blob: 76ca8f562ea38bca76336881eafc783ce1b70a12 [file] [log] [blame]
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrCCCoverageProcessor.h"
#include "SkMakeUnique.h"
#include "ccpr/GrCCCubicShader.h"
#include "ccpr/GrCCQuadraticShader.h"
#include "ccpr/GrCCTriangleShader.h"
#include "glsl/GrGLSLVertexGeoBuilder.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLVertexGeoBuilder.h"
void GrCCCoverageProcessor::getGLSLProcessorKey(const GrShaderCaps&,
GrProcessorKeyBuilder* b) const {
int key = (int)fRenderPass << 2;
if (WindMethod::kInstanceData == fWindMethod) {
key |= 2;
}
if (Impl::kVertexShader == fImpl) {
key |= 1;
}
#ifdef SK_DEBUG
uint32_t bloatBits;
memcpy(&bloatBits, &fDebugBloat, 4);
b->add32(bloatBits);
#endif
b->add32(key);
}
GrGLSLPrimitiveProcessor* GrCCCoverageProcessor::createGLSLInstance(const GrShaderCaps&) const {
std::unique_ptr<Shader> shader;
switch (fRenderPass) {
case RenderPass::kTriangles:
shader = skstd::make_unique<GrCCTriangleShader>();
break;
case RenderPass::kTriangleCorners:
shader = skstd::make_unique<GrCCTriangleCornerShader>();
break;
case RenderPass::kQuadratics:
shader = skstd::make_unique<GrCCQuadraticShader>();
break;
case RenderPass::kCubics:
shader = skstd::make_unique<GrCCCubicShader>();
break;
}
return Impl::kGeometryShader == fImpl ? this->createGSImpl(std::move(shader))
: this->createVSImpl(std::move(shader));
}
void GrCCCoverageProcessor::Shader::emitFragmentCode(const GrCCCoverageProcessor& proc,
GrGLSLFPFragmentBuilder* f,
const char* skOutputColor,
const char* skOutputCoverage) const {
f->codeAppendf("half coverage = 0;");
this->onEmitFragmentCode(proc, f, "coverage");
f->codeAppendf("%s.a = coverage;", skOutputColor);
f->codeAppendf("%s = half4(1);", skOutputCoverage);
#ifdef SK_DEBUG
if (proc.debugVisualizationsEnabled()) {
f->codeAppendf("%s = half4(-%s.a, %s.a, 0, abs(%s.a));",
skOutputColor, skOutputColor, skOutputColor, skOutputColor);
}
#endif
}
void GrCCCoverageProcessor::Shader::CalcEdgeCoverageAtBloatVertex(GrGLSLVertexGeoBuilder* s,
const char* leftPt,
const char* rightPt,
const char* rasterVertexDir,
const char* outputCoverage) {
// Here we find an edge's coverage at one corner of a conservative raster bloat box whose center
// falls on the edge in question. (A bloat box is axis-aligned and the size of one pixel.) We
// always set up coverage so it is -1 at the outermost corner, 0 at the innermost, and -.5 at
// the center. Interpolated, these coverage values convert jagged conservative raster edges into
// smooth antialiased edges.
//
// d1 == (P + sign(n) * bloat) dot n (Distance at the bloat box vertex whose
// == P dot n + (abs(n.x) + abs(n.y)) * bloatSize coverage=-1, where the bloat box is
// centered on P.)
//
// d0 == (P - sign(n) * bloat) dot n (Distance at the bloat box vertex whose
// == P dot n - (abs(n.x) + abs(n.y)) * bloatSize coverage=0, where the bloat box is
// centered on P.)
//
// d == (P + rasterVertexDir * bloatSize) dot n (Distance at the bloat box vertex whose
// == P dot n + (rasterVertexDir dot n) * bloatSize coverage we wish to calculate.)
//
// coverage == -(d - d0) / (d1 - d0) (coverage=-1 at d=d1; coverage=0 at d=d0)
//
// == (rasterVertexDir dot n) / (abs(n.x) + abs(n.y)) * -.5 - .5
//
s->codeAppendf("float2 n = float2(%s.y - %s.y, %s.x - %s.x);",
rightPt, leftPt, leftPt, rightPt);
s->codeAppend ("float nwidth = abs(n.x) + abs(n.y);");
s->codeAppendf("float t = dot(%s, n);", rasterVertexDir);
// The below conditional guarantees we get exactly 1 on the divide when nwidth=t (in case the
// GPU divides by multiplying by the reciprocal?) It also guards against NaN when nwidth=0.
s->codeAppendf("%s = (abs(t) != nwidth ? t / nwidth : sign(t)) * -.5 - .5;", outputCoverage);
}