther->fOperand == fOperand) |
| && precisely_negative(referenceT - fTs[lesser].fT)) { |
| buildAnglesInner(lesser, angles); |
| } |
| do { |
| buildAnglesInner(index, angles); |
| } while (++index < fTs.count() && (includeOpp || fTs[index].fOther->fOperand == fOperand) |
| && precisely_negative(fTs[index].fT - referenceT)); |
| } |
| |
| void SkOpSegment::buildAnglesInner(int index, SkTDArray<SkOpAngle>* angles) const { |
| const SkOpSpan* span = &fTs[index]; |
| SkOpSegment* other = span->fOther; |
| // if there is only one live crossing, and no coincidence, continue |
| // in the same direction |
| // if there is coincidence, the only choice may be to reverse direction |
| // find edge on either side of intersection |
| int oIndex = span->fOtherIndex; |
| // if done == -1, prior span has already been processed |
| int step = 1; |
| int next = other->nextExactSpan(oIndex, step); |
| if (next < 0) { |
| step = -step; |
| next = other->nextExactSpan(oIndex, step); |
| } |
| // add candidate into and away from junction |
| other->addTwoAngles(next, oIndex, angles); |
| } |
| |
| int SkOpSegment::computeSum(int startIndex, int endIndex, bool binary) { |
| SkTDArray<SkOpAngle> angles; |
| addTwoAngles(startIndex, endIndex, &angles); |
| buildAngles(endIndex, &angles, false); |
| // OPTIMIZATION: check all angles to see if any have computed wind sum |
| // before sorting (early exit if none) |
| SkTDArray<SkOpAngle*> sorted; |
| bool sortable = SortAngles(angles, &sorted); |
| #if DEBUG_SORT |
| sorted[0]->segment()->debugShowSort(__FUNCTION__, sorted, 0, 0, 0); |
| #endif |
| if (!sortable) { |
| return SK_MinS32; |
| } |
| int angleCount = angles.count(); |
| const SkOpAngle* angle; |
| const SkOpSegment* base; |
| int winding; |
| int oWinding; |
| int firstIndex = 0; |
| do { |
| angle = sorted[firstIndex]; |
| base = angle->segment(); |
| winding = base->windSum(angle); |
| if (winding != SK_MinS32) { |
| oWinding = base->oppSum(angle); |
| break; |
| } |
| if (++firstIndex == angleCount) { |
| return SK_MinS32; |
| } |
| } while (true); |
| // turn winding into contourWinding |
| int spanWinding = base->spanSign(angle); |
| bool inner = UseInnerWinding(winding + spanWinding, winding); |
| #if DEBUG_WINDING |
| SkDebugf("%s spanWinding=%d winding=%d sign=%d inner=%d result=%d\n", __FUNCTION__, |
| spanWinding, winding, angle->sign(), inner, |
| inner ? winding + spanWinding : winding); |
| #endif |
| if (inner) { |
| winding += spanWinding; |
| } |
| #if DEBUG_SORT |
| base->debugShowSort(__FUNCTION__, sorted, firstIndex, winding, oWinding); |
| #endif |
| int nextIndex = firstIndex + 1; |
| int lastIndex = firstIndex != 0 ? firstIndex : angleCount; |
| winding -= base->spanSign(angle); |
| oWinding -= base->oppSign(angle); |
| do { |
| if (nextIndex == angleCount) { |
| nextIndex = 0; |
| } |
| angle = sorted[nextIndex]; |
| SkOpSegment* segment = angle->segment(); |
| bool opp = base->fOperand ^ segment->fOperand; |
| int maxWinding, oMaxWinding; |
| int spanSign = segment->spanSign(angle); |
| int oppoSign = segment->oppSign(angle); |
| if (opp) { |
| oMaxWinding = oWinding; |
| oWinding -= spanSign; |
| maxWinding = winding; |
| if (oppoSign) { |
| winding -= oppoSign; |
| } |
| } else { |
| maxWinding = winding; |
| winding -= spanSign; |
| oMaxWinding = oWinding; |
| if (oppoSign) { |
| oWinding -= oppoSign; |
| } |
| } |
| if (segment->windSum(angle) == SK_MinS32) { |
| if (opp) { |
| if (UseInnerWinding(oMaxWinding, oWinding)) { |
| oMaxWinding = oWinding; |
| } |
| if (oppoSign && UseInnerWinding(maxWinding, winding)) { |
| maxWinding = winding; |
| } |
| (void) segment->markAndChaseWinding(angle, oMaxWinding, maxWinding); |
| } else { |
| if (UseInnerWinding(maxWinding, winding)) { |
| maxWinding = winding; |
| } |
| if (oppoSign && UseInnerWinding(oMaxWinding, oWinding)) { |
| oMaxWinding = oWinding; |
| } |
| (void) segment->markAndChaseWinding(angle, maxWinding, |
| binary ? oMaxWinding : 0); |
| } |
| } |
| } while (++nextIndex != lastIndex); |
| int minIndex = SkMin32(startIndex, endIndex); |
| return windSum(minIndex); |
| } |
| |
| int SkOpSegment::crossedSpanY(const SkPoint& basePt, SkScalar* bestY, double* hitT, |
| bool* hitSomething, double mid, bool opp, bool current) const { |
| SkScalar bottom = fBounds.fBottom; |
| int bestTIndex = -1; |
| if (bottom <= *bestY) { |
| return bestTIndex; |
| } |
| SkScalar top = fBounds.fTop; |
| if (top >= basePt.fY) { |
| return bestTIndex; |
| } |
| if (fBounds.fLeft > basePt.fX) { |
| return bestTIndex; |
| } |
| if (fBounds.fRight < basePt.fX) { |
| return bestTIndex; |
| } |
| if (fBounds.fLeft == fBounds.fRight) { |
| // if vertical, and directly above test point, wait for another one |
| return AlmostEqualUlps(basePt.fX, fBounds.fLeft) ? SK_MinS32 : bestTIndex; |
| } |
| // intersect ray starting at basePt with edge |
| SkIntersections intersections; |
| // OPTIMIZE: use specialty function that intersects ray with curve, |
| // returning t values only for curve (we don't care about t on ray) |
| int pts = (intersections.*CurveVertical[fVerb])(fPts, top, bottom, basePt.fX, false); |
| if (pts == 0 || (current && pts == 1)) { |
| return bestTIndex; |
| } |
| if (current) { |
| SkASSERT(pts > 1); |
| int closestIdx = 0; |
| double closest = fabs(intersections[0][0] - mid); |
| for (int idx = 1; idx < pts; ++idx) { |
| double test = fabs(intersections[0][idx] - mid); |
| if (closest > test) { |
| closestIdx = idx; |
| closest = test; |
| } |
| } |
| intersections.quickRemoveOne(closestIdx, --pts); |
| } |
| double bestT = -1; |
| for (int index = 0; index < pts; ++index) { |
| double foundT = intersections[0][index]; |
| if (approximately_less_than_zero(foundT) |
| || approximately_greater_than_one(foundT)) { |
| continue; |
| } |
| SkScalar testY = (*CurvePointAtT[fVerb])(fPts, foundT).fY; |
| if (approximately_negative(testY - *bestY) |
| || approximately_negative(basePt.fY - testY)) { |
| continue; |
| } |
| if (pts > 1 && fVerb == SkPath::kLine_Verb) { |
| return SK_MinS32; // if the intersection is edge on, wait for another one |
| } |
| if (fVerb > SkPath::kLine_Verb) { |
| SkScalar dx = (*CurveSlopeAtT[fVerb])(fPts, foundT).fX; |
| if (approximately_zero(dx)) { |
| return SK_MinS32; // hit vertical, wait for another one |
| } |
| } |
| *bestY = testY; |
| bestT = foundT; |
| } |
| if (bestT < 0) { |
| return bestTIndex; |
| } |
| SkASSERT(bestT >= 0); |
| SkASSERT(bestT <= 1); |
| int start; |
| int end = 0; |
| do { |
| start = end; |
| end = nextSpan(start, 1); |
| } while (fTs[end].fT < bestT); |
| // FIXME: see next candidate for a better pattern to find the next start/end pair |
| while (start + 1 < end && fTs[start].fDone) { |
| ++start; |
| } |
| if (!isCanceled(start)) { |
| *hitT = bestT; |
| bestTIndex = start; |
| *hitSomething = true; |
| } |
| return bestTIndex; |
| } |
| |
| void SkOpSegment::decrementSpan(SkOpSpan* span) { |
| SkASSERT(span->fWindValue > 0); |
| if (--(span->fWindValue) == 0) { |
| if (!span->fOppValue && !span->fDone) { |
| span->fDone = true; |
| ++fDoneSpans; |
| } |
| } |
| } |
| |
| bool SkOpSegment::bumpSpan(SkOpSpan* span, int windDelta, int oppDelta) { |
| SkASSERT(!span->fDone); |
| span->fWindValue += windDelta; |
| SkASSERT(span->fWindValue >= 0); |
| span->fOppValue += oppDelta; |
| SkASSERT(span->fOppValue >= 0); |
| if (fXor) { |
| span->fWindValue &= 1; |
| } |
| if (fOppXor) { |
| span->fOppValue &= 1; |
| } |
| if (!span->fWindValue && !span->fOppValue) { |
| span->fDone = true; |
| ++fDoneSpans; |
| return true; |
| } |
| return false; |
| } |
| |
| bool SkOpSegment::equalPoints(int greaterTIndex, int lesserTIndex) { |
| SkASSERT(greaterTIndex >= lesserTIndex); |
| double greaterT = fTs[greaterTIndex].fT; |
| double lesserT = fTs[lesserTIndex].fT; |
| if (greaterT == lesserT) { |
| return true; |
| } |
| if (!approximately_negative(greaterT - lesserT)) { |
| return false; |
| } |
| return xyAtT(greaterTIndex) == xyAtT(lesserTIndex); |
| } |
| |
| /* |
| The M and S variable name parts stand for the operators. |
| Mi stands for Minuend (see wiki subtraction, analogous to difference) |
| Su stands for Subtrahend |
| The Opp variable name part designates that the value is for the Opposite operator. |
