blob: f6a69ea68ddc85c09a3d4b0f90cd47b802ea67db [file] [log] [blame]
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/ccpr/GrGSCoverageProcessor.h"
#include "src/gpu/GrMesh.h"
#include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
#include "src/gpu/glsl/GrGLSLVertexGeoBuilder.h"
using InputType = GrGLSLGeometryBuilder::InputType;
using OutputType = GrGLSLGeometryBuilder::OutputType;
/**
* This class and its subclasses implement the coverage processor with geometry shaders.
*/
class GrGSCoverageProcessor::Impl : public GrGLSLGeometryProcessor {
protected:
Impl(std::unique_ptr<Shader> shader) : fShader(std::move(shader)) {}
virtual bool hasCoverage(const GrGSCoverageProcessor& proc) const { return false; }
void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor&,
const CoordTransformRange& transformRange) final {
this->setTransformDataHelper(SkMatrix::I(), pdman, transformRange);
}
void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) final {
const GrGSCoverageProcessor& proc = args.fGP.cast<GrGSCoverageProcessor>();
// The vertex shader simply forwards transposed x or y values to the geometry shader.
SkASSERT(1 == proc.numVertexAttributes());
gpArgs->fPositionVar = proc.fInputXOrYValues.asShaderVar();
// Geometry shader.
GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
this->emitGeometryShader(proc, varyingHandler, args.fGeomBuilder, args.fRTAdjustName);
varyingHandler->emitAttributes(proc);
varyingHandler->setNoPerspective();
SkASSERT(!*args.fFPCoordTransformHandler);
// Fragment shader.
GrGLSLFPFragmentBuilder* f = args.fFragBuilder;
f->codeAppendf("half coverage;");
fShader->emitFragmentCoverageCode(f, "coverage");
f->codeAppendf("%s = half4(coverage);", args.fOutputColor);
f->codeAppendf("%s = half4(1);", args.fOutputCoverage);
}
void emitGeometryShader(
const GrGSCoverageProcessor& proc, GrGLSLVaryingHandler* varyingHandler,
GrGLSLGeometryBuilder* g, const char* rtAdjust) const {
int numInputPoints = proc.numInputPoints();
SkASSERT(3 == numInputPoints || 4 == numInputPoints);
int inputWidth = (4 == numInputPoints || proc.hasInputWeight()) ? 4 : 3;
const char* posValues = (4 == inputWidth) ? "sk_Position" : "sk_Position.xyz";
g->codeAppendf("float%ix2 pts = transpose(float2x%i(sk_in[0].%s, sk_in[1].%s));",
inputWidth, inputWidth, posValues, posValues);
GrShaderVar wind("wind", kHalf_GrSLType);
g->declareGlobal(wind);
Shader::CalcWind(proc, g, "pts", wind.c_str());
if (PrimitiveType::kWeightedTriangles == proc.primitiveType()) {
SkASSERT(3 == numInputPoints);
SkASSERT(kFloat4_GrVertexAttribType == proc.fInputXOrYValues.cpuType());
g->codeAppendf("%s *= half(sk_in[0].sk_Position.w);", wind.c_str());
}
SkString emitVertexFn;
SkSTArray<3, GrShaderVar> emitArgs;
const char* corner = emitArgs.emplace_back("corner", kFloat2_GrSLType).c_str();
const char* bloatdir = emitArgs.emplace_back("bloatdir", kFloat2_GrSLType).c_str();
const char* inputCoverage = nullptr;
if (this->hasCoverage(proc)) {
inputCoverage = emitArgs.emplace_back("coverage", kHalf_GrSLType).c_str();
}
const char* cornerCoverage = nullptr;
if (Subpass::kCorners == proc.fSubpass) {
cornerCoverage = emitArgs.emplace_back("corner_coverage", kHalf2_GrSLType).c_str();
}
g->emitFunction(kVoid_GrSLType, "emitVertex", emitArgs.count(), emitArgs.begin(), [&]() {
SkString fnBody;
fnBody.appendf("float2 vertexpos = fma(%s, float2(bloat), %s);", bloatdir, corner);
const char* coverage = inputCoverage;
if (!coverage) {
if (!fShader->calculatesOwnEdgeCoverage()) {
// Flat edge opposite the curve. Coverages need full precision since distance
// to the opposite edge can be large.
