blob: fb9debf348fa9e79d523bfa797513bf09b13d81f [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrGLProgram.h"
#include "../GrAllocator.h"
#include "GrGLShaderVar.h"
#include "SkTrace.h"
#include "SkXfermode.h"
namespace {
enum {
/// Used to mark a StageUniLocation field that should be bound
/// to a uniform during getUniformLocationsAndInitCache().
kUseUniform = 2000
};
} // namespace
#define PRINT_SHADERS 0
typedef GrTAllocator<GrGLShaderVar> VarArray;
// number of each input/output type in a single allocation block
static const int gVarsPerBlock = 8;
// except FS outputs where we expect 2 at most.
static const int gMaxFSOutputs = 2;
struct ShaderCodeSegments {
ShaderCodeSegments()
: fVSUnis(gVarsPerBlock)
, fVSAttrs(gVarsPerBlock)
, fVSOutputs(gVarsPerBlock)
, fGSInputs(gVarsPerBlock)
, fGSOutputs(gVarsPerBlock)
, fFSInputs(gVarsPerBlock)
, fFSUnis(gVarsPerBlock)
, fFSOutputs(gMaxFSOutputs)
, fUsesGS(false) {}
GrStringBuilder fHeader; // VS+FS, GLSL version, etc
VarArray fVSUnis;
VarArray fVSAttrs;
VarArray fVSOutputs;
VarArray fGSInputs;
VarArray fGSOutputs;
VarArray fFSInputs;
GrStringBuilder fGSHeader; // layout qualifiers specific to GS
VarArray fFSUnis;
VarArray fFSOutputs;
GrStringBuilder fFSFunctions;
GrStringBuilder fVSCode;
GrStringBuilder fGSCode;
GrStringBuilder fFSCode;
bool fUsesGS;
};
typedef GrGLProgram::ProgramDesc::StageDesc StageDesc;
#if GR_GL_ATTRIBUTE_MATRICES
#define VIEW_MATRIX_NAME "aViewM"
#else
#define VIEW_MATRIX_NAME "uViewM"
#endif
#define POS_ATTR_NAME "aPosition"
#define COL_ATTR_NAME "aColor"
#define COV_ATTR_NAME "aCoverage"
#define EDGE_ATTR_NAME "aEdge"
#define COL_UNI_NAME "uColor"
#define COV_UNI_NAME "uCoverage"
#define EDGES_UNI_NAME "uEdges"
#define COL_FILTER_UNI_NAME "uColorFilter"
#define COL_MATRIX_UNI_NAME "uColorMatrix"
#define COL_MATRIX_VEC_UNI_NAME "uColorMatrixVec"
namespace {
inline void tex_attr_name(int coordIdx, GrStringBuilder* s) {
*s = "aTexCoord";
s->appendS32(coordIdx);
}
inline GrGLShaderVar::Type float_vector_type(int count) {
GR_STATIC_ASSERT(GrGLShaderVar::kFloat_Type == 0);
GR_STATIC_ASSERT(GrGLShaderVar::kVec2f_Type == 1);
GR_STATIC_ASSERT(GrGLShaderVar::kVec3f_Type == 2);
GR_STATIC_ASSERT(GrGLShaderVar::kVec4f_Type == 3);
GrAssert(count > 0 && count <= 4);
return (GrGLShaderVar::Type)(count - 1);
}
inline const char* float_vector_type_str(int count) {
return GrGLShaderVar::TypeString(float_vector_type(count));
}
inline const char* vector_homog_coord(int count) {
static const char* HOMOGS[] = {"ERROR", "", ".y", ".z", ".w"};
GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(HOMOGS));
return HOMOGS[count];
}
inline const char* vector_nonhomog_coords(int count) {
static const char* NONHOMOGS[] = {"ERROR", "", ".x", ".xy", ".xyz"};
GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(NONHOMOGS));
return NONHOMOGS[count];
}
inline const char* vector_all_coords(int count) {
static const char* ALL[] = {"ERROR", "", ".xy", ".xyz", ".xyzw"};
GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(ALL));
return ALL[count];
}
inline const char* all_ones_vec(int count) {
static const char* ONESVEC[] = {"ERROR", "1.0", "vec2(1,1)",
"vec3(1,1,1)", "vec4(1,1,1,1)"};
GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(ONESVEC));
return ONESVEC[count];
}
inline const char* all_zeros_vec(int count) {
static const char* ZEROSVEC[] = {"ERROR", "0.0", "vec2(0,0)",
"vec3(0,0,0)", "vec4(0,0,0,0)"};
GrAssert(count >= 1 && count < (int)GR_ARRAY_COUNT(ZEROSVEC));
return ZEROSVEC[count];
}
inline const char* declared_color_output_name() { return "fsColorOut"; }
inline const char* dual_source_output_name() { return "dualSourceOut"; }
inline void tex_matrix_name(int stage, GrStringBuilder* s) {
#if GR_GL_ATTRIBUTE_MATRICES
*s = "aTexM";
#else
*s = "uTexM";
#endif
s->appendS32(stage);
}
inline void normalized_texel_size_name(int stage, GrStringBuilder* s) {
*s = "uTexelSize";
s->appendS32(stage);
}
inline void sampler_name(int stage, GrStringBuilder* s) {
*s = "uSampler";
s->appendS32(stage);
}
inline void radial2_param_name(int stage, GrStringBuilder* s) {
*s = "uRadial2Params";
s->appendS32(stage);
}
inline void convolve_param_names(int stage, GrStringBuilder* k, GrStringBuilder* i) {
*k = "uKernel";
k->appendS32(stage);
*i = "uImageIncrement";
i->appendS32(stage);
}
inline void tex_domain_name(int stage, GrStringBuilder* s) {
*s = "uTexDom";
s->appendS32(stage);
}
}
GrGLProgram::GrGLProgram() {
}
GrGLProgram::~GrGLProgram() {
}
void GrGLProgram::overrideBlend(GrBlendCoeff* srcCoeff,
GrBlendCoeff* dstCoeff) const {
switch (fProgramDesc.fDualSrcOutput) {
case ProgramDesc::kNone_DualSrcOutput:
break;
// the prog will write a coverage value to the secondary
// output and the dst is blended by one minus that value.
case ProgramDesc::kCoverage_DualSrcOutput:
case ProgramDesc::kCoverageISA_DualSrcOutput:
case ProgramDesc::kCoverageISC_DualSrcOutput:
*dstCoeff = (GrBlendCoeff)GrGpu::kIS2C_BlendCoeff;
break;
default:
GrCrash("Unexpected dual source blend output");
break;
}
}
// assigns modulation of two vars to an output var
// vars can be vec4s or floats (or one of each)
// result is always vec4
// if either var is "" then assign to the other var
// if both are "" then assign all ones
static inline void modulate_helper(const char* outputVar,
const char* var0,
const char* var1,
GrStringBuilder* code) {
GrAssert(NULL != outputVar);
GrAssert(NULL != var0);
GrAssert(NULL != var1);
GrAssert(NULL != code);
bool has0 = '\0' != *var0;
bool has1 = '\0' != *var1;
if (!has0 && !has1) {
code->appendf("\t%s = %s;\n", outputVar, all_ones_vec(4));
} else if (!has0) {
code->appendf("\t%s = vec4(%s);\n", outputVar, var1);
} else if (!has1) {
code->appendf("\t%s = vec4(%s);\n", outputVar, var0);
} else {
code->appendf("\t%s = vec4(%s * %s);\n", outputVar, var0, var1);
}
}
// assigns addition of two vars to an output var
// vars can be vec4s or floats (or one of each)
// result is always vec4
// if either var is "" then assign to the other var
// if both are "" then assign all zeros
static inline void add_helper(const char* outputVar,
const char* var0,
const char* var1,
GrStringBuilder* code) {
GrAssert(NULL != outputVar);
GrAssert(NULL != var0);
GrAssert(NULL != var1);
GrAssert(NULL != code);
bool has0 = '\0' != *var0;
bool has1 = '\0' != *var1;
if (!has0 && !has1) {
code->appendf("\t%s = %s;\n", outputVar, all_zeros_vec(4));
} else if (!has0) {
code->appendf("\t%s = vec4(%s);\n", outputVar, var1);
} else if (!has1) {
code->appendf("\t%s = vec4(%s);\n", outputVar, var0);
} else {
code->appendf("\t%s = vec4(%s + %s);\n", outputVar, var0, var1);
}
}
// given two blend coeffecients determine whether the src
// and/or dst computation can be omitted.
static inline void needBlendInputs(SkXfermode::Coeff srcCoeff,
SkXfermode::Coeff dstCoeff,
bool* needSrcValue,
bool* needDstValue) {
if (SkXfermode::kZero_Coeff == srcCoeff) {
switch (dstCoeff) {
// these all read the src
case SkXfermode::kSC_Coeff:
case SkXfermode::kISC_Coeff:
case SkXfermode::kSA_Coeff:
case SkXfermode::kISA_Coeff:
*needSrcValue = true;
break;
default:
*needSrcValue = false;
break;
}
} else {
*needSrcValue = true;
}
if (SkXfermode::kZero_Coeff == dstCoeff) {
switch (srcCoeff) {
// these all read the dst
case SkXfermode::kDC_Coeff:
case SkXfermode::kIDC_Coeff:
case SkXfermode::kDA_Coeff:
case SkXfermode::kIDA_Coeff:
*needDstValue = true;
break;
default:
*needDstValue = false;
break;
}
} else {
*needDstValue = true;
}
}
/**
* Create a blend_coeff * value string to be used in shader code. Sets empty
* string if result is trivially zero.