| Opposite values result from combining coincident spans. |
| */ |
| SkOpSegment* SkOpSegment::findNextOp(SkTDArray<SkOpSpan*>* chase, int* nextStart, int* nextEnd, |
| bool* unsortable, SkPathOp op, const int xorMiMask, |
| const int xorSuMask) { |
| const int startIndex = *nextStart; |
| const int endIndex = *nextEnd; |
| SkASSERT(startIndex != endIndex); |
| SkDEBUGCODE(const int count = fTs.count()); |
| SkASSERT(startIndex < endIndex ? startIndex < count - 1 : startIndex > 0); |
| const int step = SkSign32(endIndex - startIndex); |
| const int end = nextExactSpan(startIndex, step); |
| SkASSERT(end >= 0); |
| SkOpSpan* endSpan = &fTs[end]; |
| SkOpSegment* other; |
| if (isSimple(end)) { |
| // mark the smaller of startIndex, endIndex done, and all adjacent |
| // spans with the same T value (but not 'other' spans) |
| #if DEBUG_WINDING |
| SkDebugf("%s simple\n", __FUNCTION__); |
| #endif |
| int min = SkMin32(startIndex, endIndex); |
| if (fTs[min].fDone) { |
| return NULL; |
| } |
| markDoneBinary(min); |
| other = endSpan->fOther; |
| *nextStart = endSpan->fOtherIndex; |
| double startT = other->fTs[*nextStart].fT; |
| *nextEnd = *nextStart; |
| do { |
| *nextEnd += step; |
| } |
| while (precisely_zero(startT - other->fTs[*nextEnd].fT)); |
| SkASSERT(step < 0 ? *nextEnd >= 0 : *nextEnd < other->fTs.count()); |
| return other; |
| } |
| // more than one viable candidate -- measure angles to find best |
| SkTDArray<SkOpAngle> angles; |
| SkASSERT(startIndex - endIndex != 0); |
| SkASSERT((startIndex - endIndex < 0) ^ (step < 0)); |
| addTwoAngles(startIndex, end, &angles); |
| buildAngles(end, &angles, true); |
| SkTDArray<SkOpAngle*> sorted; |
| bool sortable = SortAngles(angles, &sorted); |
| int angleCount = angles.count(); |
| int firstIndex = findStartingEdge(sorted, startIndex, end); |
| SkASSERT(firstIndex >= 0); |
| #if DEBUG_SORT |
| debugShowSort(__FUNCTION__, sorted, firstIndex); |
| #endif |
| if (!sortable) { |
| *unsortable = true; |
| return NULL; |
| } |
| SkASSERT(sorted[firstIndex]->segment() == this); |
| #if DEBUG_WINDING |
| SkDebugf("%s firstIndex=[%d] sign=%d\n", __FUNCTION__, firstIndex, |
| sorted[firstIndex]->sign()); |
| #endif |
| int sumMiWinding = updateWinding(endIndex, startIndex); |
| int sumSuWinding = updateOppWinding(endIndex, startIndex); |
| if (operand()) { |
| SkTSwap<int>(sumMiWinding, sumSuWinding); |
| } |
| int nextIndex = firstIndex + 1; |
| int lastIndex = firstIndex != 0 ? firstIndex : angleCount; |
| const SkOpAngle* foundAngle = NULL; |
| bool foundDone = false; |
| // iterate through the angle, and compute everyone's winding |
| SkOpSegment* nextSegment; |
| int activeCount = 0; |
| do { |
| SkASSERT(nextIndex != firstIndex); |
| if (nextIndex == angleCount) { |
| nextIndex = 0; |
| } |
| const SkOpAngle* nextAngle = sorted[nextIndex]; |
| nextSegment = nextAngle->segment(); |
| int maxWinding, sumWinding, oppMaxWinding, oppSumWinding; |
| bool activeAngle = nextSegment->activeOp(xorMiMask, xorSuMask, nextAngle->start(), |
| nextAngle->end(), op, &sumMiWinding, &sumSuWinding, |
| &maxWinding, &sumWinding, &oppMaxWinding, &oppSumWinding); |
| if (activeAngle) { |
| ++activeCount; |
| if (!foundAngle || (foundDone && activeCount & 1)) { |
| if (nextSegment->tiny(nextAngle)) { |
| *unsortable = true; |
| return NULL; |
| } |
| foundAngle = nextAngle; |
| foundDone = nextSegment->done(nextAngle) && !nextSegment->tiny(nextAngle); |
| } |
| } |
| if (nextSegment->done()) { |
| continue; |
| } |
| if (nextSegment->windSum(nextAngle) != SK_MinS32) { |
| continue; |
| } |
| SkOpSpan* last = nextSegment->markAngle(maxWinding, sumWinding, oppMaxWinding, |
| oppSumWinding, activeAngle, nextAngle); |
| if (last) { |
| *chase->append() = last; |
| #if DEBUG_WINDING |
| SkDebugf("%s chase.append id=%d\n", __FUNCTION__, |
| last->fOther->fTs[last->fOtherIndex].fOther->debugID()); |
| #endif |
| } |
| } while (++nextIndex != lastIndex); |
| markDoneBinary(SkMin32(startIndex, endIndex)); |
| if (!foundAngle) { |
| return NULL; |
| } |
| *nextStart = foundAngle->start(); |
| *nextEnd = foundAngle->end(); |
| nextSegment = foundAngle->segment(); |
| |
| #if DEBUG_WINDING |
| SkDebugf("%s from:[%d] to:[%d] start=%d end=%d\n", |
| __FUNCTION__, debugID(), nextSegment->debugID(), *nextStart, *nextEnd); |
| #endif |
| return nextSegment; |
| } |
| |
| SkOpSegment* SkOpSegment::findNextWinding(SkTDArray<SkOpSpan*>* chase, int* nextStart, |
| int* nextEnd, bool* unsortable) { |
| const int startIndex = *nextStart; |
| const int endIndex = *nextEnd; |
| SkASSERT(startIndex != endIndex); |
| SkDEBUGCODE(const int count = fTs.count()); |
| SkASSERT(startIndex < endIndex ? startIndex < count - 1 : startIndex > 0); |
| const int step = SkSign32(endIndex - startIndex); |
| const int end = nextExactSpan(startIndex, step); |
| SkASSERT(end >= 0); |
| SkOpSpan* endSpan = &fTs[end]; |
| SkOpSegment* other; |
| if (isSimple(end)) { |
| // mark the smaller of startIndex, endIndex done, and all adjacent |
| // spans with the same T value (but not 'other' spans) |
| #if DEBUG_WINDING |
| SkDebugf("%s simple\n", __FUNCTION__); |
| #endif |
| int min = SkMin32(startIndex, endIndex); |
| if (fTs[min].fDone) { |
| return NULL; |
| } |
| markDoneUnary(min); |
| other = endSpan->fOther; |
| *nextStart = endSpan->fOtherIndex; |
| double startT = other->fTs[*nextStart].fT; |
| *nextEnd = *nextStart; |
| do { |
| *nextEnd += step; |
| } |
| while (precisely_zero(startT - other->fTs[*nextEnd].fT)); |
| SkASSERT(step < 0 ? *nextEnd >= 0 : *nextEnd < other->fTs.count()); |
| return other; |
| } |
| // more than one viable candidate -- measure angles to find best |
| SkTDArray<SkOpAngle> angles; |
| SkASSERT(startIndex - endIndex != 0); |
| SkASSERT((startIndex - endIndex < 0) ^ (step < 0)); |
| addTwoAngles(startIndex, end, &angles); |
| buildAngles(end, &angles, true); |
| SkTDArray<SkOpAngle*> sorted; |
| bool sortable = SortAngles(angles, &sorted); |
| int angleCount = angles.count(); |
| int firstIndex = findStartingEdge(sorted, startIndex, end); |
| SkASSERT(firstIndex >= 0); |
| #if DEBUG_SORT |
| debugShowSort(__FUNCTION__, sorted, firstIndex); |
| #endif |
| if (!sortable) { |
| *unsortable = true; |
| return NULL; |
| } |
| SkASSERT(sorted[firstIndex]->segment() == this); |
| #if DEBUG_WINDING |
| SkDebugf("%s firstIndex=[%d] sign=%d\n", __FUNCTION__, firstIndex, |
| sorted[firstIndex]->sign()); |
| #endif |
| int sumWinding = updateWinding(endIndex, startIndex); |
| int nextIndex = firstIndex + 1; |
| int lastIndex = firstIndex != 0 ? firstIndex : angleCount; |
| const SkOpAngle* foundAngle = NULL; |
| bool foundDone = false; |
| // iterate through the angle, and compute everyone's winding |
| SkOpSegment* nextSegment; |
| int activeCount = 0; |
| do { |
| SkASSERT(nextIndex != firstIndex); |
| if (nextIndex == angleCount) { |
| nextIndex = 0; |
| } |
| const SkOpAngle* nextAngle = sorted[nextIndex]; |
| nextSegment = nextAngle->segment(); |
| int maxWinding; |
| bool activeAngle = nextSegment->activeWinding(nextAngle->start(), nextAngle->end(), |
| &maxWinding, &sumWinding); |
| if (activeAngle) { |
| ++activeCount; |
| if (!foundAngle || (foundDone && activeCount & 1)) { |
| if (nextSegment->tiny(nextAngle)) { |
| *unsortable = true; |
| return NULL; |
| } |
| foundAngle = nextAngle; |
| foundDone = nextSegment->done(nextAngle); |
| } |
| } |
| if (nextSegment->done()) { |
| continue; |
| } |
| if (nextSegment->windSum(nextAngle) != SK_MinS32) { |
| continue; |
| } |
| SkOpSpan* last = nextSegment->markAngle(maxWinding, sumWinding, activeAngle, nextAngle); |
| if (last) { |
| *chase->append() = last; |
| #if DEBUG_WINDING |
| SkDebugf("%s chase.append id=%d\n", __FUNCTION__, |
| last->fOther->fTs[last->fOtherIndex].fOther->debugID()); |
| #endif |
| } |
| } while (++nextIndex != lastIndex); |
| markDoneUnary(SkMin32(startIndex, endIndex)); |
| if (!foundAngle) { |
| return NULL; |
| } |
| *nextStart = foundAngle->start(); |
| *nextEnd = foundAngle->end(); |
| nextSegment = foundAngle->segment(); |
| #if DEBUG_WINDING |
| SkDebugf("%s from:[%d] to:[%d] start=%d end=%d\n", |
| __FUNCTION__, debugID(), nextSegment->debugID(), *nextStart, *nextEnd); |
| #endif |
| return nextSegment; |