fnBody.appendf("float coverage = dot(float3(vertexpos, 1), %s);",
fEdgeDistanceEquation.c_str());
} else {
// The "coverage" param should hold only the signed winding value.
fnBody.appendf("float coverage = 1;");
}
coverage = "coverage";
}
fnBody.appendf("%s *= %s;", coverage, wind.c_str());
if (cornerCoverage) {
fnBody.appendf("%s.x *= %s;", cornerCoverage, wind.c_str());
}
fShader->emitVaryings(varyingHandler, GrGLSLVarying::Scope::kGeoToFrag, &fnBody,
"vertexpos", coverage, cornerCoverage, wind.c_str());
g->emitVertex(&fnBody, "vertexpos", rtAdjust);
return fnBody;
}().c_str(), &emitVertexFn);
float bloat = kAABloatRadius;
#ifdef SK_DEBUG
if (proc.debugBloatEnabled()) {
bloat *= proc.debugBloat();
}
#endif
g->defineConstant("bloat", bloat);
if (!this->hasCoverage(proc) && !fShader->calculatesOwnEdgeCoverage()) {
// Determine the amount of coverage to subtract out for the flat edge of the curve.
g->declareGlobal(fEdgeDistanceEquation);
g->codeAppendf("float2 p0 = pts[0], p1 = pts[%i];", numInputPoints - 1);
g->codeAppendf("float2 n = float2(p0.y - p1.y, p1.x - p0.x);");
g->codeAppend ("float nwidth = bloat*2 * (abs(n.x) + abs(n.y));");
// When nwidth=0, wind must also be 0 (and coverage * wind = 0). So it doesn't matter
// what we come up with here as long as it isn't NaN or Inf.
g->codeAppend ("n /= (0 != nwidth) ? nwidth : 1;");
g->codeAppendf("%s = float3(-n, dot(n, p0) - .5*sign(%s));",
fEdgeDistanceEquation.c_str(), wind.c_str());
}
this->onEmitGeometryShader(proc, g, wind, emitVertexFn.c_str());
}
virtual void onEmitGeometryShader(const GrGSCoverageProcessor&, GrGLSLGeometryBuilder*,
const GrShaderVar& wind, const char* emitVertexFn) const = 0;
const std::unique_ptr<Shader> fShader;
const GrShaderVar fEdgeDistanceEquation{"edge_distance_equation", kFloat3_GrSLType};
typedef GrGLSLGeometryProcessor INHERITED;
};
/**
* Generates conservative rasters around a triangle and its edges, and calculates coverage ramps.
*
* Triangle rough outlines are drawn in two steps: (1) draw a conservative raster of the entire
* triangle, with a coverage of +1, and (2) draw conservative rasters around each edge, with a
* coverage ramp from -1 to 0. These edge coverage values convert jagged conservative raster edges
* into smooth, antialiased ones.
*
* The final corners get touched up in a later step by TriangleCornerImpl.
*/
class GrGSCoverageProcessor::TriangleHullImpl : public GrGSCoverageProcessor::Impl {
public:
TriangleHullImpl(std::unique_ptr<Shader> shader) : Impl(std::move(shader)) {}
bool hasCoverage(const GrGSCoverageProcessor& proc) const override { return true; }
void onEmitGeometryShader(const GrGSCoverageProcessor&, GrGLSLGeometryBuilder* g,
const GrShaderVar& wind, const char* emitVertexFn) const override {
fShader->emitSetupCode(g, "pts");
// Visualize the input triangle as upright and equilateral, with a flat base. Paying special
// attention to wind, we can identify the points as top, bottom-left, and bottom-right.