*/
static void blendTermString(GrStringBuilder* str, SkXfermode::Coeff coeff,
const char* src, const char* dst,
const char* value) {
switch (coeff) {
case SkXfermode::kZero_Coeff: /** 0 */
*str = "";
break;
case SkXfermode::kOne_Coeff: /** 1 */
*str = value;
break;
case SkXfermode::kSC_Coeff:
str->printf("(%s * %s)", src, value);
break;
case SkXfermode::kISC_Coeff:
str->printf("((%s - %s) * %s)", all_ones_vec(4), src, value);
break;
case SkXfermode::kDC_Coeff:
str->printf("(%s * %s)", dst, value);
break;
case SkXfermode::kIDC_Coeff:
str->printf("((%s - %s) * %s)", all_ones_vec(4), dst, value);
break;
case SkXfermode::kSA_Coeff: /** src alpha */
str->printf("(%s.a * %s)", src, value);
break;
case SkXfermode::kISA_Coeff: /** inverse src alpha (i.e. 1 - sa) */
str->printf("((1.0 - %s.a) * %s)", src, value);
break;
case SkXfermode::kDA_Coeff: /** dst alpha */
str->printf("(%s.a * %s)", dst, value);
break;
case SkXfermode::kIDA_Coeff: /** inverse dst alpha (i.e. 1 - da) */
str->printf("((1.0 - %s.a) * %s)", dst, value);
break;
default:
GrCrash("Unexpected xfer coeff.");
break;
}
}
/**
* Adds a line to the fragment shader code which modifies the color by
* the specified color filter.
*/
static void addColorFilter(GrStringBuilder* fsCode, const char * outputVar,
SkXfermode::Coeff uniformCoeff,
SkXfermode::Coeff colorCoeff,
const char* inColor) {
GrStringBuilder colorStr, constStr;
blendTermString(&colorStr, colorCoeff, COL_FILTER_UNI_NAME,
inColor, inColor);
blendTermString(&constStr, uniformCoeff, COL_FILTER_UNI_NAME,
inColor, COL_FILTER_UNI_NAME);
add_helper(outputVar, colorStr.c_str(), constStr.c_str(), fsCode);
}
/**
* Adds code to the fragment shader code which modifies the color by
* the specified color matrix.
*/
static void addColorMatrix(GrStringBuilder* fsCode, const char * outputVar,
const char* inColor) {
fsCode->appendf("\t%s = %s * vec4(%s.rgb / %s.a, %s.a) + %s;\n", outputVar, COL_MATRIX_UNI_NAME, inColor, inColor, inColor, COL_MATRIX_VEC_UNI_NAME);
fsCode->appendf("\t%s.rgb *= %s.a;\n", outputVar, outputVar);
}
namespace {
// Adds a var that is computed in the VS and read in FS.
// If there is a GS it will just pass it through.
void append_varying(GrGLShaderVar::Type type,
const char* name,
ShaderCodeSegments* segments,
const char** vsOutName = NULL,
const char** fsInName = NULL) {
segments->fVSOutputs.push_back();
segments->fVSOutputs.back().setType(type);
segments->fVSOutputs.back().setTypeModifier(
GrGLShaderVar::kOut_TypeModifier);
segments->fVSOutputs.back().accessName()->printf("v%s", name);
if (vsOutName) {
*vsOutName = segments->fVSOutputs.back().getName().c_str();
}
// input to FS comes either from VS or GS
const GrStringBuilder* fsName;
if (segments->fUsesGS) {
// if we have a GS take each varying in as an array
// and output as non-array.
segments->fGSInputs.push_back();
segments->fGSInputs.back().setType(type);
segments->fGSInputs.back().setTypeModifier(
GrGLShaderVar::kIn_TypeModifier);
segments->fGSInputs.back().setUnsizedArray();
*segments->fGSInputs.back().accessName() =
segments->fVSOutputs.back().getName();
segments->fGSOutputs.push_back();
segments->fGSOutputs.back().setType(type);
segments->fGSOutputs.back().setTypeModifier(
GrGLShaderVar::kOut_TypeModifier);
segments->fGSOutputs.back().accessName()->printf("g%s", name);
fsName = segments->fGSOutputs.back().accessName();
} else {
fsName = segments->fVSOutputs.back().accessName();
}
segments->fFSInputs.push_back();
segments->fFSInputs.back().setType(type);
segments->fFSInputs.back().setTypeModifier(
GrGLShaderVar::kIn_TypeModifier);
segments->fFSInputs.back().setName(*fsName);
if (fsInName) {
*fsInName = fsName->c_str();
}
}
// version of above that adds a stage number to the
// the var name (for uniqueness)
void append_varying(GrGLShaderVar::Type type,
const char* name,
int stageNum,
ShaderCodeSegments* segments,
const char** vsOutName = NULL,
const char** fsInName = NULL) {
GrStringBuilder nameWithStage(name);
nameWithStage.appendS32(stageNum);
append_varying(type, nameWithStage.c_str(), segments, vsOutName, fsInName);
}
}
void GrGLProgram::genEdgeCoverage(const GrGLInterface* gl,
GrVertexLayout layout,
CachedData* programData,
GrStringBuilder* coverageVar,
ShaderCodeSegments* segments) const {
if (fProgramDesc.fEdgeAANumEdges > 0) {
segments->fFSUnis.push_back().set(GrGLShaderVar::kVec3f_Type,
GrGLShaderVar::kUniform_TypeModifier,
EDGES_UNI_NAME,
fProgramDesc.fEdgeAANumEdges);
programData->fUniLocations.fEdgesUni = kUseUniform;
int count = fProgramDesc.fEdgeAANumEdges;
segments->fFSCode.append(
"\tvec3 pos = vec3(gl_FragCoord.xy, 1);\n");
for (int i = 0; i < count; i++) {
segments->fFSCode.append("\tfloat a");
segments->fFSCode.appendS32(i);
segments->fFSCode.append(" = clamp(dot(" EDGES_UNI_NAME "[");
segments->fFSCode.appendS32(i);
segments->fFSCode.append("], pos), 0.0, 1.0);\n");
}
if (fProgramDesc.fEdgeAAConcave && (count & 0x01) == 0) {
// For concave polys, we consider the edges in pairs.
segments->fFSFunctions.append("float cross2(vec2 a, vec2 b) {\n");
segments->fFSFunctions.append("\treturn dot(a, vec2(b.y, -b.x));\n");
segments->fFSFunctions.append("}\n");
for (int i = 0; i < count; i += 2) {
segments->fFSCode.appendf("\tfloat eb%d;\n", i / 2);
segments->fFSCode.appendf("\tif (cross2(" EDGES_UNI_NAME "[%d].xy, " EDGES_UNI_NAME "[%d].xy) < 0.0) {\n", i, i + 1);
segments->fFSCode.appendf("\t\teb%d = a%d * a%d;\n", i / 2, i, i + 1);
segments->fFSCode.append("\t} else {\n");
segments->fFSCode.appendf("\t\teb%d = a%d + a%d - a%d * a%d;\n", i / 2, i, i + 1, i, i + 1);
segments->fFSCode.append("\t}\n");
}
segments->fFSCode.append("\tfloat edgeAlpha = ");
for (int i = 0; i < count / 2 - 1; i++) {
segments->fFSCode.appendf("min(eb%d, ", i);
}
segments->fFSCode.appendf("eb%d", count / 2 - 1);
for (int i = 0; i < count / 2 - 1; i++) {
segments->fFSCode.append(")");
}
segments->fFSCode.append(";\n");
} else {
segments->fFSCode.append("\tfloat edgeAlpha = ");
for (int i = 0; i < count - 1; i++) {
segments->fFSCode.appendf("min(a%d * a%d, ", i, i + 1);
}
segments->fFSCode.appendf("a%d * a0", count - 1);
for (int i = 0; i < count - 1; i++) {
segments->fFSCode.append(")");
}
segments->fFSCode.append(";\n");
}
*coverageVar = "edgeAlpha";
} else if (layout & GrDrawTarget::kEdge_VertexLayoutBit) {
const char *vsName, *fsName;
append_varying(GrGLShaderVar::kVec4f_Type, "Edge", segments,
&vsName, &fsName);
segments->fVSAttrs.push_back().set(GrGLShaderVar::kVec4f_Type,
GrGLShaderVar::kAttribute_TypeModifier, EDGE_ATTR_NAME);
segments->fVSCode.appendf("\t%s = " EDGE_ATTR_NAME ";\n", vsName);
if (GrDrawState::kHairLine_EdgeType == fProgramDesc.fVertexEdgeType) {
segments->fFSCode.appendf("\tfloat edgeAlpha = abs(dot(vec3(gl_FragCoord.xy,1), %s.xyz));\n", fsName);
segments->fFSCode.append("\tedgeAlpha = max(1.0 - edgeAlpha, 0.0);\n");
} else if (GrDrawState::kQuad_EdgeType == fProgramDesc.fVertexEdgeType) {
segments->fFSCode.appendf("\tfloat edgeAlpha;\n");
// keep the derivative instructions outside the conditional
segments->fFSCode.appendf("\tvec2 duvdx = dFdx(%s.xy);\n", fsName);
segments->fFSCode.appendf("\tvec2 duvdy = dFdy(%s.xy);\n", fsName);
segments->fFSCode.appendf("\tif (%s.z > 0.0 && %s.w > 0.0) {\n", fsName, fsName);
// today we know z and w are in device space. We could use derivatives
segments->fFSCode.appendf("\t\tedgeAlpha = min(min(%s.z, %s.w) + 0.5, 1.0);\n", fsName, fsName);
segments->fFSCode.append ("\t} else {\n");
segments->fFSCode.appendf("\t\tvec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,\n"
"\t\t 2.0*%s.x*duvdy.x - duvdy.y);\n",