| } |
| |
| SkOpSegment* SkOpSegment::findNextXor(int* nextStart, int* nextEnd, bool* unsortable) { |
| const int startIndex = *nextStart; |
| const int endIndex = *nextEnd; |
| SkASSERT(startIndex != endIndex); |
| SkDEBUGCODE(int count = fTs.count()); |
| SkASSERT(startIndex < endIndex ? startIndex < count - 1 |
| : startIndex > 0); |
| int step = SkSign32(endIndex - startIndex); |
| int end = nextExactSpan(startIndex, step); |
| SkASSERT(end >= 0); |
| SkOpSpan* endSpan = &fTs[end]; |
| SkOpSegment* other; |
| if (isSimple(end)) { |
| #if DEBUG_WINDING |
| SkDebugf("%s simple\n", __FUNCTION__); |
| #endif |
| int min = SkMin32(startIndex, endIndex); |
| if (fTs[min].fDone) { |
| return NULL; |
| } |
| markDone(min, 1); |
| other = endSpan->fOther; |
| *nextStart = endSpan->fOtherIndex; |
| double startT = other->fTs[*nextStart].fT; |
| // FIXME: I don't know why the logic here is difference from the winding case |
| SkDEBUGCODE(bool firstLoop = true;) |
| if ((approximately_less_than_zero(startT) && step < 0) |
| || (approximately_greater_than_one(startT) && step > 0)) { |
| step = -step; |
| SkDEBUGCODE(firstLoop = false;) |
| } |
| do { |
| *nextEnd = *nextStart; |
| do { |
| *nextEnd += step; |
| } |
| while (precisely_zero(startT - other->fTs[*nextEnd].fT)); |
| if (other->fTs[SkMin32(*nextStart, *nextEnd)].fWindValue) { |
| break; |
| } |
| #ifdef SK_DEBUG |
| SkASSERT(firstLoop); |
| #endif |
| SkDEBUGCODE(firstLoop = false;) |
| step = -step; |
| } while (true); |
| SkASSERT(step < 0 ? *nextEnd >= 0 : *nextEnd < other->fTs.count()); |
| return other; |
| } |
| SkTDArray<SkOpAngle> angles; |
| SkASSERT(startIndex - endIndex != 0); |
| SkASSERT((startIndex - endIndex < 0) ^ (step < 0)); |
| addTwoAngles(startIndex, end, &angles); |
| buildAngles(end, &angles, false); |
| SkTDArray<SkOpAngle*> sorted; |
| bool sortable = SortAngles(angles, &sorted); |
| if (!sortable) { |
| *unsortable = true; |
| #if DEBUG_SORT |
| debugShowSort(__FUNCTION__, sorted, findStartingEdge(sorted, startIndex, end), 0, 0); |
| #endif |
| return NULL; |
| } |
| int angleCount = angles.count(); |
| int firstIndex = findStartingEdge(sorted, startIndex, end); |
| SkASSERT(firstIndex >= 0); |
| #if DEBUG_SORT |
| debugShowSort(__FUNCTION__, sorted, firstIndex, 0, 0); |
| #endif |
| SkASSERT(sorted[firstIndex]->segment() == this); |
| int nextIndex = firstIndex + 1; |
| int lastIndex = firstIndex != 0 ? firstIndex : angleCount; |
| const SkOpAngle* foundAngle = NULL; |
| bool foundDone = false; |
| SkOpSegment* nextSegment; |
| int activeCount = 0; |
| do { |
| SkASSERT(nextIndex != firstIndex); |
| if (nextIndex == angleCount) { |
| nextIndex = 0; |
| } |
| const SkOpAngle* nextAngle = sorted[nextIndex]; |
| nextSegment = nextAngle->segment(); |
| ++activeCount; |
| if (!foundAngle || (foundDone && activeCount & 1)) { |
| if (nextSegment->tiny(nextAngle)) { |
| *unsortable = true; |
| return NULL; |
| } |
| foundAngle = nextAngle; |
| foundDone = nextSegment->done(nextAngle); |
| } |
| if (nextSegment->done()) { |
| continue; |
| } |
| } while (++nextIndex != lastIndex); |
| markDone(SkMin32(startIndex, endIndex), 1); |
| if (!foundAngle) { |
| return NULL; |
| } |
| *nextStart = foundAngle->start(); |
| *nextEnd = foundAngle->end(); |
| nextSegment = foundAngle->segment(); |
| #if DEBUG_WINDING |
| SkDebugf("%s from:[%d] to:[%d] start=%d end=%d\n", |
| __FUNCTION__, debugID(), nextSegment->debugID(), *nextStart, *nextEnd); |
| #endif |
| return nextSegment; |
| } |
| |
| int SkOpSegment::findStartingEdge(const SkTDArray<SkOpAngle*>& sorted, int start, int end) { |
| int angleCount = sorted.count(); |
| int firstIndex = -1; |
| for (int angleIndex = 0; angleIndex < angleCount; ++angleIndex) { |
| const SkOpAngle* angle = sorted[angleIndex]; |
| if (angle->segment() == this && angle->start() == end && |
| angle->end() == start) { |
| firstIndex = angleIndex; |
| break; |
| } |
| } |
| return firstIndex; |
| } |
| |
| // FIXME: this is tricky code; needs its own unit test |
| // note that fOtherIndex isn't computed yet, so it can't be used here |
| void SkOpSegment::findTooCloseToCall() { |
| int count = fTs.count(); |
| if (count < 3) { // require t=0, x, 1 at minimum |
| return; |
| } |
| int matchIndex = 0; |
| int moCount; |
| SkOpSpan* match; |
| SkOpSegment* mOther; |
| do { |
| match = &fTs[matchIndex]; |
| mOther = match->fOther; |
| // FIXME: allow quads, cubics to be near coincident? |
| if (mOther->fVerb == SkPath::kLine_Verb) { |
| moCount = mOther->fTs.count(); |
| if (moCount >= 3) { |
| break; |
| } |
| } |
| if (++matchIndex >= count) { |
| return; |
| } |
| } while (true); // require t=0, x, 1 at minimum |
| // OPTIMIZATION: defer matchPt until qualifying toCount is found? |
| const SkPoint* matchPt = &xyAtT(match); |
| // look for a pair of nearby T values that map to the same (x,y) value |
| // if found, see if the pair of other segments share a common point. If |
| // so, the span from here to there is coincident. |
| for (int index = matchIndex + 1; index < count; ++index) { |
| SkOpSpan* test = &fTs[index]; |
| if (test->fDone) { |
| continue; |
| } |
| SkOpSegment* tOther = test->fOther; |
| if (tOther->fVerb != SkPath::kLine_Verb) { |
| continue; // FIXME: allow quads, cubics to be near coincident? |
| } |
| int toCount = tOther->fTs.count(); |
| if (toCount < 3) { // require t=0, x, 1 at minimum |
| continue; |
| } |
| const SkPoint* testPt = &xyAtT(test); |
| if (*matchPt != *testPt) { |
| matchIndex = index; |
| moCount = toCount; |
| match = test; |
| mOther = tOther; |
| matchPt = testPt; |
| continue; |
| } |
| int moStart = -1; |
| int moEnd = -1; |
| double moStartT = 0; |
| double moEndT = 0; |
| for (int moIndex = 0; moIndex < moCount; ++moIndex) { |
| SkOpSpan& moSpan = mOther->fTs[moIndex]; |
| if (moSpan.fDone) { |
| continue; |
| } |
| if (moSpan.fOther == this) { |
| if (moSpan.fOtherT == match->fT) { |
| moStart = moIndex; |
| moStartT = moSpan.fT; |
| } |
| continue; |
| } |
| if (moSpan.fOther == tOther) { |
| if (tOther->windValueAt(moSpan.fOtherT) == 0) { |
| moStart = -1; |
| break; |
| } |
| SkASSERT(moEnd == -1); |
| moEnd = moIndex; |
| moEndT = moSpan.fT; |
| } |
| } |
| if (moStart < 0 || moEnd < 0) { |
| continue; |
| } |
| // FIXME: if moStartT, moEndT are initialized to NaN, can skip this test |
| if (approximately_equal(moStartT, moEndT)) { |
| continue; |
| } |
| int toStart = -1; |
| int toEnd = -1; |
| double toStartT = 0; |
| double toEndT = 0; |
| for (int toIndex = 0; toIndex < toCount; ++toIndex) { |
| SkOpSpan& toSpan = tOther->fTs[toIndex]; |
| if (toSpan.fDone) { |
| continue; |
| } |
| if (toSpan.fOther == this) { |
| if (toSpan.fOtherT == test->fT) { |
| toStart = toIndex; |
| toStartT = toSpan.fT; |
| } |
| continue; |
| } |
| if (toSpan.fOther == mOther && toSpan.fOtherT == moEndT) { |
| if (mOther->windValueAt(toSpan.fOtherT) == 0) { |
| moStart = -1; |
| break; |
| } |
| SkASSERT(toEnd == -1); |
| toEnd = toIndex; |
| toEndT = toSpan.fT; |
| } |
| } |
| // FIXME: if toStartT, toEndT are initialized to NaN, can skip this test |
| if (toStart <= 0 || toEnd <= 0) { |
| continue; |
| } |
| if (approximately_equal(toStartT, toEndT)) { |
| continue; |
| } |
| // test to see if the segment between there and here is linear |
| if (!mOther->isLinear(moStart, moEnd) |
| || !tOther->isLinear(toStart, toEnd)) { |
| continue; |
| } |
| bool flipped = (moStart - moEnd) * (toStart - toEnd) < 1; |
| if (flipped) { |
| mOther->addTCancel(moStartT, moEndT, tOther, toEndT, toStartT); |
| } else { |
| mOther->addTCoincident(moStartT, moEndT, tOther, toStartT, toEndT); |
| } |
| } |
| } |
| |
| // FIXME: either: |
| // a) mark spans with either end unsortable as done, or |
| // b) rewrite findTop / findTopSegment / findTopContour to iterate further |
| // when encountering an unsortable span |
| |
| // OPTIMIZATION : for a pair of lines, can we compute points at T (cached) |
| // and use more concise logic like the old edge walker code? |
| // FIXME: this needs to deal with coincident edges |
| SkOpSegment* SkOpSegment::findTop(int* tIndexPtr, int* endIndexPtr, bool* unsortable, |
| bool onlySortable) { |
| // iterate through T intersections and return topmost |