//
// NOTE: We generate the rasters in 5 independent invocations, so each invocation designates
// the corner it will begin with as the top.
g->codeAppendf("int i = (%s > 0 ? sk_InvocationID : 4 - sk_InvocationID) %% 3;",
wind.c_str());
g->codeAppend ("float2 top = pts[i];");
g->codeAppendf("float2 right = pts[(i + (%s > 0 ? 1 : 2)) %% 3];", wind.c_str());
g->codeAppendf("float2 left = pts[(i + (%s > 0 ? 2 : 1)) %% 3];", wind.c_str());
// Determine which direction to outset the conservative raster from each of the three edges.
g->codeAppend ("float2 leftbloat = sign(top - left);");
g->codeAppend ("leftbloat = float2(0 != leftbloat.y ? leftbloat.y : leftbloat.x, "
"0 != leftbloat.x ? -leftbloat.x : -leftbloat.y);");
g->codeAppend ("float2 rightbloat = sign(right - top);");
g->codeAppend ("rightbloat = float2(0 != rightbloat.y ? rightbloat.y : rightbloat.x, "
"0 != rightbloat.x ? -rightbloat.x : -rightbloat.y);");
g->codeAppend ("float2 downbloat = sign(left - right);");
g->codeAppend ("downbloat = float2(0 != downbloat.y ? downbloat.y : downbloat.x, "
"0 != downbloat.x ? -downbloat.x : -downbloat.y);");
// The triangle's conservative raster has a coverage of +1 all around.
g->codeAppend ("half4 coverages = half4(+1);");
// Edges have coverage ramps.
g->codeAppend ("if (sk_InvocationID >= 2) {"); // Are we an edge?
Shader::CalcEdgeCoverageAtBloatVertex(g, "top", "right",
"float2(+rightbloat.y, -rightbloat.x)",
"coverages[0]");
g->codeAppend ( "coverages.yzw = half3(-1, 0, -1 - coverages[0]);");
// Reassign bloats to characterize a conservative raster around a single edge, rather than
// the entire triangle.
g->codeAppend ( "leftbloat = downbloat = -rightbloat;");
g->codeAppend ("}");
// Here we generate the conservative raster geometry. The triangle's conservative raster is
// the convex hull of 3 pixel-size boxes centered on the input points. This translates to a
// convex polygon with either one, two, or three vertices at each input point (depending on
// how sharp the corner is) that we split between two invocations. Edge conservative rasters
// are convex hulls of 2 pixel-size boxes, one at each endpoint. For more details on
// conservative raster, see:
// https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter42.html
g->codeAppendf("bool2 left_right_notequal = notEqual(leftbloat, rightbloat);");
g->codeAppend ("if (all(left_right_notequal)) {");
// The top corner will have three conservative raster vertices. Emit the
// middle one first to the triangle strip.
g->codeAppendf( "%s(top, float2(-leftbloat.y, +leftbloat.x), coverages[0]);",
emitVertexFn);
g->codeAppend ("}");
g->codeAppend ("if (any(left_right_notequal)) {");
// Second conservative raster vertex for the top corner.
g->codeAppendf( "%s(top, rightbloat, coverages[1]);", emitVertexFn);
g->codeAppend ("}");
// Main interior body.
g->codeAppendf("%s(top, leftbloat, coverages[2]);", emitVertexFn);
g->codeAppendf("%s(right, rightbloat, coverages[1]);", emitVertexFn);
// Here the invocations diverge slightly. We can't symmetrically divide three triangle
// points between two invocations, so each does the following:
//
// sk_InvocationID=0: Finishes the main interior body of the triangle hull.
// sk_InvocationID=1: Remaining two conservative raster vertices for the third hull corner.