fsName, fsName);
segments->fFSCode.appendf("\t\tedgeAlpha = (%s.x*%s.x - %s.y);\n", fsName, fsName, fsName);
segments->fFSCode.appendf("\t\tedgeAlpha = clamp(0.5 - edgeAlpha / length(gF), 0.0, 1.0);\n"
"\t}\n");
if (gl->supportsES2()) {
segments->fHeader.printf("#extension GL_OES_standard_derivatives: enable\n");
}
} else {
GrAssert(GrDrawState::kHairQuad_EdgeType == fProgramDesc.fVertexEdgeType);
segments->fFSCode.appendf("\tvec2 duvdx = dFdx(%s.xy);\n", fsName);
segments->fFSCode.appendf("\tvec2 duvdy = dFdy(%s.xy);\n", fsName);
segments->fFSCode.appendf("\tvec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,\n"
"\t 2.0*%s.x*duvdy.x - duvdy.y);\n",
fsName, fsName);
segments->fFSCode.appendf("\tfloat edgeAlpha = (%s.x*%s.x - %s.y);\n", fsName, fsName, fsName);
segments->fFSCode.append("\tedgeAlpha = sqrt(edgeAlpha*edgeAlpha / dot(gF, gF));\n");
segments->fFSCode.append("\tedgeAlpha = max(1.0 - edgeAlpha, 0.0);\n");
if (gl->supportsES2()) {
segments->fHeader.printf("#extension GL_OES_standard_derivatives: enable\n");
}
}
*coverageVar = "edgeAlpha";
} else {
coverageVar->reset();
}
}
namespace {
void genInputColor(GrGLProgram::ProgramDesc::ColorInput colorInput,
GrGLProgram::CachedData* programData,
ShaderCodeSegments* segments,
GrStringBuilder* inColor) {
switch (colorInput) {
case GrGLProgram::ProgramDesc::kAttribute_ColorInput: {
segments->fVSAttrs.push_back().set(GrGLShaderVar::kVec4f_Type,
GrGLShaderVar::kAttribute_TypeModifier,
COL_ATTR_NAME);
const char *vsName, *fsName;
append_varying(GrGLShaderVar::kVec4f_Type, "Color", segments, &vsName, &fsName);
segments->fVSCode.appendf("\t%s = " COL_ATTR_NAME ";\n", vsName);
*inColor = fsName;
} break;
case GrGLProgram::ProgramDesc::kUniform_ColorInput:
segments->fFSUnis.push_back().set(GrGLShaderVar::kVec4f_Type,
GrGLShaderVar::kUniform_TypeModifier,
COL_UNI_NAME);
programData->fUniLocations.fColorUni = kUseUniform;
*inColor = COL_UNI_NAME;
break;
case GrGLProgram::ProgramDesc::kTransBlack_ColorInput:
GrAssert(!"needComputedColor should be false.");
break;
case GrGLProgram::ProgramDesc::kSolidWhite_ColorInput:
break;
default:
GrCrash("Unknown color type.");
break;
}
}
void genAttributeCoverage(ShaderCodeSegments* segments,
GrStringBuilder* inOutCoverage) {
segments->fVSAttrs.push_back().set(GrGLShaderVar::kVec4f_Type,
GrGLShaderVar::kAttribute_TypeModifier,
COV_ATTR_NAME);
const char *vsName, *fsName;
append_varying(GrGLShaderVar::kVec4f_Type, "Coverage",
segments, &vsName, &fsName);
segments->fVSCode.appendf("\t%s = " COV_ATTR_NAME ";\n", vsName);
if (inOutCoverage->size()) {
segments->fFSCode.appendf("\tvec4 attrCoverage = %s * %s;\n",
fsName, inOutCoverage->c_str());
*inOutCoverage = "attrCoverage";
} else {
*inOutCoverage = fsName;
}
}
void genUniformCoverage(ShaderCodeSegments* segments,
GrGLProgram::CachedData* programData,
GrStringBuilder* inOutCoverage) {
segments->fFSUnis.push_back().set(GrGLShaderVar::kVec4f_Type,
GrGLShaderVar::kUniform_TypeModifier,
COV_UNI_NAME);
programData->fUniLocations.fCoverageUni = kUseUniform;
if (inOutCoverage->size()) {
segments->fFSCode.appendf("\tvec4 uniCoverage = %s * %s;\n",
COV_UNI_NAME, inOutCoverage->c_str());
*inOutCoverage = "uniCoverage";
} else {
*inOutCoverage = COV_UNI_NAME;
}
}
}
void GrGLProgram::genGeometryShader(const GrGLInterface* gl,
GrGLSLGeneration glslGeneration,
ShaderCodeSegments* segments) const {
#if GR_GL_EXPERIMENTAL_GS
if (fProgramDesc.fExperimentalGS) {
GrAssert(glslGeneration >= k150_GrGLSLGeneration);
segments->fGSHeader.append("layout(triangles) in;\n"
"layout(triangle_strip, max_vertices = 6) out;\n");
segments->fGSCode.append("void main() {\n"
"\tfor (int i = 0; i < 3; ++i) {\n"
"\t\tgl_Position = gl_in[i].gl_Position;\n");
if (this->fProgramDesc.fEmitsPointSize) {
segments->fGSCode.append("\t\tgl_PointSize = 1.0;\n");
}
GrAssert(segments->fGSInputs.count() == segments->fGSOutputs.count());
int count = segments->fGSInputs.count();
for (int i = 0; i < count; ++i) {
segments->fGSCode.appendf("\t\t%s = %s[i];\n",
segments->fGSOutputs[i].getName().c_str(),
segments->fGSInputs[i].getName().c_str());
}
segments->fGSCode.append("\t\tEmitVertex();\n"
"\t}\n"
"\tEndPrimitive();\n"
"}\n");
}
#endif
}
const char* GrGLProgram::adjustInColor(const GrStringBuilder& inColor) const {
if (inColor.size()) {
return inColor.c_str();
} else {
if (ProgramDesc::kSolidWhite_ColorInput == fProgramDesc.fColorInput) {
return all_ones_vec(4);
} else {
return all_zeros_vec(4);
}
}
}
bool GrGLProgram::genProgram(const GrGLInterface* gl,
GrGLSLGeneration glslGeneration,
GrGLProgram::CachedData* programData) const {
ShaderCodeSegments segments;
const uint32_t& layout = fProgramDesc.fVertexLayout;
programData->fUniLocations.reset();
#if GR_GL_EXPERIMENTAL_GS
segments.fUsesGS = fProgramDesc.fExperimentalGS;
#endif
SkXfermode::Coeff colorCoeff, uniformCoeff;
bool applyColorMatrix = SkToBool(fProgramDesc.fColorMatrixEnabled);
// The rest of transfer mode color filters have not been implemented
if (fProgramDesc.fColorFilterXfermode < SkXfermode::kCoeffModesCnt) {
GR_DEBUGCODE(bool success =)
SkXfermode::ModeAsCoeff(static_cast<SkXfermode::Mode>
(fProgramDesc.fColorFilterXfermode),
&uniformCoeff, &colorCoeff);
GR_DEBUGASSERT(success);
} else {
colorCoeff = SkXfermode::kOne_Coeff;
uniformCoeff = SkXfermode::kZero_Coeff;
}
// no need to do the color filter / matrix at all if coverage is 0. The
// output color is scaled by the coverage. All the dual source outputs are
// scaled by the coverage as well.
if (ProgramDesc::kTransBlack_ColorInput == fProgramDesc.fCoverageInput) {
colorCoeff = SkXfermode::kZero_Coeff;
uniformCoeff = SkXfermode::kZero_Coeff;
applyColorMatrix = false;
}
// If we know the final color is going to be all zeros then we can
// simplify the color filter coeffecients. needComputedColor will then
// come out false below.
if (ProgramDesc::kTransBlack_ColorInput == fProgramDesc.fColorInput) {
colorCoeff = SkXfermode::kZero_Coeff;
if (SkXfermode::kDC_Coeff == uniformCoeff ||
SkXfermode::kDA_Coeff == uniformCoeff) {
uniformCoeff = SkXfermode::kZero_Coeff;
} else if (SkXfermode::kIDC_Coeff == uniformCoeff ||
SkXfermode::kIDA_Coeff == uniformCoeff) {
uniformCoeff = SkXfermode::kOne_Coeff;
}
}
bool needColorFilterUniform;
bool needComputedColor;
needBlendInputs(uniformCoeff, colorCoeff,
&needColorFilterUniform, &needComputedColor);
// the dual source output has no canonical var name, have to
// declare an output, which is incompatible with gl_FragColor/gl_FragData.
bool dualSourceOutputWritten = false;
segments.fHeader.printf(GrGetGLSLVersionDecl(gl->fBindingsExported,
glslGeneration));
GrGLShaderVar colorOutput;
bool isColorDeclared = GrGLSLSetupFSColorOuput(glslGeneration,
declared_color_output_name(),
&colorOutput);
if (isColorDeclared) {
segments.fFSOutputs.push_back(colorOutput);
}
#if GR_GL_ATTRIBUTE_MATRICES
segments.fVSAttrs.push_back().set(GrGLShaderVar::kMat33f_Type,
GrGLShaderVar::kAttribute_TypeModifier, VIEW_MATRIX_NAME);
programData->fUniLocations.fViewMatrixUni = kSetAsAttribute;
#else
segments.fVSUnis.push_back().set(GrGLShaderVar::kMat33f_Type,
GrGLShaderVar::kUniform_TypeModifier, VIEW_MATRIX_NAME);
programData->fUniLocations.fViewMatrixUni = kUseUniform;
#endif
segments.fVSAttrs.push_back().set(GrGLShaderVar::kVec2f_Type,
GrGLShaderVar::kAttribute_TypeModifier, POS_ATTR_NAME);
segments.fVSCode.append(
"void main() {\n"
"\tvec3 pos3 = " VIEW_MATRIX_NAME " * vec3("POS_ATTR_NAME", 1);\n"
"\tgl_Position = vec4(pos3.xy, 0, pos3.z);\n");
// incoming color to current stage being processed.