| // topmost tangent from y-min to first pt is closer to horizontal |
| SkASSERT(!done()); |
| int firstT = -1; |
| /* SkPoint topPt = */ activeLeftTop(onlySortable, &firstT); |
| if (firstT < 0) { |
| *unsortable = true; |
| firstT = 0; |
| while (fTs[firstT].fDone) { |
| SkASSERT(firstT < fTs.count()); |
| ++firstT; |
| } |
| *tIndexPtr = firstT; |
| *endIndexPtr = nextExactSpan(firstT, 1); |
| return this; |
| } |
| // sort the edges to find the leftmost |
| int step = 1; |
| int end = nextSpan(firstT, step); |
| if (end == -1) { |
| step = -1; |
| end = nextSpan(firstT, step); |
| SkASSERT(end != -1); |
| } |
| // if the topmost T is not on end, or is three-way or more, find left |
| // look for left-ness from tLeft to firstT (matching y of other) |
| SkTDArray<SkOpAngle> angles; |
| SkASSERT(firstT - end != 0); |
| addTwoAngles(end, firstT, &angles); |
| buildAngles(firstT, &angles, true); |
| SkTDArray<SkOpAngle*> sorted; |
| bool sortable = SortAngles(angles, &sorted); |
| int first = SK_MaxS32; |
| SkScalar top = SK_ScalarMax; |
| int count = sorted.count(); |
| for (int index = 0; index < count; ++index) { |
| const SkOpAngle* angle = sorted[index]; |
| SkOpSegment* next = angle->segment(); |
| SkPathOpsBounds bounds; |
| next->subDivideBounds(angle->end(), angle->start(), &bounds); |
| if (approximately_greater(top, bounds.fTop)) { |
| top = bounds.fTop; |
| first = index; |
| } |
| } |
| SkASSERT(first < SK_MaxS32); |
| #if DEBUG_SORT // || DEBUG_SWAP_TOP |
| sorted[first]->segment()->debugShowSort(__FUNCTION__, sorted, first, 0, 0); |
| #endif |
| if (onlySortable && !sortable) { |
| *unsortable = true; |
| return NULL; |
| } |
| // skip edges that have already been processed |
| firstT = first - 1; |
| SkOpSegment* leftSegment; |
| do { |
| if (++firstT == count) { |
| firstT = 0; |
| } |
| const SkOpAngle* angle = sorted[firstT]; |
| SkASSERT(!onlySortable || !angle->unsortable()); |
| leftSegment = angle->segment(); |
| *tIndexPtr = angle->end(); |
| *endIndexPtr = angle->start(); |
| } while (leftSegment->fTs[SkMin32(*tIndexPtr, *endIndexPtr)].fDone); |
| if (leftSegment->verb() >= SkPath::kQuad_Verb) { |
| const int tIndex = *tIndexPtr; |
| const int endIndex = *endIndexPtr; |
| if (!leftSegment->clockwise(tIndex, endIndex)) { |
| bool swap = !leftSegment->monotonicInY(tIndex, endIndex) |
| && !leftSegment->serpentine(tIndex, endIndex); |
| #if DEBUG_SWAP_TOP |
| SkDebugf("%s swap=%d serpentine=%d containedByEnds=%d monotonic=%d\n", __FUNCTION__, |
| swap, |
| leftSegment->serpentine(tIndex, endIndex), |
| leftSegment->controlsContainedByEnds(tIndex, endIndex), |
| leftSegment->monotonicInY(tIndex, endIndex)); |
| #endif |
| if (swap) { |
| // FIXME: I doubt it makes sense to (necessarily) swap if the edge was not the first |
| // sorted but merely the first not already processed (i.e., not done) |
| SkTSwap(*tIndexPtr, *endIndexPtr); |
| } |
| } |
| } |
| SkASSERT(!leftSegment->fTs[SkMin32(*tIndexPtr, *endIndexPtr)].fTiny); |
| return leftSegment; |
| } |
| |
| // FIXME: not crazy about this |
| // when the intersections are performed, the other index is into an |
| // incomplete array. As the array grows, the indices become incorrect |
| // while the following fixes the indices up again, it isn't smart about |
| // skipping segments whose indices are already correct |
| // assuming we leave the code that wrote the index in the first place |
| void SkOpSegment::fixOtherTIndex() { |
| int iCount = fTs.count(); |
| for (int i = 0; i < iCount; ++i) { |
| SkOpSpan& iSpan = fTs[i]; |
| double oT = iSpan.fOtherT; |
| SkOpSegment* other = iSpan.fOther; |
| int oCount = other->fTs.count(); |
| for (int o = 0; o < oCount; ++o) { |
| SkOpSpan& oSpan = other->fTs[o]; |
| if (oT == oSpan.fT && this == oSpan.fOther && oSpan.fOtherT == iSpan.fT) { |
| iSpan.fOtherIndex = o; |
| break; |
| } |
| } |
| } |
| } |
| |
| void SkOpSegment::init(const SkPoint pts[], SkPath::Verb verb, bool operand, bool evenOdd) { |
| fDoneSpans = 0; |
| fOperand = operand; |
| fXor = evenOdd; |
| fPts = pts; |
| fVerb = verb; |
| } |
| |
| void SkOpSegment::initWinding(int start, int end) { |
| int local = spanSign(start, end); |
| int oppLocal = oppSign(start, end); |
| (void) markAndChaseWinding(start, end, local, oppLocal); |
| // OPTIMIZATION: the reverse mark and chase could skip the first marking |
| (void) markAndChaseWinding(end, start, local, oppLocal); |
| } |
| |
| /* |
| when we start with a vertical intersect, we try to use the dx to determine if the edge is to |
| the left or the right of vertical. This determines if we need to add the span's |
| sign or not. However, this isn't enough. |
| If the supplied sign (winding) is zero, then we didn't hit another vertical span, so dx is needed. |
| If there was a winding, then it may or may not need adjusting. If the span the winding was borrowed |
| from has the same x direction as this span, the winding should change. If the dx is opposite, then |
| the same winding is shared by both. |
| */ |
| void SkOpSegment::initWinding(int start, int end, double tHit, int winding, SkScalar hitDx, |
| int oppWind, SkScalar hitOppDx) { |
| SkASSERT(hitDx || !winding); |
| SkScalar dx = (*CurveSlopeAtT[fVerb])(fPts, tHit).fX; |
| SkASSERT(dx); |
| int windVal = windValue(SkMin32(start, end)); |
| #if DEBUG_WINDING_AT_T |
| SkDebugf("%s oldWinding=%d hitDx=%c dx=%c windVal=%d", __FUNCTION__, winding, |
| hitDx ? hitDx > 0 ? '+' : '-' : '0', dx > 0 ? '+' : '-', windVal); |
| #endif |
| if (!winding) { |
| winding = dx < 0 ? windVal : -windVal; |
| } else if (winding * dx < 0) { |
| int sideWind = winding + (dx < 0 ? windVal : -windVal); |
| if (abs(winding) < abs(sideWind)) { |
| winding = sideWind; |
| } |
| } |
| #if DEBUG_WINDING_AT_T |
| SkDebugf(" winding=%d\n", winding); |
| #endif |
| SkDEBUGCODE(int oppLocal = oppSign(start, end)); |
| SkASSERT(hitOppDx || !oppWind || !oppLocal); |
| int oppWindVal = oppValue(SkMin32(start, end)); |
| if (!oppWind) { |
| oppWind = dx < 0 ? oppWindVal : -oppWindVal; |
| } else if (hitOppDx * dx >= 0) { |
| int oppSideWind = oppWind + (dx < 0 ? oppWindVal : -oppWindVal); |
| if (abs(oppWind) < abs(oppSideWind)) { |
| oppWind = oppSideWind; |
| } |
| } |
| (void) markAndChaseWinding(start, end, winding, oppWind); |
| } |
| |
| bool SkOpSegment::isLinear(int start, int end) const { |
| if (fVerb == SkPath::kLine_Verb) { |
| return true; |
| } |
| if (fVerb == SkPath::kQuad_Verb) { |
| SkDQuad qPart = SkDQuad::SubDivide(fPts, fTs[start].fT, fTs[end].fT); |
| return qPart.isLinear(0, 2); |
| } else { |
| SkASSERT(fVerb == SkPath::kCubic_Verb); |
| SkDCubic cPart = SkDCubic::SubDivide(fPts, fTs[start].fT, fTs[end].fT); |
| return cPart.isLinear(0, 3); |
| } |
| } |
| |
| // OPTIMIZE: successive calls could start were the last leaves off |
| // or calls could specialize to walk forwards or backwards |
| bool SkOpSegment::isMissing(double startT) const { |
| size_t tCount = fTs.count(); |
| for (size_t index = 0; index < tCount; ++index) { |
| if (approximately_zero(startT - fTs[index].fT)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool SkOpSegment::isSimple(int end) const { |
| int count = fTs.count(); |
| if (count == 2) { |
| return true; |
| } |
| double t = fTs[end].fT; |
| if (approximately_less_than_zero(t)) { |
| return !approximately_less_than_zero(fTs[1].fT); |
| } |
| if (approximately_greater_than_one(t)) { |
| return !approximately_greater_than_one(fTs[count - 2].fT); |
| } |
| return false; |
| } |
| |
| // this span is excluded by the winding rule -- chase the ends |
| // as long as they are unambiguous to mark connections as done |
| // and give them the same winding value |
| SkOpSpan* SkOpSegment::markAndChaseDone(int index, int endIndex, int winding) { |
| int step = SkSign32(endIndex - index); |
| int min = SkMin32(index, endIndex); |
| markDone(min, winding); |
| SkOpSpan* last; |
| SkOpSegment* other = this; |
| while ((other = other->nextChase(&index, step, &min, &last))) { |
| other->markDone(min, winding); |
| } |
| return last; |
| } |
| |
| SkOpSpan* SkOpSegment::markAndChaseDoneBinary(const SkOpAngle* angle, int winding, int oppWinding) { |
| int index = angle->start(); |
| int endIndex = angle->end(); |