// sk_InvocationID=2..4: Finish the opposite endpoint of their corresponding edge.
g->codeAppendf("bool2 right_down_notequal = notEqual(rightbloat, downbloat);");
g->codeAppend ("if (any(right_down_notequal) || 0 == sk_InvocationID) {");
g->codeAppendf( "%s((0 == sk_InvocationID) ? left : right, "
"(0 == sk_InvocationID) ? leftbloat : downbloat, "
"coverages[2]);", emitVertexFn);
g->codeAppend ("}");
g->codeAppend ("if (all(right_down_notequal) && 0 != sk_InvocationID) {");
g->codeAppendf( "%s(right, float2(-rightbloat.y, +rightbloat.x), coverages[3]);",
emitVertexFn);
g->codeAppend ("}");
// 5 invocations: 2 triangle hull invocations and 3 edges.
g->configure(InputType::kLines, OutputType::kTriangleStrip, 6, 5);
}
};
/**
* Generates a conservative raster around a convex quadrilateral that encloses a cubic or quadratic.
*/
class GrGSCoverageProcessor::CurveHullImpl : public GrGSCoverageProcessor::Impl {
public:
CurveHullImpl(std::unique_ptr<Shader> shader) : Impl(std::move(shader)) {}
void onEmitGeometryShader(const GrGSCoverageProcessor&, GrGLSLGeometryBuilder* g,
const GrShaderVar& wind, const char* emitVertexFn) const override {
const char* hullPts = "pts";
fShader->emitSetupCode(g, "pts", &hullPts);
// Visualize the input (convex) quadrilateral as a square. Paying special attention to wind,
// we can identify the points by their corresponding corner.
//
// NOTE: We split the square down the diagonal from top-right to bottom-left, and generate
// the hull in two independent invocations. Each invocation designates the corner it will
// begin with as top-left.
g->codeAppend ("int i = sk_InvocationID * 2;");
g->codeAppendf("float2 topleft = %s[i];", hullPts);
g->codeAppendf("float2 topright = %s[%s > 0 ? i + 1 : 3 - i];", hullPts, wind.c_str());
g->codeAppendf("float2 bottomleft = %s[%s > 0 ? 3 - i : i + 1];", hullPts, wind.c_str());
g->codeAppendf("float2 bottomright = %s[2 - i];", hullPts);
// Determine how much to outset the conservative raster hull from the relevant edges.
g->codeAppend ("float2 leftbloat = float2(topleft.y > bottomleft.y ? +1 : -1, "
"topleft.x > bottomleft.x ? -1 : +1);");
g->codeAppend ("float2 upbloat = float2(topright.y > topleft.y ? +1 : -1, "
"topright.x > topleft.x ? -1 : +1);");
g->codeAppend ("float2 rightbloat = float2(bottomright.y > topright.y ? +1 : -1, "
"bottomright.x > topright.x ? -1 : +1);");
// Here we generate the conservative raster geometry. It is the convex hull of 4 pixel-size
// boxes centered on the input points, split evenly between two invocations. This translates
// to a polygon with either one, two, or three vertices at each input point, depending on
// how sharp the corner is. For more details on conservative raster, see:
// https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter42.html
g->codeAppendf("bool2 left_up_notequal = notEqual(leftbloat, upbloat);");
g->codeAppend ("if (all(left_up_notequal)) {");
// The top-left corner will have three conservative raster vertices.
// Emit the middle one first to the triangle strip.
g->codeAppendf( "%s(topleft, float2(-leftbloat.y, leftbloat.x));", emitVertexFn);
g->codeAppend ("}");
g->codeAppend ("if (any(left_up_notequal)) {");
// Second conservative raster vertex for the top-left corner.
g->codeAppendf( "%s(topleft, leftbloat);", emitVertexFn);
g->codeAppend ("}");
// Main interior body of this invocation's half of the hull.
g->codeAppendf("%s(topleft, upbloat);", emitVertexFn);
g->codeAppendf("%s(bottomleft, leftbloat);", emitVertexFn);
g->codeAppendf("%s(topright, upbloat);", emitVertexFn);
// Remaining two conservative raster vertices for the top-right corner.
g->codeAppendf("bool2 up_right_notequal = notEqual(upbloat, rightbloat);");
g->codeAppend ("if (any(up_right_notequal)) {");
g->codeAppendf( "%s(topright, rightbloat);", emitVertexFn);
g->codeAppend ("}");
g->codeAppend ("if (all(up_right_notequal)) {");
g->codeAppendf( "%s(topright, float2(-upbloat.y, upbloat.x));", emitVertexFn);
g->codeAppend ("}");
g->configure(InputType::kLines, OutputType::kTriangleStrip, 7, 2);
}
};
/**
* Generates conservative rasters around corners (aka pixel-size boxes) and calculates
* coverage and attenuation ramps to fix up the coverage values written by the hulls.