GrStringBuilder inColor;
if (needComputedColor) {
genInputColor((ProgramDesc::ColorInput) fProgramDesc.fColorInput,
programData, &segments, &inColor);
}
// we output point size in the GS if present
if (fProgramDesc.fEmitsPointSize && !segments.fUsesGS){
segments.fVSCode.append("\tgl_PointSize = 1.0;\n");
}
segments.fFSCode.append("void main() {\n");
// add texture coordinates that are used to the list of vertex attr decls
GrStringBuilder texCoordAttrs[GrDrawState::kMaxTexCoords];
for (int t = 0; t < GrDrawState::kMaxTexCoords; ++t) {
if (GrDrawTarget::VertexUsesTexCoordIdx(t, layout)) {
tex_attr_name(t, texCoordAttrs + t);
segments.fVSAttrs.push_back().set(GrGLShaderVar::kVec2f_Type,
GrGLShaderVar::kAttribute_TypeModifier,
texCoordAttrs[t].c_str());
}
}
///////////////////////////////////////////////////////////////////////////
// compute the final color
// if we have color stages string them together, feeding the output color
// of each to the next and generating code for each stage.
if (needComputedColor) {
GrStringBuilder outColor;
for (int s = 0; s < fProgramDesc.fFirstCoverageStage; ++s) {
if (fProgramDesc.fStages[s].isEnabled()) {
// create var to hold stage result
outColor = "color";
outColor.appendS32(s);
segments.fFSCode.appendf("\tvec4 %s;\n", outColor.c_str());
const char* inCoords;
// figure out what our input coords are
if (GrDrawTarget::StagePosAsTexCoordVertexLayoutBit(s) &
layout) {
inCoords = POS_ATTR_NAME;
} else {
int tcIdx = GrDrawTarget::VertexTexCoordsForStage(s, layout);
// we better have input tex coordinates if stage is enabled.
GrAssert(tcIdx >= 0);
GrAssert(texCoordAttrs[tcIdx].size());
inCoords = texCoordAttrs[tcIdx].c_str();
}
this->genStageCode(gl,
s,
fProgramDesc.fStages[s],
inColor.size() ? inColor.c_str() : NULL,
outColor.c_str(),
inCoords,
&segments,
&programData->fUniLocations.fStages[s]);
inColor = outColor;
}
}
}
// if have all ones or zeros for the "dst" input to the color filter then we
// may be able to make additional optimizations.
if (needColorFilterUniform && needComputedColor && !inColor.size()) {
GrAssert(ProgramDesc::kSolidWhite_ColorInput == fProgramDesc.fColorInput);
bool uniformCoeffIsZero = SkXfermode::kIDC_Coeff == uniformCoeff ||
SkXfermode::kIDA_Coeff == uniformCoeff;
if (uniformCoeffIsZero) {
uniformCoeff = SkXfermode::kZero_Coeff;
bool bogus;
needBlendInputs(SkXfermode::kZero_Coeff, colorCoeff,
&needColorFilterUniform, &bogus);
}
}
if (needColorFilterUniform) {
segments.fFSUnis.push_back().set(GrGLShaderVar::kVec4f_Type,
GrGLShaderVar::kUniform_TypeModifier,
COL_FILTER_UNI_NAME);
programData->fUniLocations.fColorFilterUni = kUseUniform;
}
bool wroteFragColorZero = false;
if (SkXfermode::kZero_Coeff == uniformCoeff &&
SkXfermode::kZero_Coeff == colorCoeff &&
!applyColorMatrix) {
segments.fFSCode.appendf("\t%s = %s;\n",
colorOutput.getName().c_str(),
all_zeros_vec(4));
wroteFragColorZero = true;
} else if (SkXfermode::kDst_Mode != fProgramDesc.fColorFilterXfermode) {
segments.fFSCode.appendf("\tvec4 filteredColor;\n");
const char* color = adjustInColor(inColor);
addColorFilter(&segments.fFSCode, "filteredColor", uniformCoeff,
colorCoeff, color);
inColor = "filteredColor";
}
if (applyColorMatrix) {
segments.fFSUnis.push_back().set(GrGLShaderVar::kMat44f_Type,
GrGLShaderVar::kUniform_TypeModifier,
COL_MATRIX_UNI_NAME);
segments.fFSUnis.push_back().set(GrGLShaderVar::kVec4f_Type,
GrGLShaderVar::kUniform_TypeModifier,
COL_MATRIX_VEC_UNI_NAME);
programData->fUniLocations.fColorMatrixUni = kUseUniform;
programData->fUniLocations.fColorMatrixVecUni = kUseUniform;
segments.fFSCode.appendf("\tvec4 matrixedColor;\n");
const char* color = adjustInColor(inColor);
addColorMatrix(&segments.fFSCode, "matrixedColor", color);
inColor = "matrixedColor";
}
///////////////////////////////////////////////////////////////////////////
// compute the partial coverage (coverage stages and edge aa)
GrStringBuilder inCoverage;
bool coverageIsZero = ProgramDesc::kTransBlack_ColorInput ==
fProgramDesc.fCoverageInput;
// we don't need to compute coverage at all if we know the final shader
// output will be zero and we don't have a dual src blend output.
if (!wroteFragColorZero ||
ProgramDesc::kNone_DualSrcOutput != fProgramDesc.fDualSrcOutput) {
if (!coverageIsZero) {
this->genEdgeCoverage(gl,
layout,
programData,
&inCoverage,
&segments);
switch (fProgramDesc.fCoverageInput) {
case ProgramDesc::kSolidWhite_ColorInput:
// empty string implies solid white
break;
case ProgramDesc::kAttribute_ColorInput:
genAttributeCoverage(&segments, &inCoverage);
break;
case ProgramDesc::kUniform_ColorInput:
genUniformCoverage(&segments, programData, &inCoverage);
break;
default:
GrCrash("Unexpected input coverage.");
}
GrStringBuilder outCoverage;
const int& startStage = fProgramDesc.fFirstCoverageStage;
for (int s = startStage; s < GrDrawState::kNumStages; ++s) {
if (fProgramDesc.fStages[s].isEnabled()) {
// create var to hold stage output
outCoverage = "coverage";
outCoverage.appendS32(s);
segments.fFSCode.appendf("\tvec4 %s;\n",
outCoverage.c_str());
const char* inCoords;
// figure out what our input coords are
if (GrDrawTarget::StagePosAsTexCoordVertexLayoutBit(s) &
layout) {
inCoords = POS_ATTR_NAME;
} else {
int tcIdx =
GrDrawTarget::VertexTexCoordsForStage(s, layout);
// we better have input tex coordinates if stage is
// enabled.