| int step = SkSign32(endIndex - index); |
| int min = SkMin32(index, endIndex); |
| markDoneBinary(min, winding, oppWinding); |
| SkOpSpan* last; |
| SkOpSegment* other = this; |
| while ((other = other->nextChase(&index, step, &min, &last))) { |
| other->markDoneBinary(min, winding, oppWinding); |
| } |
| return last; |
| } |
| |
| SkOpSpan* SkOpSegment::markAndChaseDoneBinary(int index, int endIndex) { |
| int step = SkSign32(endIndex - index); |
| int min = SkMin32(index, endIndex); |
| markDoneBinary(min); |
| SkOpSpan* last; |
| SkOpSegment* other = this; |
| while ((other = other->nextChase(&index, step, &min, &last))) { |
| if (other->done()) { |
| return NULL; |
| } |
| other->markDoneBinary(min); |
| } |
| return last; |
| } |
| |
| SkOpSpan* SkOpSegment::markAndChaseDoneUnary(int index, int endIndex) { |
| int step = SkSign32(endIndex - index); |
| int min = SkMin32(index, endIndex); |
| markDoneUnary(min); |
| SkOpSpan* last; |
| SkOpSegment* other = this; |
| while ((other = other->nextChase(&index, step, &min, &last))) { |
| if (other->done()) { |
| return NULL; |
| } |
| other->markDoneUnary(min); |
| } |
| return last; |
| } |
| |
| SkOpSpan* SkOpSegment::markAndChaseDoneUnary(const SkOpAngle* angle, int winding) { |
| int index = angle->start(); |
| int endIndex = angle->end(); |
| return markAndChaseDone(index, endIndex, winding); |
| } |
| |
| SkOpSpan* SkOpSegment::markAndChaseWinding(const SkOpAngle* angle, const int winding) { |
| int index = angle->start(); |
| int endIndex = angle->end(); |
| int step = SkSign32(endIndex - index); |
| int min = SkMin32(index, endIndex); |
| markWinding(min, winding); |
| SkOpSpan* last; |
| SkOpSegment* other = this; |
| while ((other = other->nextChase(&index, step, &min, &last))) { |
| if (other->fTs[min].fWindSum != SK_MinS32) { |
| SkASSERT(other->fTs[min].fWindSum == winding); |
| return NULL; |
| } |
| other->markWinding(min, winding); |
| } |
| return last; |
| } |
| |
| SkOpSpan* SkOpSegment::markAndChaseWinding(int index, int endIndex, int winding, int oppWinding) { |
| int min = SkMin32(index, endIndex); |
| int step = SkSign32(endIndex - index); |
| markWinding(min, winding, oppWinding); |
| SkOpSpan* last; |
| SkOpSegment* other = this; |
| while ((other = other->nextChase(&index, step, &min, &last))) { |
| if (other->fTs[min].fWindSum != SK_MinS32) { |
| SkASSERT(other->fTs[min].fWindSum == winding || other->fTs[min].fLoop); |
| return NULL; |
| } |
| other->markWinding(min, winding, oppWinding); |
| } |
| return last; |
| } |
| |
| SkOpSpan* SkOpSegment::markAndChaseWinding(const SkOpAngle* angle, int winding, int oppWinding) { |
| int start = angle->start(); |
| int end = angle->end(); |
| return markAndChaseWinding(start, end, winding, oppWinding); |
| } |
| |
| SkOpSpan* SkOpSegment::markAngle(int maxWinding, int sumWinding, bool activeAngle, |
| const SkOpAngle* angle) { |
| SkASSERT(angle->segment() == this); |
| if (UseInnerWinding(maxWinding, sumWinding)) { |
| maxWinding = sumWinding; |
| } |
| SkOpSpan* last; |
| if (activeAngle) { |
| last = markAndChaseWinding(angle, maxWinding); |
| } else { |
| last = markAndChaseDoneUnary(angle, maxWinding); |
| } |
| return last; |
| } |
| |
| SkOpSpan* SkOpSegment::markAngle(int maxWinding, int sumWinding, int oppMaxWinding, |
| int oppSumWinding, bool activeAngle, const SkOpAngle* angle) { |
| SkASSERT(angle->segment() == this); |
| if (UseInnerWinding(maxWinding, sumWinding)) { |
| maxWinding = sumWinding; |
| } |
| if (oppMaxWinding != oppSumWinding && UseInnerWinding(oppMaxWinding, oppSumWinding)) { |
| oppMaxWinding = oppSumWinding; |
| } |
| SkOpSpan* last; |
| if (activeAngle) { |
| last = markAndChaseWinding(angle, maxWinding, oppMaxWinding); |
| } else { |
| last = markAndChaseDoneBinary(angle, maxWinding, oppMaxWinding); |
| } |
| return last; |
| } |
| |
| // FIXME: this should also mark spans with equal (x,y) |
| // This may be called when the segment is already marked done. While this |
| // wastes time, it shouldn't do any more than spin through the T spans. |
| // OPTIMIZATION: abort on first done found (assuming that this code is |
| // always called to mark segments done). |
| void SkOpSegment::markDone(int index, int winding) { |
| // SkASSERT(!done()); |
| SkASSERT(winding); |
| double referenceT = fTs[index].fT; |
| int lesser = index; |
| while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { |
| markOneDone(__FUNCTION__, lesser, winding); |
| } |
| do { |
| markOneDone(__FUNCTION__, index, winding); |
| } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); |
| } |
| |
| void SkOpSegment::markDoneBinary(int index, int winding, int oppWinding) { |
| // SkASSERT(!done()); |
| SkASSERT(winding || oppWinding); |
| double referenceT = fTs[index].fT; |
| int lesser = index; |
| while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { |
| markOneDoneBinary(__FUNCTION__, lesser, winding, oppWinding); |
| } |
| do { |
| markOneDoneBinary(__FUNCTION__, index, winding, oppWinding); |
| } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); |
| } |
| |
| void SkOpSegment::markDoneBinary(int index) { |
| double referenceT = fTs[index].fT; |
| int lesser = index; |
| while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { |
| markOneDoneBinary(__FUNCTION__, lesser); |
| } |
| do { |
| markOneDoneBinary(__FUNCTION__, index); |
| } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); |
| } |
| |
| void SkOpSegment::markDoneUnary(int index) { |
| double referenceT = fTs[index].fT; |
| int lesser = index; |
| while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { |
| markOneDoneUnary(__FUNCTION__, lesser); |
| } |
| do { |
| markOneDoneUnary(__FUNCTION__, index); |
| } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); |
| } |
| |
| void SkOpSegment::markOneDone(const char* funName, int tIndex, int winding) { |
| SkOpSpan* span = markOneWinding(funName, tIndex, winding); |
| if (!span) { |
| return; |
| } |
| span->fDone = true; |
| fDoneSpans++; |
| } |
| |
| void SkOpSegment::markOneDoneBinary(const char* funName, int tIndex) { |
| SkOpSpan* span = verifyOneWinding(funName, tIndex); |
| if (!span) { |
| return; |
| } |
| span->fDone = true; |
| fDoneSpans++; |
| } |
| |
| void SkOpSegment::markOneDoneBinary(const char* funName, int tIndex, int winding, int oppWinding) { |
| SkOpSpan* span = markOneWinding(funName, tIndex, winding, oppWinding); |
| if (!span) { |
| return; |
| } |
| span->fDone = true; |
| fDoneSpans++; |
| } |
| |
| void SkOpSegment::markOneDoneUnary(const char* funName, int tIndex) { |
| SkOpSpan* span = verifyOneWindingU(funName, tIndex); |
| if (!span) { |
| return; |
| } |
| span->fDone = true; |
| fDoneSpans++; |
| } |
| |
| SkOpSpan* SkOpSegment::markOneWinding(const char* funName, int tIndex, int winding) { |
| SkOpSpan& span = fTs[tIndex]; |
| if (span.fDone) { |
| return NULL; |
| } |
| #if DEBUG_MARK_DONE |
| debugShowNewWinding(funName, span, winding); |
| #endif |
| SkASSERT(span.fWindSum == SK_MinS32 || span.fWindSum == winding); |
| #ifdef SK_DEBUG |
| SkASSERT(abs(winding) <= gDebugMaxWindSum); |
| #endif |
| span.fWindSum = winding; |
| return &span; |
| } |
| |
| SkOpSpan* SkOpSegment::markOneWinding(const char* funName, int tIndex, int winding, |
| int oppWinding) { |
| SkOpSpan& span = fTs[tIndex]; |
| if (span.fDone) { |
| return NULL; |
| } |
| #if DEBUG_MARK_DONE |
| debugShowNewWinding(funName, span, winding, oppWinding); |
| #endif |
| SkASSERT(span.fWindSum == SK_MinS32 || span.fWindSum == winding); |
| #ifdef SK_DEBUG |
| SkASSERT(abs(winding) <= gDebugMaxWindSum); |
| #endif |
| span.fWindSum = winding; |
| SkASSERT(span.fOppSum == SK_MinS32 || span.fOppSum == oppWinding); |
| #ifdef SK_DEBUG |
| SkASSERT(abs(oppWinding) <= gDebugMaxWindSum); |
| #endif |
| span.fOppSum = oppWinding; |
| return &span; |
| } |
| |
| // from http://stackoverflow.com/questions/1165647/how-to-determine-if-a-list-of-polygon-points-are-in-clockwise-order |
| bool SkOpSegment::clockwise(int tStart, int tEnd) const { |
| SkASSERT(fVerb != SkPath::kLine_Verb); |
| SkPoint edge[4]; |
| subDivide(tStart, tEnd, edge); |
| double sum = (edge[0].fX - edge[fVerb].fX) * (edge[0].fY + edge[fVerb].fY); |
| if (fVerb == SkPath::kCubic_Verb) { |