*/
class GrGSCoverageProcessor::CornerImpl : public GrGSCoverageProcessor::Impl {
public:
CornerImpl(std::unique_ptr<Shader> shader) : Impl(std::move(shader)) {}
bool hasCoverage(const GrGSCoverageProcessor& proc) const override {
return proc.isTriangles();
}
void onEmitGeometryShader(const GrGSCoverageProcessor& proc, GrGLSLGeometryBuilder* g,
const GrShaderVar& wind, const char* emitVertexFn) const override {
fShader->emitSetupCode(g, "pts");
g->codeAppendf("int corneridx = sk_InvocationID;");
if (!proc.isTriangles()) {
g->codeAppendf("corneridx *= %i;", proc.numInputPoints() - 1);
}
g->codeAppendf("float2 corner = pts[corneridx];");
g->codeAppendf("float2 left = pts[(corneridx + (%s > 0 ? %i : 1)) %% %i];",
wind.c_str(), proc.numInputPoints() - 1, proc.numInputPoints());
g->codeAppendf("float2 right = pts[(corneridx + (%s > 0 ? 1 : %i)) %% %i];",
wind.c_str(), proc.numInputPoints() - 1, proc.numInputPoints());
g->codeAppend ("float2 leftdir = corner - left;");
g->codeAppend ("leftdir = (float2(0) != leftdir) ? normalize(leftdir) : float2(1, 0);");
g->codeAppend ("float2 rightdir = right - corner;");
g->codeAppend ("rightdir = (float2(0) != rightdir) ? normalize(rightdir) : float2(1, 0);");
// Find "outbloat" and "crossbloat" at our corner. The outbloat points diagonally out of the
// triangle, in the direction that should ramp to zero coverage with attenuation. The
// crossbloat runs perpindicular to outbloat.
g->codeAppend ("float2 outbloat = float2(leftdir.x > rightdir.x ? +1 : -1, "
"leftdir.y > rightdir.y ? +1 : -1);");
g->codeAppend ("float2 crossbloat = float2(-outbloat.y, +outbloat.x);");
g->codeAppend ("half attenuation; {");
Shader::CalcCornerAttenuation(g, "leftdir", "rightdir", "attenuation");
g->codeAppend ("}");
if (proc.isTriangles()) {
g->codeAppend ("half2 left_coverages; {");
Shader::CalcEdgeCoveragesAtBloatVertices(g, "left", "corner", "-outbloat",
"-crossbloat", "left_coverages");
g->codeAppend ("}");
g->codeAppend ("half2 right_coverages; {");
Shader::CalcEdgeCoveragesAtBloatVertices(g, "corner", "right", "-outbloat",
"crossbloat", "right_coverages");
g->codeAppend ("}");
// Emit a corner box. The first coverage argument erases the values that were written
// previously by the hull and edge geometry. The second pair are multiplied together by
// the fragment shader. They ramp to 0 with attenuation in the direction of outbloat,
// and linearly from left-edge coverage to right-edge coverage in the direction of
// crossbloat.
//
// NOTE: Since this is not a linear mapping, it is important that the box's diagonal
// shared edge points in the direction of outbloat.
g->codeAppendf("%s(corner, -crossbloat, right_coverages[1] - left_coverages[1],"
"half2(1 + left_coverages[1], 1));",
emitVertexFn);
g->codeAppendf("%s(corner, outbloat, 1 + left_coverages[0] + right_coverages[0], "
"half2(0, attenuation));",
emitVertexFn);
g->codeAppendf("%s(corner, -outbloat, -1 - left_coverages[0] - right_coverages[0], "
"half2(1 + left_coverages[0] + right_coverages[0], 1));",
emitVertexFn);
g->codeAppendf("%s(corner, crossbloat, left_coverages[1] - right_coverages[1],"
"half2(1 + right_coverages[1], 1));",
emitVertexFn);
} else {
// Curves are simpler. Setting "wind = -wind" causes the Shader to erase what it had
// written in the previous pass hull. Then, at each vertex of the corner box, the Shader
// will calculate the curve's local coverage value, interpolate it alongside our
// attenuation parameter, and multiply the two together for a final coverage value.