GrAssert(tcIdx >= 0);
GrAssert(texCoordAttrs[tcIdx].size());
inCoords = texCoordAttrs[tcIdx].c_str();
}
genStageCode(gl, s,
fProgramDesc.fStages[s],
inCoverage.size() ? inCoverage.c_str() : NULL,
outCoverage.c_str(),
inCoords,
&segments,
&programData->fUniLocations.fStages[s]);
inCoverage = outCoverage;
}
}
}
if (ProgramDesc::kNone_DualSrcOutput != fProgramDesc.fDualSrcOutput) {
segments.fFSOutputs.push_back().set(GrGLShaderVar::kVec4f_Type,
GrGLShaderVar::kOut_TypeModifier,
dual_source_output_name());
bool outputIsZero = coverageIsZero;
GrStringBuilder coeff;
if (!outputIsZero &&
ProgramDesc::kCoverage_DualSrcOutput !=
fProgramDesc.fDualSrcOutput && !wroteFragColorZero) {
if (!inColor.size()) {
outputIsZero = true;
} else {
if (fProgramDesc.fDualSrcOutput ==
ProgramDesc::kCoverageISA_DualSrcOutput) {
coeff.printf("(1 - %s.a)", inColor.c_str());
} else {
coeff.printf("(vec4(1,1,1,1) - %s)", inColor.c_str());
}
}
}
if (outputIsZero) {
segments.fFSCode.appendf("\t%s = %s;\n",
dual_source_output_name(),
all_zeros_vec(4));
} else {
modulate_helper(dual_source_output_name(),
coeff.c_str(),
inCoverage.c_str(),
&segments.fFSCode);
}
dualSourceOutputWritten = true;
}
}
///////////////////////////////////////////////////////////////////////////
// combine color and coverage as frag color
if (!wroteFragColorZero) {
if (coverageIsZero) {
segments.fFSCode.appendf("\t%s = %s;\n",
colorOutput.getName().c_str(),
all_zeros_vec(4));
} else {
modulate_helper(colorOutput.getName().c_str(),
inColor.c_str(),
inCoverage.c_str(),
&segments.fFSCode);
}
if (ProgramDesc::kNo_OutputPM == fProgramDesc.fOutputPM) {
segments.fFSCode.appendf("\t%s = %s.a <= 0.0 ? vec4(0,0,0,0) : vec4(%s.rgb / %s.a, %s.a);\n",
colorOutput.getName().c_str(),
colorOutput.getName().c_str(),
colorOutput.getName().c_str(),
colorOutput.getName().c_str(),
colorOutput.getName().c_str());
}
}
segments.fVSCode.append("}\n");
segments.fFSCode.append("}\n");
///////////////////////////////////////////////////////////////////////////
// insert GS
#if GR_DEBUG
this->genGeometryShader(gl, glslGeneration, &segments);
#endif
///////////////////////////////////////////////////////////////////////////
// compile and setup attribs and unis
if (!CompileShaders(gl, glslGeneration, segments, programData)) {
return false;
}
if (!this->bindOutputsAttribsAndLinkProgram(gl, texCoordAttrs,
isColorDeclared,
dualSourceOutputWritten,
programData)) {
return false;
}
this->getUniformLocationsAndInitCache(gl, programData);
return true;
}
namespace {
inline void expand_decls(const VarArray& vars,
const GrGLInterface* gl,
GrStringBuilder* string,
GrGLSLGeneration gen) {
const int count = vars.count();
for (int i = 0; i < count; ++i) {
vars[i].appendDecl(gl, string, gen);
}
}
inline void print_shader(int stringCnt,
const char** strings,
int* stringLengths) {
for (int i = 0; i < stringCnt; ++i) {
if (NULL == stringLengths || stringLengths[i] < 0) {
GrPrintf(strings[i]);
} else {
GrPrintf("%.*s", stringLengths[i], strings[i]);
}
}
}
typedef SkTArray<const char*, true> StrArray;
#define PREALLOC_STR_ARRAY(N) SkSTArray<(N), const char*, true>
typedef SkTArray<int, true> LengthArray;
#define PREALLOC_LENGTH_ARRAY(N) SkSTArray<(N), int, true>
// these shouldn't relocate
typedef GrTAllocator<GrStringBuilder> TempArray;
#define PREALLOC_TEMP_ARRAY(N) GrSTAllocator<(N), GrStringBuilder>
inline void append_string(const GrStringBuilder& str,
StrArray* strings,
LengthArray* lengths) {
int length = (int) str.size();
if (length) {
strings->push_back(str.c_str());
lengths->push_back(length);
}
GrAssert(strings->count() == lengths->count());
}
inline void append_decls(const VarArray& vars,
const GrGLInterface* gl,
StrArray* strings,
LengthArray* lengths,
TempArray* temp,
GrGLSLGeneration gen) {
expand_decls(vars, gl, &temp->push_back(), gen);
append_string(temp->back(), strings, lengths);
}
}
bool GrGLProgram::CompileShaders(const GrGLInterface* gl,
GrGLSLGeneration glslGeneration,
const ShaderCodeSegments& segments,
CachedData* programData) {
enum { kPreAllocStringCnt = 8 };
PREALLOC_STR_ARRAY(kPreAllocStringCnt) strs;
PREALLOC_LENGTH_ARRAY(kPreAllocStringCnt) lengths;
PREALLOC_TEMP_ARRAY(kPreAllocStringCnt) temps;
GrStringBuilder unis;
GrStringBuilder inputs;
GrStringBuilder outputs;
append_string(segments.fHeader, &strs, &lengths);
append_decls(segments.fVSUnis, gl, &strs, &lengths, &temps, glslGeneration);
append_decls(segments.fVSAttrs, gl, &strs, &lengths,
&temps, glslGeneration);
append_decls(segments.fVSOutputs, gl, &strs, &lengths,
&temps, glslGeneration);
append_string(segments.fVSCode, &strs, &lengths);
#if PRINT_SHADERS
print_shader(strs.count(), &strs[0], &lengths[0]);
GrPrintf("\n");
#endif
programData->fVShaderID =
CompileShader(gl, GR_GL_VERTEX_SHADER, strs.count(),
&strs[0], &lengths[0]);
if (!programData->fVShaderID) {
return false;
}
if (segments.fUsesGS) {
strs.reset();
lengths.reset();
temps.reset();
append_string(segments.fHeader, &strs, &lengths);
append_string(segments.fGSHeader, &strs, &lengths);
append_decls(segments.fGSInputs, gl, &strs, &lengths,
&temps, glslGeneration);
append_decls(segments.fGSOutputs, gl, &strs, &lengths,
&temps, glslGeneration);
append_string(segments.fGSCode, &strs, &lengths);
#if PRINT_SHADERS
print_shader(strs.count(), &strs[0], &lengths[0]);
GrPrintf("\n");
#endif
programData->fGShaderID =
CompileShader(gl, GR_GL_GEOMETRY_SHADER, strs.count(),
&strs[0], &lengths[0]);
} else {
programData->fGShaderID = 0;
}
strs.reset();
lengths.reset();
temps.reset();
append_string(segments.fHeader, &strs, &lengths);
GrStringBuilder precisionStr(GrGetGLSLShaderPrecisionDecl(gl->fBindingsExported));
append_string(precisionStr, &strs, &lengths);
append_decls(segments.fFSUnis, gl, &strs, &lengths, &temps, glslGeneration);
append_decls(segments.fFSInputs, gl, &strs, &lengths,
&temps, glslGeneration);
// We shouldn't have declared outputs on 1.10
GrAssert(k110_GrGLSLGeneration != glslGeneration ||
segments.fFSOutputs.empty());
append_decls(segments.fFSOutputs, gl, &strs, &lengths,
&temps, glslGeneration);
append_string(segments.fFSFunctions, &strs, &lengths);
append_string(segments.fFSCode, &strs, &lengths);
#if PRINT_SHADERS
print_shader(strs.count(), &strs[0], &lengths[0]);
GrPrintf("\n");
#endif
programData->fFShaderID =
CompileShader(gl, GR_GL_FRAGMENT_SHADER, strs.count(),
&strs[0], &lengths[0]);
if (!programData->fFShaderID) {
return false;
}
return true;
}
GrGLuint GrGLProgram::CompileShader(const GrGLInterface* gl,
GrGLenum type,
int stringCnt,
const char** strings,
int* stringLengths) {
SK_TRACE_EVENT1("GrGLProgram::CompileShader",
"stringCount", SkStringPrintf("%i", stringCnt).c_str());
GrGLuint shader;
GR_GL_CALL_RET(gl, shader, CreateShader(type));
if (0 == shader) {
return 0;
}
GrGLint compiled = GR_GL_INIT_ZERO;
GR_GL_CALL(gl, ShaderSource(shader, stringCnt, strings, stringLengths));
GR_GL_CALL(gl, CompileShader(shader));
GR_GL_CALL(gl, GetShaderiv(shader, GR_GL_COMPILE_STATUS, &compiled));
if (!compiled) {
GrGLint infoLen = GR_GL_INIT_ZERO;
GR_GL_CALL(gl, GetShaderiv(shader, GR_GL_INFO_LOG_LENGTH, &infoLen));
SkAutoMalloc log(sizeof(char)*(infoLen+1)); // outside if for debugger
if (infoLen > 0) {
// retrieve length even though we don't need it to workaround
// bug in chrome cmd buffer param validation.
GrGLsizei length = GR_GL_INIT_ZERO;
GR_GL_CALL(gl, GetShaderInfoLog(shader, infoLen+1,
&length, (char*)log.get()));
print_shader(stringCnt, strings, stringLengths);
GrPrintf("\n%s", log.get());
}
GrAssert(!"Shader compilation failed!");
GR_GL_CALL(gl, DeleteShader(shader));
return 0;
}
return shader;
}
bool GrGLProgram::bindOutputsAttribsAndLinkProgram(
const GrGLInterface* gl,
GrStringBuilder texCoordAttrNames[],
bool bindColorOut,
bool bindDualSrcOut,
CachedData* programData) const {
GR_GL_CALL_RET(gl, programData->fProgramID, CreateProgram());
if (!programData->fProgramID) {
return false;
}
const GrGLint& progID = programData->fProgramID;
GR_GL_CALL(gl, AttachShader(progID, programData->fVShaderID));
if (programData->fGShaderID) {
GR_GL_CALL(gl, AttachShader(progID, programData->fGShaderID));
}
GR_GL_CALL(gl, AttachShader(progID, programData->fFShaderID));
if (bindColorOut) {
GR_GL_CALL(gl, BindFragDataLocation(programData->fProgramID,
0, declared_color_output_name()));
}
if (bindDualSrcOut) {
GR_GL_CALL(gl, BindFragDataLocationIndexed(programData->fProgramID,
0, 1, dual_source_output_name()));
}
// Bind the attrib locations to same values for all shaders
GR_GL_CALL(gl, BindAttribLocation(progID, PositionAttributeIdx(),
POS_ATTR_NAME));
for (int t = 0; t < GrDrawState::kMaxTexCoords; ++t) {
if (texCoordAttrNames[t].size()) {
GR_GL_CALL(gl, BindAttribLocation(progID,
TexCoordAttributeIdx(t),
texCoordAttrNames[t].c_str()));
}
}
if (kSetAsAttribute == programData->fUniLocations.fViewMatrixUni) {
GR_GL_CALL(gl, BindAttribLocation(progID,
ViewMatrixAttributeIdx(),
VIEW_MATRIX_NAME));
}
for (int s = 0; s < GrDrawState::kNumStages; ++s) {
const StageUniLocations& unis = programData->fUniLocations.fStages[s];
if (kSetAsAttribute == unis.fTextureMatrixUni) {
GrStringBuilder matName;
tex_matrix_name(s, &matName);
GR_GL_CALL(gl, BindAttribLocation(progID,
TextureMatrixAttributeIdx(s),
matName.c_str()));
}
}
GR_GL_CALL(gl, BindAttribLocation(progID, ColorAttributeIdx(),
COL_ATTR_NAME));
GR_GL_CALL(gl, BindAttribLocation(progID, CoverageAttributeIdx(),
COV_ATTR_NAME));
GR_GL_CALL(gl, BindAttribLocation(progID, EdgeAttributeIdx(),
EDGE_ATTR_NAME));
GR_GL_CALL(gl, LinkProgram(progID));
GrGLint linked = GR_GL_INIT_ZERO;
GR_GL_CALL(gl, GetProgramiv(progID, GR_GL_LINK_STATUS, &linked));
if (!linked) {
GrGLint infoLen = GR_GL_INIT_ZERO;
GR_GL_CALL(gl, GetProgramiv(progID, GR_GL_INFO_LOG_LENGTH, &infoLen));
SkAutoMalloc log(sizeof(char)*(infoLen+1)); // outside if for debugger
if (infoLen > 0) {
// retrieve length even though we don't need it to workaround
// bug in chrome cmd buffer param validation.