| SkScalar lesser = SkTMin<SkScalar>(edge[0].fY, edge[3].fY); |
| if (edge[1].fY < lesser && edge[2].fY < lesser) { |
| SkDLine tangent1 = {{ {edge[0].fX, edge[0].fY}, {edge[1].fX, edge[1].fY} }}; |
| SkDLine tangent2 = {{ {edge[2].fX, edge[2].fY}, {edge[3].fX, edge[3].fY} }}; |
| if (SkIntersections::Test(tangent1, tangent2)) { |
| SkPoint topPt = cubic_top(fPts, fTs[tStart].fT, fTs[tEnd].fT); |
| sum += (topPt.fX - edge[0].fX) * (topPt.fY + edge[0].fY); |
| sum += (edge[3].fX - topPt.fX) * (edge[3].fY + topPt.fY); |
| return sum <= 0; |
| } |
| } |
| } |
| for (int idx = 0; idx < fVerb; ++idx){ |
| sum += (edge[idx + 1].fX - edge[idx].fX) * (edge[idx + 1].fY + edge[idx].fY); |
| } |
| return sum <= 0; |
| } |
| |
| bool SkOpSegment::monotonicInY(int tStart, int tEnd) const { |
| if (fVerb == SkPath::kLine_Verb) { |
| return false; |
| } |
| if (fVerb == SkPath::kQuad_Verb) { |
| SkDQuad dst = SkDQuad::SubDivide(fPts, fTs[tStart].fT, fTs[tEnd].fT); |
| return dst.monotonicInY(); |
| } |
| SkASSERT(fVerb == SkPath::kCubic_Verb); |
| SkDCubic dst = SkDCubic::SubDivide(fPts, fTs[tStart].fT, fTs[tEnd].fT); |
| return dst.monotonicInY(); |
| } |
| |
| bool SkOpSegment::serpentine(int tStart, int tEnd) const { |
| if (fVerb != SkPath::kCubic_Verb) { |
| return false; |
| } |
| SkDCubic dst = SkDCubic::SubDivide(fPts, fTs[tStart].fT, fTs[tEnd].fT); |
| return dst.serpentine(); |
| } |
| |
| SkOpSpan* SkOpSegment::verifyOneWinding(const char* funName, int tIndex) { |
| SkOpSpan& span = fTs[tIndex]; |
| if (span.fDone) { |
| return NULL; |
| } |
| #if DEBUG_MARK_DONE |
| debugShowNewWinding(funName, span, span.fWindSum, span.fOppSum); |
| #endif |
| SkASSERT(span.fWindSum != SK_MinS32); |
| SkASSERT(span.fOppSum != SK_MinS32); |
| return &span; |
| } |
| |
| SkOpSpan* SkOpSegment::verifyOneWindingU(const char* funName, int tIndex) { |
| SkOpSpan& span = fTs[tIndex]; |
| if (span.fDone) { |
| return NULL; |
| } |
| #if DEBUG_MARK_DONE |
| debugShowNewWinding(funName, span, span.fWindSum); |
| #endif |
| SkASSERT(span.fWindSum != SK_MinS32); |
| return &span; |
| } |
| |
| // note that just because a span has one end that is unsortable, that's |
| // not enough to mark it done. The other end may be sortable, allowing the |
| // span to be added. |
| // FIXME: if abs(start - end) > 1, mark intermediates as unsortable on both ends |
| void SkOpSegment::markUnsortable(int start, int end) { |
| SkOpSpan* span = &fTs[start]; |
| if (start < end) { |
| #if DEBUG_UNSORTABLE |
| debugShowNewWinding(__FUNCTION__, *span, 0); |
| #endif |
| span->fUnsortableStart = true; |
| } else { |
| --span; |
| #if DEBUG_UNSORTABLE |
| debugShowNewWinding(__FUNCTION__, *span, 0); |
| #endif |
| span->fUnsortableEnd = true; |
| } |
| if (!span->fUnsortableStart || !span->fUnsortableEnd || span->fDone) { |
| return; |
| } |
| span->fDone = true; |
| fDoneSpans++; |
| } |
| |
| void SkOpSegment::markWinding(int index, int winding) { |
| // SkASSERT(!done()); |
| SkASSERT(winding); |
| double referenceT = fTs[index].fT; |
| int lesser = index; |
| while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { |
| markOneWinding(__FUNCTION__, lesser, winding); |
| } |
| do { |
| markOneWinding(__FUNCTION__, index, winding); |
| } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); |
| } |
| |
| void SkOpSegment::markWinding(int index, int winding, int oppWinding) { |
| // SkASSERT(!done()); |
| SkASSERT(winding || oppWinding); |
| double referenceT = fTs[index].fT; |
| int lesser = index; |
| while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { |
| markOneWinding(__FUNCTION__, lesser, winding, oppWinding); |
| } |
| do { |
| markOneWinding(__FUNCTION__, index, winding, oppWinding); |
| } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); |
| } |
| |
| void SkOpSegment::matchWindingValue(int tIndex, double t, bool borrowWind) { |
| int nextDoorWind = SK_MaxS32; |
| int nextOppWind = SK_MaxS32; |
| if (tIndex > 0) { |
| const SkOpSpan& below = fTs[tIndex - 1]; |
| if (approximately_negative(t - below.fT)) { |
| nextDoorWind = below.fWindValue; |
| nextOppWind = below.fOppValue; |
| } |
| } |
| if (nextDoorWind == SK_MaxS32 && tIndex + 1 < fTs.count()) { |
| const SkOpSpan& above = fTs[tIndex + 1]; |
| if (approximately_negative(above.fT - t)) { |
| nextDoorWind = above.fWindValue; |
| nextOppWind = above.fOppValue; |
| } |
| } |
| if (nextDoorWind == SK_MaxS32 && borrowWind && tIndex > 0 && t < 1) { |
| const SkOpSpan& below = fTs[tIndex - 1]; |
| nextDoorWind = below.fWindValue; |
| nextOppWind = below.fOppValue; |
| } |
| if (nextDoorWind != SK_MaxS32) { |
| SkOpSpan& newSpan = fTs[tIndex]; |
| newSpan.fWindValue = nextDoorWind; |
| newSpan.fOppValue = nextOppWind; |
| if (!nextDoorWind && !nextOppWind && !newSpan.fDone) { |
| newSpan.fDone = true; |
| ++fDoneSpans; |
| } |
| } |
| } |
| |
| // return span if when chasing, two or more radiating spans are not done |
| // OPTIMIZATION: ? multiple spans is detected when there is only one valid |
| // candidate and the remaining spans have windValue == 0 (canceled by |
| // coincidence). The coincident edges could either be removed altogether, |
| // or this code could be more complicated in detecting this case. Worth it? |
| bool SkOpSegment::multipleSpans(int end) const { |
| return end > 0 && end < fTs.count() - 1; |
| } |
| |
| bool SkOpSegment::nextCandidate(int* start, int* end) const { |
| while (fTs[*end].fDone) { |
| if (fTs[*end].fT == 1) { |
| return false; |
| } |
| ++(*end); |
| } |
| *start = *end; |
| *end = nextExactSpan(*start, 1); |
| return true; |
| } |
| |
| SkOpSegment* SkOpSegment::nextChase(int* index, const int step, int* min, SkOpSpan** last) { |
| int end = nextExactSpan(*index, step); |
| SkASSERT(end >= 0); |
| if (multipleSpans(end)) { |
| *last = &fTs[end]; |
| return NULL; |
| } |
| const SkOpSpan& endSpan = fTs[end]; |
| SkOpSegment* other = endSpan.fOther; |
| *index = endSpan.fOtherIndex; |
| SkASSERT(index >= 0); |
| int otherEnd = other->nextExactSpan(*index, step); |
| SkASSERT(otherEnd >= 0); |
| *min = SkMin32(*index, otherEnd); |
| return other; |
| } |
| |
| // This has callers for two different situations: one establishes the end |
| // of the current span, and one establishes the beginning of the next span |
| // (thus the name). When this is looking for the end of the current span, |
| // coincidence is found when the beginning Ts contain -step and the end |
| // contains step. When it is looking for the beginning of the next, the |
| // first Ts found can be ignored and the last Ts should contain -step. |
| // OPTIMIZATION: probably should split into two functions |
| int SkOpSegment::nextSpan(int from, int step) const { |
| const SkOpSpan& fromSpan = fTs[from]; |
| int count = fTs.count(); |
| int to = from; |
| while (step > 0 ? ++to < count : --to >= 0) { |
| const SkOpSpan& span = fTs[to]; |
| if (approximately_zero(span.fT - fromSpan.fT)) { |
| continue; |
| } |
| return to; |
| } |
| return -1; |
| } |
| |
| // FIXME |
| // this returns at any difference in T, vs. a preset minimum. It may be |
| // that all callers to nextSpan should use this instead. |
| // OPTIMIZATION splitting this into separate loops for up/down steps |
| // would allow using precisely_negative instead of precisely_zero |
| int SkOpSegment::nextExactSpan(int from, int step) const { |
| const SkOpSpan& fromSpan = fTs[from]; |
| int count = fTs.count(); |
| int to = from; |
| while (step > 0 ? ++to < count : --to >= 0) { |
| const SkOpSpan& span = fTs[to]; |
| if (precisely_zero(span.fT - fromSpan.fT)) { |
| continue; |
| } |
| return to; |
| } |
| return -1; |
| } |
| |
| void SkOpSegment::setUpWindings(int index, int endIndex, int* sumMiWinding, int* sumSuWinding, |
| int* maxWinding, int* sumWinding, int* oppMaxWinding, int* oppSumWinding) { |
| int deltaSum = spanSign(index, endIndex); |
| int oppDeltaSum = oppSign(index, endIndex); |
| if (operand()) { |
| *maxWinding = *sumSuWinding; |
| *sumWinding = *sumSuWinding -= deltaSum; |
| *oppMaxWinding = *sumMiWinding; |
| *oppSumWinding = *sumMiWinding -= oppDeltaSum; |
| } else { |
| *maxWinding = *sumMiWinding; |
| *sumWinding = *sumMiWinding -= deltaSum; |
| *oppMaxWinding = *sumSuWinding; |