g->codeAppendf("%s = -%s;", wind.c_str(), wind.c_str());
if (!fShader->calculatesOwnEdgeCoverage()) {
g->codeAppendf("%s = -%s;",
fEdgeDistanceEquation.c_str(), fEdgeDistanceEquation.c_str());
}
g->codeAppendf("%s(corner, -crossbloat, half2(-1, 1));", emitVertexFn);
g->codeAppendf("%s(corner, outbloat, half2(0, attenuation));",
emitVertexFn);
g->codeAppendf("%s(corner, -outbloat, half2(-1, 1));", emitVertexFn);
g->codeAppendf("%s(corner, crossbloat, half2(-1, 1));", emitVertexFn);
}
g->configure(InputType::kLines, OutputType::kTriangleStrip, 4, proc.isTriangles() ? 3 : 2);
}
};
void GrGSCoverageProcessor::reset(PrimitiveType primitiveType, GrResourceProvider*) {
fPrimitiveType = primitiveType; // This will affect the return values for numInputPoints, etc.
if (4 == this->numInputPoints() || this->hasInputWeight()) {
fInputXOrYValues =
{"x_or_y_values", kFloat4_GrVertexAttribType, kFloat4_GrSLType};
static_assert(sizeof(QuadPointInstance) ==
2 * GrVertexAttribTypeSize(kFloat4_GrVertexAttribType));
static_assert(offsetof(QuadPointInstance, fY) ==
GrVertexAttribTypeSize(kFloat4_GrVertexAttribType));
} else {
fInputXOrYValues =
{"x_or_y_values", kFloat3_GrVertexAttribType, kFloat3_GrSLType};
static_assert(sizeof(TriPointInstance) ==
2 * GrVertexAttribTypeSize(kFloat3_GrVertexAttribType));
}
this->setVertexAttributes(&fInputXOrYValues, 1);
}
void GrGSCoverageProcessor::appendMesh(sk_sp<const GrGpuBuffer> instanceBuffer, int instanceCount,
int baseInstance, SkTArray<GrMesh>* out) const {
// We don't actually make instanced draw calls. Instead, we feed transposed x,y point values to
// the GPU in a regular vertex array and draw kLines (see initGS). Then, each vertex invocation
// receives either the shape's x or y values as inputs, which it forwards to the geometry
// shader.
GrMesh& mesh = out->push_back();
mesh.setNonIndexedNonInstanced(instanceCount * 2);
mesh.setVertexData(std::move(instanceBuffer), baseInstance * 2);
}
void GrGSCoverageProcessor::draw(
GrOpFlushState* flushState, const GrPipeline& pipeline, const SkIRect scissorRects[],
const GrMesh meshes[], int meshCount, const SkRect& drawBounds) const {
// The geometry shader impl draws primitives in two subpasses: The first pass fills the interior
// and does edge AA. The second pass does touch up on corner pixels.
for (int i = 0; i < 2; ++i) {
fSubpass = (Subpass) i;
INHERITED::draw(flushState, pipeline, scissorRects, meshes, meshCount, drawBounds);
}
}
GrGLSLPrimitiveProcessor* GrGSCoverageProcessor::onCreateGLSLInstance(
std::unique_ptr<Shader> shader) const {
if (Subpass::kHulls == fSubpass) {
return this->isTriangles()
? (Impl*) new TriangleHullImpl(std::move(shader))
: (Impl*) new CurveHullImpl(std::move(shader));
}
SkASSERT(Subpass::kCorners == fSubpass);
return new CornerImpl(std::move(shader));
}