GrGLsizei length = GR_GL_INIT_ZERO;
GR_GL_CALL(gl, GetProgramInfoLog(progID, infoLen+1,
&length, (char*)log.get()));
GrPrintf((char*)log.get());
}
GrAssert(!"Error linking program");
GR_GL_CALL(gl, DeleteProgram(progID));
programData->fProgramID = 0;
return false;
}
return true;
}
void GrGLProgram::getUniformLocationsAndInitCache(const GrGLInterface* gl,
CachedData* programData) const {
const GrGLint& progID = programData->fProgramID;
if (kUseUniform == programData->fUniLocations.fViewMatrixUni) {
GR_GL_CALL_RET(gl, programData->fUniLocations.fViewMatrixUni,
GetUniformLocation(progID, VIEW_MATRIX_NAME));
GrAssert(kUnusedUniform != programData->fUniLocations.fViewMatrixUni);
}
if (kUseUniform == programData->fUniLocations.fColorUni) {
GR_GL_CALL_RET(gl, programData->fUniLocations.fColorUni,
GetUniformLocation(progID, COL_UNI_NAME));
GrAssert(kUnusedUniform != programData->fUniLocations.fColorUni);
}
if (kUseUniform == programData->fUniLocations.fColorFilterUni) {
GR_GL_CALL_RET(gl, programData->fUniLocations.fColorFilterUni,
GetUniformLocation(progID, COL_FILTER_UNI_NAME));
GrAssert(kUnusedUniform != programData->fUniLocations.fColorFilterUni);
}
if (kUseUniform == programData->fUniLocations.fColorMatrixUni) {
GR_GL_CALL_RET(gl, programData->fUniLocations.fColorMatrixUni,
GetUniformLocation(progID, COL_MATRIX_UNI_NAME));
}
if (kUseUniform == programData->fUniLocations.fColorMatrixVecUni) {
GR_GL_CALL_RET(gl, programData->fUniLocations.fColorMatrixVecUni,
GetUniformLocation(progID, COL_MATRIX_VEC_UNI_NAME));
}
if (kUseUniform == programData->fUniLocations.fCoverageUni) {
GR_GL_CALL_RET(gl, programData->fUniLocations.fCoverageUni,
GetUniformLocation(progID, COV_UNI_NAME));
GrAssert(kUnusedUniform != programData->fUniLocations.fCoverageUni);
}
if (kUseUniform == programData->fUniLocations.fEdgesUni) {
GR_GL_CALL_RET(gl, programData->fUniLocations.fEdgesUni,
GetUniformLocation(progID, EDGES_UNI_NAME));
GrAssert(kUnusedUniform != programData->fUniLocations.fEdgesUni);
} else {
programData->fUniLocations.fEdgesUni = kUnusedUniform;
}
for (int s = 0; s < GrDrawState::kNumStages; ++s) {
StageUniLocations& locations = programData->fUniLocations.fStages[s];
if (fProgramDesc.fStages[s].isEnabled()) {
if (kUseUniform == locations.fTextureMatrixUni) {
GrStringBuilder texMName;
tex_matrix_name(s, &texMName);
GR_GL_CALL_RET(gl, locations.fTextureMatrixUni,
GetUniformLocation(progID, texMName.c_str()));
GrAssert(kUnusedUniform != locations.fTextureMatrixUni);
}
if (kUseUniform == locations.fSamplerUni) {
GrStringBuilder samplerName;
sampler_name(s, &samplerName);
GR_GL_CALL_RET(gl, locations.fSamplerUni,
GetUniformLocation(progID,samplerName.c_str()));
GrAssert(kUnusedUniform != locations.fSamplerUni);
}
if (kUseUniform == locations.fNormalizedTexelSizeUni) {
GrStringBuilder texelSizeName;
normalized_texel_size_name(s, &texelSizeName);
GR_GL_CALL_RET(gl, locations.fNormalizedTexelSizeUni,
GetUniformLocation(progID, texelSizeName.c_str()));
GrAssert(kUnusedUniform != locations.fNormalizedTexelSizeUni);
}
if (kUseUniform == locations.fRadial2Uni) {
GrStringBuilder radial2ParamName;
radial2_param_name(s, &radial2ParamName);
GR_GL_CALL_RET(gl, locations.fRadial2Uni,
GetUniformLocation(progID, radial2ParamName.c_str()));
GrAssert(kUnusedUniform != locations.fRadial2Uni);
}
if (kUseUniform == locations.fTexDomUni) {
GrStringBuilder texDomName;
tex_domain_name(s, &texDomName);
GR_GL_CALL_RET(gl, locations.fTexDomUni,
GetUniformLocation(progID, texDomName.c_str()));
GrAssert(kUnusedUniform != locations.fTexDomUni);
}
GrStringBuilder kernelName, imageIncrementName;
convolve_param_names(s, &kernelName, &imageIncrementName);
if (kUseUniform == locations.fKernelUni) {
GR_GL_CALL_RET(gl, locations.fKernelUni,
GetUniformLocation(progID, kernelName.c_str()));
GrAssert(kUnusedUniform != locations.fKernelUni);
}
if (kUseUniform == locations.fImageIncrementUni) {
GR_GL_CALL_RET(gl, locations.fImageIncrementUni,
GetUniformLocation(progID,
imageIncrementName.c_str()));
GrAssert(kUnusedUniform != locations.fImageIncrementUni);
}
}
}
GR_GL_CALL(gl, UseProgram(progID));
// init sampler unis and set bogus values for state tracking
for (int s = 0; s < GrDrawState::kNumStages; ++s) {
if (kUnusedUniform != programData->fUniLocations.fStages[s].fSamplerUni) {
GR_GL_CALL(gl, Uniform1i(programData->fUniLocations.fStages[s].fSamplerUni, s));
}
programData->fTextureMatrices[s] = GrMatrix::InvalidMatrix();
programData->fRadial2CenterX1[s] = GR_ScalarMax;
programData->fRadial2Radius0[s] = -GR_ScalarMax;
programData->fTextureWidth[s] = -1;
programData->fTextureHeight[s] = -1;
}
programData->fViewMatrix = GrMatrix::InvalidMatrix();
programData->fColor = GrColor_ILLEGAL;
programData->fColorFilterColor = GrColor_ILLEGAL;
}
//============================================================================
// Stage code generation
//============================================================================
namespace {
bool isRadialMapping(GrGLProgram::StageDesc::CoordMapping mapping) {
return
(GrGLProgram::StageDesc::kRadial2Gradient_CoordMapping == mapping ||
GrGLProgram::StageDesc::kRadial2GradientDegenerate_CoordMapping == mapping);
}
GrGLShaderVar* genRadialVS(int stageNum,
ShaderCodeSegments* segments,
GrGLProgram::StageUniLocations* locations,
const char** radial2VaryingVSName,
const char** radial2VaryingFSName,
const char* varyingVSName,
int varyingDims, int coordDims) {
GrGLShaderVar* radial2FSParams = &segments->fFSUnis.push_back();
radial2FSParams->setType(GrGLShaderVar::kFloat_Type);
radial2FSParams->setTypeModifier(GrGLShaderVar::kUniform_TypeModifier);
radial2FSParams->setArrayCount(6);
radial2_param_name(stageNum, radial2FSParams->accessName());
segments->fVSUnis.push_back(*radial2FSParams).setEmitPrecision(true);
locations->fRadial2Uni = kUseUniform;
// for radial grads without perspective we can pass the linear
// part of the quadratic as a varying.