| *oppSumWinding = *sumSuWinding -= oppDeltaSum; |
| } |
| } |
| |
| // This marks all spans unsortable so that this info is available for early |
| // exclusion in find top and others. This could be optimized to only mark |
| // adjacent spans that unsortable. However, this makes it difficult to later |
| // determine starting points for edge detection in find top and the like. |
| bool SkOpSegment::SortAngles(const SkTDArray<SkOpAngle>& angles, |
| SkTDArray<SkOpAngle*>* angleList) { |
| bool sortable = true; |
| int angleCount = angles.count(); |
| int angleIndex; |
| angleList->setReserve(angleCount); |
| for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) { |
| const SkOpAngle& angle = angles[angleIndex]; |
| *angleList->append() = const_cast<SkOpAngle*>(&angle); |
| sortable &= !angle.unsortable(); |
| } |
| if (sortable) { |
| SkTQSort<SkOpAngle>(angleList->begin(), angleList->end() - 1); |
| for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) { |
| if (angles[angleIndex].unsortable()) { |
| sortable = false; |
| break; |
| } |
| } |
| } |
| if (!sortable) { |
| for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) { |
| const SkOpAngle& angle = angles[angleIndex]; |
| angle.segment()->markUnsortable(angle.start(), angle.end()); |
| } |
| } |
| return sortable; |
| } |
| |
| void SkOpSegment::subDivide(int start, int end, SkPoint edge[4]) const { |
| edge[0] = fTs[start].fPt; |
| edge[fVerb] = fTs[end].fPt; |
| if (fVerb == SkPath::kQuad_Verb || fVerb == SkPath::kCubic_Verb) { |
| SkDPoint sub[2] = {{ edge[0].fX, edge[0].fY}, {edge[fVerb].fX, edge[fVerb].fY }}; |
| if (fVerb == SkPath::kQuad_Verb) { |
| edge[1] = SkDQuad::SubDivide(fPts, sub[0], sub[1], fTs[start].fT, |
| fTs[end].fT).asSkPoint(); |
| } else { |
| SkDCubic::SubDivide(fPts, sub[0], sub[1], fTs[start].fT, fTs[end].fT, sub); |
| edge[1] = sub[0].asSkPoint(); |
| edge[2] = sub[1].asSkPoint(); |
| } |
| } |
| } |
| |
| void SkOpSegment::subDivideBounds(int start, int end, SkPathOpsBounds* bounds) const { |
| SkPoint edge[4]; |
| subDivide(start, end, edge); |
| (bounds->*SetCurveBounds[fVerb])(edge); |
| } |
| |
| bool SkOpSegment::tiny(const SkOpAngle* angle) const { |
| int start = angle->start(); |
| int end = angle->end(); |
| const SkOpSpan& mSpan = fTs[SkMin32(start, end)]; |
| return mSpan.fTiny; |
| } |
| |
| void SkOpSegment::TrackOutside(SkTDArray<double>* outsideTs, double end, double start) { |
| int outCount = outsideTs->count(); |
| if (outCount == 0 || !approximately_negative(end - (*outsideTs)[outCount - 2])) { |
| *outsideTs->append() = end; |
| *outsideTs->append() = start; |
| } |
| } |
| |
| void SkOpSegment::undoneSpan(int* start, int* end) { |
| size_t tCount = fTs.count(); |
| size_t index; |
| for (index = 0; index < tCount; ++index) { |
| if (!fTs[index].fDone) { |
| break; |
| } |
| } |
| SkASSERT(index < tCount - 1); |
| *start = index; |
| double startT = fTs[index].fT; |
| while (approximately_negative(fTs[++index].fT - startT)) |
| SkASSERT(index < tCount); |
| SkASSERT(index < tCount); |
| *end = index; |
| } |
| |
| int SkOpSegment::updateOppWinding(int index, int endIndex) const { |
| int lesser = SkMin32(index, endIndex); |
| int oppWinding = oppSum(lesser); |
| int oppSpanWinding = oppSign(index, endIndex); |
| if (oppSpanWinding && UseInnerWinding(oppWinding - oppSpanWinding, oppWinding) |
| && oppWinding != SK_MaxS32) { |
| oppWinding -= oppSpanWinding; |
| } |
| return oppWinding; |
| } |
| |
| int SkOpSegment::updateOppWinding(const SkOpAngle* angle) const { |
| int startIndex = angle->start(); |
| int endIndex = angle->end(); |
| return updateOppWinding(endIndex, startIndex); |
| } |
| |
| int SkOpSegment::updateOppWindingReverse(const SkOpAngle* angle) const { |
| int startIndex = angle->start(); |
| int endIndex = angle->end(); |
| return updateOppWinding(startIndex, endIndex); |
| } |
| |
| int SkOpSegment::updateWinding(int index, int endIndex) const { |
| int lesser = SkMin32(index, endIndex); |
| int winding = windSum(lesser); |
| int spanWinding = spanSign(index, endIndex); |
| if (winding && UseInnerWinding(winding - spanWinding, winding) && winding != SK_MaxS32) { |
| winding -= spanWinding; |
| } |
| return winding; |
| } |
| |
| int SkOpSegment::updateWinding(const SkOpAngle* angle) const { |
| int startIndex = angle->start(); |
| int endIndex = angle->end(); |
| return updateWinding(endIndex, startIndex); |
| } |
| |
| int SkOpSegment::updateWindingReverse(const SkOpAngle* angle) const { |
| int startIndex = angle->start(); |
| int endIndex = angle->end(); |
| return updateWinding(startIndex, endIndex); |
| } |
| |
| int SkOpSegment::windingAtT(double tHit, int tIndex, bool crossOpp, SkScalar* dx) const { |
| if (approximately_zero(tHit - t(tIndex))) { // if we hit the end of a span, disregard |
| return SK_MinS32; |
| } |
| int winding = crossOpp ? oppSum(tIndex) : windSum(tIndex); |
| SkASSERT(winding != SK_MinS32); |
| int windVal = crossOpp ? oppValue(tIndex) : windValue(tIndex); |
| #if DEBUG_WINDING_AT_T |
| SkDebugf("%s oldWinding=%d windValue=%d", __FUNCTION__, winding, windVal); |
| #endif |
| // see if a + change in T results in a +/- change in X (compute x'(T)) |
| *dx = (*CurveSlopeAtT[fVerb])(fPts, tHit).fX; |
| if (fVerb > SkPath::kLine_Verb && approximately_zero(*dx)) { |
| *dx = fPts[2].fX - fPts[1].fX - *dx; |
| } |
| if (*dx == 0) { |
| #if DEBUG_WINDING_AT_T |
| SkDebugf(" dx=0 winding=SK_MinS32\n"); |
| #endif |
| return SK_MinS32; |
| } |
| if (winding * *dx > 0) { // if same signs, result is negative |
| winding += *dx > 0 ? -windVal : windVal; |
| } |
| #if DEBUG_WINDING_AT_T |
| SkDebugf(" dx=%c winding=%d\n", *dx > 0 ? '+' : '-', winding); |
| #endif |
| return winding; |
| } |
| |
| int SkOpSegment::windSum(const SkOpAngle* angle) const { |
| int start = angle->start(); |
| int end = angle->end(); |
| int index = SkMin32(start, end); |
| return windSum(index); |
| } |
| |
| int SkOpSegment::windValue(const SkOpAngle* angle) const { |
| int start = angle->start(); |
| int end = angle->end(); |
| int index = SkMin32(start, end); |
| return windValue(index); |
| } |
| |
| int SkOpSegment::windValueAt(double t) const { |
| int count = fTs.count(); |
| for (int index = 0; index < count; ++index) { |
| if (fTs[index].fT == t) { |
| return fTs[index].fWindValue; |
| } |
| } |
| SkASSERT(0); |
| return 0; |
| } |
| |
| void SkOpSegment::zeroSpan(SkOpSpan* span) { |
| SkASSERT(span->fWindValue > 0 || span->fOppValue > 0); |
| span->fWindValue = 0; |
| span->fOppValue = 0; |
| SkASSERT(!span->fDone); |
| span->fDone = true; |
| ++fDoneSpans; |
| } |
| |
| #if DEBUG_SWAP_TOP |
| bool SkOpSegment::controlsContainedByEnds(int tStart, int tEnd) const { |
| if (fVerb != SkPath::kCubic_Verb) { |
| return false; |
| } |
| SkDCubic dst = SkDCubic::SubDivide(fPts, fTs[tStart].fT, fTs[tEnd].fT); |
| return dst.controlsContainedByEnds(); |
| } |
| #endif |
| |
| #if DEBUG_CONCIDENT |
| // SkASSERT if pair has not already been added |
| void SkOpSegment::debugAddTPair(double t, const SkOpSegment& other, double otherT) const { |
| for (int i = 0; i < fTs.count(); ++i) { |
| if (fTs[i].fT == t && fTs[i].fOther == &other && fTs[i].fOtherT == otherT) { |
| return; |
| } |
| } |
| SkASSERT(0); |
| } |
| #endif |
| |
| #if DEBUG_CONCIDENT |
| void SkOpSegment::debugShowTs() const { |
| SkDebugf("%s id=%d", __FUNCTION__, fID); |
| int lastWind = -1; |
| int lastOpp = -1; |
| double lastT = -1; |
| int i; |
| for (i = 0; i < fTs.count(); ++i) { |
| bool change = lastT != fTs[i].fT || lastWind != fTs[i].fWindValue |
| || lastOpp != fTs[i].fOppValue; |
| if (change && lastWind >= 0) { |
| SkDebugf(" t=%1.3g %1.9g,%1.9g w=%d o=%d]", |
| lastT, xyAtT(i - 1).fX, xyAtT(i - 1).fY, lastWind, lastOpp); |
| } |
| if (change) { |
| SkDebugf(" [o=%d", fTs[i].fOther->fID); |
| lastWind = fTs[i].fWindValue; |
| lastOpp = fTs[i].fOppValue; |
| lastT = fTs[i].fT; |
| } else { |
| SkDebugf(",%d", fTs[i].fOther->fID); |
| } |
| } |
| if (i <= 0) { |
| return; |
| } |
| SkDebugf(" t=%1.3g %1.9g,%1.9g w=%d o=%d]", |
| lastT, xyAtT(i - 1).fX, xyAtT(i - 1).fY, lastWind, lastOpp); |
| if (fOperand) { |
| SkDebugf(" operand"); |
| } |
| if (done()) { |
| SkDebugf(" done"); |
| } |
| SkDebugf("\n"); |
| } |