if (varyingDims == coordDims) {
GrAssert(2 == coordDims);
append_varying(GrGLShaderVar::kFloat_Type,
"Radial2BCoeff",
stageNum,
segments,
radial2VaryingVSName,
radial2VaryingFSName);
GrStringBuilder radial2p2;
GrStringBuilder radial2p3;
radial2FSParams->appendArrayAccess(2, &radial2p2);
radial2FSParams->appendArrayAccess(3, &radial2p3);
// r2Var = 2 * (r2Parm[2] * varCoord.x - r2Param[3])
const char* r2ParamName = radial2FSParams->getName().c_str();
segments->fVSCode.appendf("\t%s = 2.0 *(%s * %s.x - %s);\n",
*radial2VaryingVSName, radial2p2.c_str(),
varyingVSName, radial2p3.c_str());
}
return radial2FSParams;
}
bool genRadial2GradientCoordMapping(int stageNum,
ShaderCodeSegments* segments,
const char* radial2VaryingFSName,
GrGLShaderVar* radial2Params,
GrStringBuilder& sampleCoords,
GrStringBuilder& fsCoordName,
int varyingDims,
int coordDims) {
GrStringBuilder cName("c");
GrStringBuilder ac4Name("ac4");
GrStringBuilder rootName("root");
cName.appendS32(stageNum);
ac4Name.appendS32(stageNum);
rootName.appendS32(stageNum);
GrStringBuilder radial2p0;
GrStringBuilder radial2p1;
GrStringBuilder radial2p2;
GrStringBuilder radial2p3;
GrStringBuilder radial2p4;
GrStringBuilder radial2p5;
radial2Params->appendArrayAccess(0, &radial2p0);
radial2Params->appendArrayAccess(1, &radial2p1);
radial2Params->appendArrayAccess(2, &radial2p2);
radial2Params->appendArrayAccess(3, &radial2p3);
radial2Params->appendArrayAccess(4, &radial2p4);
radial2Params->appendArrayAccess(5, &radial2p5);
// if we were able to interpolate the linear component bVar is the varying
// otherwise compute it
GrStringBuilder bVar;
if (coordDims == varyingDims) {
bVar = radial2VaryingFSName;
GrAssert(2 == varyingDims);
} else {
GrAssert(3 == varyingDims);
bVar = "b";
bVar.appendS32(stageNum);
segments->fFSCode.appendf("\tfloat %s = 2.0 * (%s * %s.x - %s);\n",
bVar.c_str(), radial2p2.c_str(),
fsCoordName.c_str(), radial2p3.c_str());
}
// c = (x^2)+(y^2) - params[4]
segments->fFSCode.appendf("\tfloat %s = dot(%s, %s) - %s;\n",
cName.c_str(), fsCoordName.c_str(),
fsCoordName.c_str(),
radial2p4.c_str());
// ac4 = 4.0 * params[0] * c
segments->fFSCode.appendf("\tfloat %s = %s * 4.0 * %s;\n",
ac4Name.c_str(), radial2p0.c_str(),
cName.c_str());
// root = sqrt(b^2-4ac)
// (abs to avoid exception due to fp precision)
segments->fFSCode.appendf("\tfloat %s = sqrt(abs(%s*%s - %s));\n",
rootName.c_str(), bVar.c_str(), bVar.c_str(),
ac4Name.c_str());
// x coord is: (-b + params[5] * sqrt(b^2-4ac)) * params[1]
// y coord is 0.5 (texture is effectively 1D)
sampleCoords.printf("vec2((-%s + %s * %s) * %s, 0.5)",
bVar.c_str(), radial2p5.c_str(),
rootName.c_str(), radial2p1.c_str());
return true;
}
bool genRadial2GradientDegenerateCoordMapping(int stageNum,
ShaderCodeSegments* segments,
const char* radial2VaryingFSName,
GrGLShaderVar* radial2Params,
GrStringBuilder& sampleCoords,
GrStringBuilder& fsCoordName,
int varyingDims,
int coordDims) {
GrStringBuilder cName("c");
cName.appendS32(stageNum);
GrStringBuilder radial2p2;
GrStringBuilder radial2p3;
GrStringBuilder radial2p4;
radial2Params->appendArrayAccess(2, &radial2p2);
radial2Params->appendArrayAccess(3, &radial2p3);
radial2Params->appendArrayAccess(4, &radial2p4);
// if we were able to interpolate the linear component bVar is the varying
// otherwise compute it
GrStringBuilder bVar;
if (coordDims == varyingDims) {
bVar = radial2VaryingFSName;
GrAssert(2 == varyingDims);
} else {
GrAssert(3 == varyingDims);
bVar = "b";
bVar.appendS32(stageNum);
segments->fFSCode.appendf("\tfloat %s = 2.0 * (%s * %s.x - %s);\n",
bVar.c_str(), radial2p2.c_str(),
fsCoordName.c_str(), radial2p3.c_str());
}
// c = (x^2)+(y^2) - params[4]
segments->fFSCode.appendf("\tfloat %s = dot(%s, %s) - %s;\n",
cName.c_str(), fsCoordName.c_str(),
fsCoordName.c_str(),
radial2p4.c_str());
// x coord is: -c/b
// y coord is 0.5 (texture is effectively 1D)
sampleCoords.printf("vec2((-%s / %s), 0.5)", cName.c_str(), bVar.c_str());
return true;
}
void gen2x2FS(int stageNum,
ShaderCodeSegments* segments,
GrGLProgram::StageUniLocations* locations,
GrStringBuilder* sampleCoords,
const char* samplerName,
const char* texelSizeName,
const char* swizzle,
const char* fsOutColor,
GrStringBuilder& texFunc,
GrStringBuilder& modulate,
bool complexCoord,
int coordDims) {
locations->fNormalizedTexelSizeUni = kUseUniform;
if (complexCoord) {
// assign the coord to a var rather than compute 4x.
GrStringBuilder coordVar("tCoord");
coordVar.appendS32(stageNum);
segments->fFSCode.appendf("\t%s %s = %s;\n",
float_vector_type_str(coordDims),
coordVar.c_str(), sampleCoords->c_str());
*sampleCoords = coordVar;
}
GrAssert(2 == coordDims);
GrStringBuilder accumVar("accum");
accumVar.appendS32(stageNum);
segments->fFSCode.appendf("\tvec4 %s = %s(%s, %s + vec2(-%s.x,-%s.y))%s;\n", accumVar.c_str(), texFunc.c_str(), samplerName, sampleCoords->c_str(), texelSizeName, texelSizeName, swizzle);
segments->fFSCode.appendf("\t%s += %s(%s, %s + vec2(+%s.x,-%s.y))%s;\n", accumVar.c_str(), texFunc.c_str(), samplerName, sampleCoords->c_str(), texelSizeName, texelSizeName, swizzle);
segments->fFSCode.appendf("\t%s += %s(%s, %s + vec2(-%s.x,+%s.y))%s;\n", accumVar.c_str(), texFunc.c_str(), samplerName, sampleCoords->c_str(), texelSizeName, texelSizeName, swizzle);
segments->fFSCode.appendf("\t%s += %s(%s, %s + vec2(+%s.x,+%s.y))%s;\n", accumVar.c_str(), texFunc.c_str(), samplerName, sampleCoords->c_str(), texelSizeName, texelSizeName, swizzle);
segments->fFSCode.appendf("\t%s = .25 * %s%s;\n", fsOutColor, accumVar.c_str(), modulate.c_str());
}
void genConvolutionVS(int stageNum,
const StageDesc& desc,
ShaderCodeSegments* segments,
GrGLProgram::StageUniLocations* locations,
GrGLShaderVar** kernel,
const char** imageIncrementName,
const char* varyingVSName) {
//GrGLShaderVar* kernel = &segments->fFSUnis.push_back();
*kernel = &segments->fFSUnis.push_back();
(*kernel)->setType(GrGLShaderVar::kFloat_Type);
(*kernel)->setTypeModifier(GrGLShaderVar::kUniform_TypeModifier);
(*kernel)->setArrayCount(desc.fKernelWidth);
GrGLShaderVar* imgInc = &segments->fFSUnis.push_back();
imgInc->setType(GrGLShaderVar::kVec2f_Type);
imgInc->setTypeModifier(GrGLShaderVar::kUniform_TypeModifier);
convolve_param_names(stageNum,
(*kernel)->accessName(),
imgInc->accessName());
*imageIncrementName = imgInc->getName().c_str();
// need image increment in both VS and FS
segments->fVSUnis.push_back(*imgInc).setEmitPrecision(true);
locations->fKernelUni = kUseUniform;
locations->fImageIncrementUni = kUseUniform;
float scale = (desc.fKernelWidth - 1) * 0.5f;
segments->fVSCode.appendf("\t%s -= vec2(%g, %g) * %s;\n",
varyingVSName, scale, scale,
*imageIncrementName);
}
void genConvolutionFS(int stageNum,
const StageDesc& desc,
ShaderCodeSegments* segments,
const char* samplerName,
GrGLShaderVar* kernel,
const char* swizzle,
const char* imageIncrementName,
const char* fsOutColor,
GrStringBuilder& sampleCoords,
GrStringBuilder& texFunc,
GrStringBuilder& modulate) {
GrStringBuilder sumVar("sum");
sumVar.appendS32(stageNum);
GrStringBuilder coordVar("coord");
coordVar.appendS32(stageNum);
GrStringBuilder kernelIndex;
kernel->appendArrayAccess("i", &kernelIndex);
segments->fFSCode.appendf("\tvec4 %s = vec4(0, 0, 0, 0);\n",
sumVar.c_str());
segments->fFSCode.appendf("\tvec2 %s = %s;\n",
coordVar.c_str(),
sampleCoords.c_str());
segments->fFSCode.appendf("\tfor (int i = 0; i < %d; i++) {\n",
desc.fKernelWidth);
segments->fFSCode.appendf("\t\t%s += %s(%s, %s)%s * %s;\n",
sumVar.c_str(), texFunc.c_str(),
samplerName, coordVar.c_str(), swizzle,
kernelIndex.c_str());
segments->fFSCode.appendf("\t\t%s += %s;\n",
coordVar.c_str(),
imageIncrementName);
segments->fFSCode.appendf("\t}\n");
segments->fFSCode.appendf("\t%s = %s%s;\n", fsOutColor,
sumVar.c_str(), modulate.c_str());
}
}
void GrGLProgram::genStageCode(const GrGLInterface* gl,
int stageNum,
const GrGLProgram::StageDesc& desc,
const char* fsInColor, // NULL means no incoming color
const char* fsOutColor,
const char* vsInCoord,
ShaderCodeSegments* segments,
StageUniLocations* locations) const {
GrAssert(stageNum >= 0 && stageNum <= GrDrawState::kNumStages);
GrAssert((desc.fInConfigFlags & StageDesc::kInConfigBitMask) ==
desc.fInConfigFlags);
// First decide how many coords are needed to access the texture
// Right now it's always 2 but we could start using 1D textures for
// gradients.
static const int coordDims = 2;
int varyingDims;
/// Vertex Shader Stuff
// decide whether we need a matrix to transform texture coords
// and whether the varying needs a perspective coord.
const char* matName = NULL;
if (desc.fOptFlags & StageDesc::kIdentityMatrix_OptFlagBit) {
varyingDims = coordDims;
} else {
GrGLShaderVar* mat;
#if GR_GL_ATTRIBUTE_MATRICES
mat = &segments->fVSAttrs.push_back();
mat->setTypeModifier(GrGLShaderVar::kAttribute_TypeModifier);
locations->fTextureMatrixUni = kSetAsAttribute;
#else
mat = &segments->fVSUnis.push_back();
mat->setTypeModifier(GrGLShaderVar::kUniform_TypeModifier);
locations->fTextureMatrixUni = kUseUniform;
#endif
tex_matrix_name(stageNum, mat->accessName());
mat->setType(GrGLShaderVar::kMat33f_Type);
matName = mat->getName().c_str();
if (desc.fOptFlags & StageDesc::kNoPerspective_OptFlagBit) {
varyingDims = coordDims;
} else {
varyingDims = coordDims + 1;
}
}
segments->fFSUnis.push_back().set(GrGLShaderVar::kSampler2D_Type,
GrGLShaderVar::kUniform_TypeModifier, "");
sampler_name(stageNum, segments->fFSUnis.back().accessName());
locations->fSamplerUni = kUseUniform;
const char* samplerName = segments->fFSUnis.back().getName().c_str();
const char* texelSizeName = NULL;
if (StageDesc::k2x2_FetchMode == desc.fFetchMode) {
segments->fFSUnis.push_back().set(GrGLShaderVar::kVec2f_Type,
GrGLShaderVar::kUniform_TypeModifier, "");
normalized_texel_size_name(stageNum, segments->fFSUnis.back().accessName());
texelSizeName = segments->fFSUnis.back().getName().c_str();
}
const char *varyingVSName, *varyingFSName;
append_varying(float_vector_type(varyingDims),
"Stage",
stageNum,
segments,
&varyingVSName,
&varyingFSName);
if (!matName) {
GrAssert(varyingDims == coordDims);
segments->fVSCode.appendf("\t%s = %s;\n", varyingVSName, vsInCoord);
} else {
// varying = texMatrix * texCoord
segments->fVSCode.appendf("\t%s = (%s * vec3(%s, 1))%s;\n",
varyingVSName, matName, vsInCoord,
vector_all_coords(varyingDims));
}
GrGLShaderVar* radial2Params = NULL;
const char* radial2VaryingVSName = NULL;
const char* radial2VaryingFSName = NULL;
if (isRadialMapping((StageDesc::CoordMapping) desc.fCoordMapping)) {
radial2Params = genRadialVS(stageNum, segments,
locations,
&radial2VaryingVSName,
&radial2VaryingFSName,
varyingVSName,
varyingDims, coordDims);
}
GrGLShaderVar* kernel = NULL;
const char* imageIncrementName = NULL;
if (StageDesc::kConvolution_FetchMode == desc.fFetchMode) {
genConvolutionVS(stageNum, desc, segments, locations,
&kernel, &imageIncrementName, varyingVSName);
}
/// Fragment Shader Stuff
GrStringBuilder fsCoordName;
// function used to access the shader, may be made projective
GrStringBuilder texFunc("texture2D");
if (desc.fOptFlags & (StageDesc::kIdentityMatrix_OptFlagBit |
StageDesc::kNoPerspective_OptFlagBit)) {
GrAssert(varyingDims == coordDims);
fsCoordName = varyingFSName;
} else {
// if we have to do some special op on the varyings to get
// our final tex coords then when in perspective we have to
// do an explicit divide. Otherwise, we can use a Proj func.
if (StageDesc::kIdentity_CoordMapping == desc.fCoordMapping &&
StageDesc::kSingle_FetchMode == desc.fFetchMode) {
texFunc.append("Proj");
fsCoordName = varyingFSName;
} else {
fsCoordName = "inCoord";
fsCoordName.appendS32(stageNum);
segments->fFSCode.appendf("\t%s %s = %s%s / %s%s;\n",
GrGLShaderVar::TypeString(float_vector_type(coordDims)),
fsCoordName.c_str(),
varyingFSName,
vector_nonhomog_coords(varyingDims),
varyingFSName,
vector_homog_coord(varyingDims));
}
}
GrStringBuilder sampleCoords;
bool complexCoord = false;
switch (desc.fCoordMapping) {
case StageDesc::kIdentity_CoordMapping:
sampleCoords = fsCoordName;
break;
case StageDesc::kSweepGradient_CoordMapping:
sampleCoords.printf("vec2(atan(- %s.y, - %s.x) * 0.1591549430918 + 0.5, 0.5)", fsCoordName.c_str(), fsCoordName.c_str());
complexCoord = true;
break;
case StageDesc::kRadialGradient_CoordMapping:
sampleCoords.printf("vec2(length(%s.xy), 0.5)", fsCoordName.c_str());
complexCoord = true;
break;
case StageDesc::kRadial2Gradient_CoordMapping:
complexCoord = genRadial2GradientCoordMapping(
stageNum, segments,
radial2VaryingFSName, radial2Params,
sampleCoords, fsCoordName,
varyingDims, coordDims);
break;
case StageDesc::kRadial2GradientDegenerate_CoordMapping:
complexCoord = genRadial2GradientDegenerateCoordMapping(
stageNum, segments,
radial2VaryingFSName, radial2Params,
sampleCoords, fsCoordName,
varyingDims, coordDims);
break;
};
const char* swizzle = "";
if (desc.fInConfigFlags & StageDesc::kSwapRAndB_InConfigFlag) {
GrAssert(!(desc.fInConfigFlags & StageDesc::kSmearAlpha_InConfigFlag));
swizzle = ".bgra";
} else if (desc.fInConfigFlags & StageDesc::kSmearAlpha_InConfigFlag) {
GrAssert(!(desc.fInConfigFlags &
StageDesc::kMulRGBByAlpha_InConfigFlag));
swizzle = ".aaaa";
}
GrStringBuilder modulate;
if (NULL != fsInColor) {
modulate.printf(" * %s", fsInColor);
}
if (desc.fOptFlags &
StageDesc::kCustomTextureDomain_OptFlagBit) {
GrStringBuilder texDomainName;
tex_domain_name(stageNum, &texDomainName);
segments->fFSUnis.push_back().set(GrGLShaderVar::kVec4f_Type,
GrGLShaderVar::kUniform_TypeModifier, texDomainName);
GrStringBuilder coordVar("clampCoord");
segments->fFSCode.appendf("\t%s %s = clamp(%s, %s.xy, %s.zw);\n",
float_vector_type_str(coordDims),
coordVar.c_str(),
sampleCoords.c_str(),
texDomainName.c_str(),
texDomainName.c_str());
sampleCoords = coordVar;
locations->fTexDomUni = kUseUniform;
}
switch (desc.fFetchMode) {
case StageDesc::k2x2_FetchMode:
GrAssert(!(desc.fInConfigFlags &
StageDesc::kMulRGBByAlpha_InConfigFlag));
gen2x2FS(stageNum, segments, locations, &sampleCoords,
samplerName, texelSizeName, swizzle, fsOutColor,
texFunc, modulate, complexCoord, coordDims);
break;
case StageDesc::kConvolution_FetchMode:
GrAssert(!(desc.fInConfigFlags &
StageDesc::kMulRGBByAlpha_InConfigFlag));
genConvolutionFS(stageNum, desc, segments,
samplerName, kernel, swizzle, imageIncrementName, fsOutColor,
sampleCoords, texFunc, modulate);
break;
default:
if (desc.fInConfigFlags & StageDesc::kMulRGBByAlpha_InConfigFlag) {
GrAssert(!(desc.fInConfigFlags &
StageDesc::kSmearAlpha_InConfigFlag));
segments->fFSCode.appendf("\t%s = %s(%s, %s)%s;\n",
fsOutColor, texFunc.c_str(),
samplerName, sampleCoords.c_str(),
swizzle);
segments->fFSCode.appendf("\t%s = vec4(%s.rgb*%s.a,%s.a)%s;\n",
fsOutColor, fsOutColor, fsOutColor,
fsOutColor, modulate.c_str());
} else {
segments->fFSCode.appendf("\t%s = %s(%s, %s)%s%s;\n",
fsOutColor, texFunc.c_str(),
samplerName, sampleCoords.c_str(),
swizzle, modulate.c_str());
}
}
}