| #endif |
| |
| #if DEBUG_ACTIVE_SPANS |
| void SkOpSegment::debugShowActiveSpans() const { |
| if (done()) { |
| return; |
| } |
| #if DEBUG_ACTIVE_SPANS_SHORT_FORM |
| int lastId = -1; |
| double lastT = -1; |
| #endif |
| for (int i = 0; i < fTs.count(); ++i) { |
| SkASSERT(&fTs[i] == &fTs[i].fOther->fTs[fTs[i].fOtherIndex].fOther-> |
| fTs[fTs[i].fOther->fTs[fTs[i].fOtherIndex].fOtherIndex]); |
| if (fTs[i].fDone) { |
| continue; |
| } |
| #if DEBUG_ACTIVE_SPANS_SHORT_FORM |
| if (lastId == fID && lastT == fTs[i].fT) { |
| continue; |
| } |
| lastId = fID; |
| lastT = fTs[i].fT; |
| #endif |
| SkDebugf("%s id=%d", __FUNCTION__, fID); |
| SkDebugf(" (%1.9g,%1.9g", fPts[0].fX, fPts[0].fY); |
| for (int vIndex = 1; vIndex <= fVerb; ++vIndex) { |
| SkDebugf(" %1.9g,%1.9g", fPts[vIndex].fX, fPts[vIndex].fY); |
| } |
| const SkOpSpan* span = &fTs[i]; |
| SkDebugf(") t=%1.9g (%1.9g,%1.9g)", span->fT, xAtT(span), yAtT(span)); |
| int iEnd = i + 1; |
| while (fTs[iEnd].fT < 1 && approximately_equal(fTs[i].fT, fTs[iEnd].fT)) { |
| ++iEnd; |
| } |
| SkDebugf(" tEnd=%1.9g", fTs[iEnd].fT); |
| const SkOpSegment* other = fTs[i].fOther; |
| SkDebugf(" other=%d otherT=%1.9g otherIndex=%d windSum=", |
| other->fID, fTs[i].fOtherT, fTs[i].fOtherIndex); |
| if (fTs[i].fWindSum == SK_MinS32) { |
| SkDebugf("?"); |
| } else { |
| SkDebugf("%d", fTs[i].fWindSum); |
| } |
| SkDebugf(" windValue=%d oppValue=%d\n", fTs[i].fWindValue, fTs[i].fOppValue); |
| } |
| } |
| #endif |
| |
| |
| #if DEBUG_MARK_DONE || DEBUG_UNSORTABLE |
| void SkOpSegment::debugShowNewWinding(const char* fun, const SkOpSpan& span, int winding) { |
| const SkPoint& pt = xyAtT(&span); |
| SkDebugf("%s id=%d", fun, fID); |
| SkDebugf(" (%1.9g,%1.9g", fPts[0].fX, fPts[0].fY); |
| for (int vIndex = 1; vIndex <= fVerb; ++vIndex) { |
| SkDebugf(" %1.9g,%1.9g", fPts[vIndex].fX, fPts[vIndex].fY); |
| } |
| SkASSERT(&span == &span.fOther->fTs[span.fOtherIndex].fOther-> |
| fTs[span.fOther->fTs[span.fOtherIndex].fOtherIndex]); |
| SkDebugf(") t=%1.9g [%d] (%1.9g,%1.9g) tEnd=%1.9g newWindSum=%d windSum=", |
| span.fT, span.fOther->fTs[span.fOtherIndex].fOtherIndex, pt.fX, pt.fY, |
| (&span)[1].fT, winding); |
| if (span.fWindSum == SK_MinS32) { |
| SkDebugf("?"); |
| } else { |
| SkDebugf("%d", span.fWindSum); |
| } |
| SkDebugf(" windValue=%d\n", span.fWindValue); |
| } |
| |
| void SkOpSegment::debugShowNewWinding(const char* fun, const SkOpSpan& span, int winding, |
| int oppWinding) { |
| const SkPoint& pt = xyAtT(&span); |
| SkDebugf("%s id=%d", fun, fID); |
| SkDebugf(" (%1.9g,%1.9g", fPts[0].fX, fPts[0].fY); |
| for (int vIndex = 1; vIndex <= fVerb; ++vIndex) { |
| SkDebugf(" %1.9g,%1.9g", fPts[vIndex].fX, fPts[vIndex].fY); |
| } |
| SkASSERT(&span == &span.fOther->fTs[span.fOtherIndex].fOther-> |
| fTs[span.fOther->fTs[span.fOtherIndex].fOtherIndex]); |
| SkDebugf(") t=%1.9g [%d] (%1.9g,%1.9g) tEnd=%1.9g newWindSum=%d newOppSum=%d oppSum=", |
| span.fT, span.fOther->fTs[span.fOtherIndex].fOtherIndex, pt.fX, pt.fY, |
| (&span)[1].fT, winding, oppWinding); |
| if (span.fOppSum == SK_MinS32) { |
| SkDebugf("?"); |
| } else { |
| SkDebugf("%d", span.fOppSum); |
| } |
| SkDebugf(" windSum="); |
| if (span.fWindSum == SK_MinS32) { |
| SkDebugf("?"); |
| } else { |
| SkDebugf("%d", span.fWindSum); |
| } |
| SkDebugf(" windValue=%d\n", span.fWindValue); |
| } |
| #endif |
| |
| #if DEBUG_SORT || DEBUG_SWAP_TOP |
| void SkOpSegment::debugShowSort(const char* fun, const SkTDArray<SkOpAngle*>& angles, int first, |
| const int contourWinding, const int oppContourWinding) const { |
| if (--gDebugSortCount < 0) { |
| return; |
| } |
| SkASSERT(angles[first]->segment() == this); |
| SkASSERT(angles.count() > 1); |
| int lastSum = contourWinding; |
| int oppLastSum = oppContourWinding; |
| const SkOpAngle* firstAngle = angles[first]; |
| int windSum = lastSum - spanSign(firstAngle); |
| int oppoSign = oppSign(firstAngle); |
| int oppWindSum = oppLastSum - oppoSign; |
| #define WIND_AS_STRING(x) char x##Str[12]; if (!valid_wind(x)) strcpy(x##Str, "?"); \ |
| else SK_SNPRINTF(x##Str, sizeof(x##Str), "%d", x) |
| WIND_AS_STRING(contourWinding); |
| WIND_AS_STRING(oppContourWinding); |
| SkDebugf("%s %s contourWinding=%s oppContourWinding=%s sign=%d\n", fun, __FUNCTION__, |
| contourWindingStr, oppContourWindingStr, spanSign(angles[first])); |
| int index = first; |
| bool firstTime = true; |
| do { |
| const SkOpAngle& angle = *angles[index]; |
| const SkOpSegment& segment = *angle.segment(); |
| int start = angle.start(); |
| int end = angle.end(); |
| const SkOpSpan& sSpan = segment.fTs[start]; |
| const SkOpSpan& eSpan = segment.fTs[end]; |
| const SkOpSpan& mSpan = segment.fTs[SkMin32(start, end)]; |
| bool opp = segment.fOperand ^ fOperand; |
| if (!firstTime) { |
| oppoSign = segment.oppSign(&angle); |
| if (opp) { |
| oppLastSum = oppWindSum; |
| oppWindSum -= segment.spanSign(&angle); |
| if (oppoSign) { |
| lastSum = windSum; |
| windSum -= oppoSign; |
| } |
| } else { |
| lastSum = windSum; |
| windSum -= segment.spanSign(&angle); |
| if (oppoSign) { |
| oppLastSum = oppWindSum; |
| oppWindSum -= oppoSign; |
| } |
| } |
| } |
| SkDebugf("%s [%d] %s", __FUNCTION__, index, |
| angle.unsortable() ? "*** UNSORTABLE *** " : ""); |
| #if COMPACT_DEBUG_SORT |
| SkDebugf("id=%d %s start=%d (%1.9g,%,1.9g) end=%d (%1.9g,%,1.9g)", |
| segment.fID, kLVerbStr[segment.fVerb], |
| start, segment.xAtT(&sSpan), segment.yAtT(&sSpan), end, |
| segment.xAtT(&eSpan), segment.yAtT(&eSpan)); |
| #else |
| switch (segment.fVerb) { |
| case SkPath::kLine_Verb: |
| SkDebugf(LINE_DEBUG_STR, LINE_DEBUG_DATA(segment.fPts)); |
| break; |
| case SkPath::kQuad_Verb: |
| SkDebugf(QUAD_DEBUG_STR, QUAD_DEBUG_DATA(segment.fPts)); |
| break; |
| case SkPath::kCubic_Verb: |
| SkDebugf(CUBIC_DEBUG_STR, CUBIC_DEBUG_DATA(segment.fPts)); |
| break; |
| default: |
| SkASSERT(0); |
| } |
| SkDebugf(" tStart=%1.9g tEnd=%1.9g", sSpan.fT, eSpan.fT); |
| #endif |
| SkDebugf(" sign=%d windValue=%d windSum=", angle.sign(), mSpan.fWindValue); |
| winding_printf(mSpan.fWindSum); |
| int last, wind; |
| if (opp) { |
| last = oppLastSum; |
| wind = oppWindSum; |
| } else { |
| last = lastSum; |
| wind = windSum; |
| } |
| bool useInner = valid_wind(last) && valid_wind(wind) && UseInnerWinding(last, wind); |
| WIND_AS_STRING(last); |
| WIND_AS_STRING(wind); |
| WIND_AS_STRING(lastSum); |
| WIND_AS_STRING(oppLastSum); |
| WIND_AS_STRING(windSum); |
| WIND_AS_STRING(oppWindSum); |
| #undef WIND_AS_STRING |
| if (!oppoSign) { |
| SkDebugf(" %s->%s (max=%s)", lastStr, windStr, useInner ? windStr : lastStr); |
| } else { |
| SkDebugf(" %s->%s (%s->%s)", lastStr, windStr, opp ? lastSumStr : oppLastSumStr, |
| opp ? windSumStr : oppWindSumStr); |
| } |
| SkDebugf(" done=%d tiny=%d opp=%d\n", mSpan.fDone, mSpan.fTiny, opp); |
| #if 0 && DEBUG_ANGLE |
| angle.debugShow(segment.xyAtT(&sSpan)); |
| #endif |
| ++index; |
| if (index == angles.count()) { |
| index = 0; |
| } |
| if (firstTime) { |
| firstTime = false; |
| } |
| } while (index != first); |
| } |
| |
| void SkOpSegment::debugShowSort(const char* fun, const SkTDArray<SkOpAngle*>& angles, int first) { |
| const SkOpAngle* firstAngle = angles[first]; |
| const SkOpSegment* segment = firstAngle->segment(); |
| int winding = segment->updateWinding(firstAngle); |
| int oppWinding = segment->updateOppWinding(firstAngle); |
| debugShowSort(fun, angles, first, winding, oppWinding); |
| } |
| |
| #endif |
| |
| #if DEBUG_SHOW_WINDING |
| int SkOpSegment::debugShowWindingValues(int slotCount, int ofInterest) const { |
| if (!(1 << fID & ofInterest)) { |
| return 0; |
| } |
| int sum = 0; |
| SkTDArray<char> slots; |
| slots.setCount(slotCount * 2); |
| memset(slots.begin(), ' ', slotCount * 2); |
| for (int i = 0; i < fTs.count(); ++i) { |
| // if (!(1 << fTs[i].fOther->fID & ofInterest)) { |
| // continue; |
| // } |
| sum += fTs[i].fWindValue; |
| slots[fTs[i].fOther->fID - 1] = as_digit(fTs[i].fWindValue); |
| sum += fTs[i].fOppValue; |
| slots[slotCount + fTs[i].fOther->fID - 1] = as_digit(fTs[i].fOppValue); |
| } |
| SkDebugf("%s id=%2d %.*s | %.*s\n", __FUNCTION__, fID, slotCount, slots.begin(), slotCount, |
| slots.begin() + slotCount); |
| return sum; |
| } |
| #endif |