blob: c1f46fd92f74e7382426e75a6dd88c90c759822f [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrResourceProvider_DEFINED
#define GrResourceProvider_DEFINED
#include "include/gpu/GrContextOptions.h"
#include "include/private/SkImageInfoPriv.h"
#include "src/gpu/GrGpuBuffer.h"
#include "src/gpu/GrResourceCache.h"
class GrAttachment;
class GrBackendRenderTarget;
class GrBackendSemaphore;
class GrBackendTexture;
class GrGpu;
class GrMSAAAttachment;
class GrPath;
class GrRenderTarget;
class GrResourceProviderPriv;
class GrSemaphore;
class GrSingleOwner;
struct GrVertexWriter;
class GrTexture;
struct GrVkDrawableInfo;
class GrStyle;
class SkDescriptor;
class SkPath;
class SkTypeface;
/**
* A factory for arbitrary resource types.
*/
class GrResourceProvider {
public:
GrResourceProvider(GrGpu*, GrResourceCache*, GrSingleOwner*);
/**
* Finds a resource in the cache, based on the specified key. Prior to calling this, the caller
* must be sure that if a resource of exists in the cache with the given unique key then it is
* of type T.
*/
template <typename T = GrGpuResource>
typename std::enable_if<std::is_base_of<GrGpuResource, T>::value, sk_sp<T>>::type
findByUniqueKey(const GrUniqueKey& key) {
return sk_sp<T>(static_cast<T*>(this->findResourceByUniqueKey(key).release()));
}
///////////////////////////////////////////////////////////////////////////
// Textures
/**
* Finds a texture that approximately matches the descriptor. Will be at least as large in width
* and height as desc specifies. If renderable is kYes then the GrTexture will also be a
* GrRenderTarget. The texture's format and sample count will always match the request.
* The contents of the texture are undefined.
*/
sk_sp<GrTexture> createApproxTexture(SkISize dimensions,
const GrBackendFormat& format,
GrRenderable renderable,
int renderTargetSampleCnt,
GrProtected isProtected);
/** Create an exact fit texture with no initial data to upload. */
sk_sp<GrTexture> createTexture(SkISize dimensions,
const GrBackendFormat& format,
GrRenderable renderable,
int renderTargetSampleCnt,
GrMipmapped mipMapped,
SkBudgeted budgeted,
GrProtected isProtected);
/**
* Create an exact fit texture with initial data to upload. The color type must be valid
* for the format and also describe the texel data. This will ensure any conversions that
* need to get applied to the data before upload are applied.
*/
sk_sp<GrTexture> createTexture(SkISize dimensions,
const GrBackendFormat& format,
GrColorType colorType,
GrRenderable renderable,
int renderTargetSampleCnt,
SkBudgeted budgeted,
GrMipMapped mipMapped,
GrProtected isProtected,
const GrMipLevel texels[]);
/**
* Create a potentially loose fit texture with the provided data. The color type must be valid
* for the format and also describe the texel data. This will ensure any conversions that
* need to get applied to the data before upload are applied.
*/
sk_sp<GrTexture> createTexture(SkISize dimensions,
const GrBackendFormat&,
GrColorType srcColorType,
GrRenderable,
int renderTargetSampleCnt,
SkBudgeted,
SkBackingFit,
GrProtected,
const GrMipLevel& mipLevel);
/**
* Search the cache for a scratch texture matching the provided arguments. Failing that
* it returns null. If non-null, the resulting texture is always budgeted.
*/
sk_sp<GrTexture> findAndRefScratchTexture(const GrScratchKey&);
sk_sp<GrTexture> findAndRefScratchTexture(SkISize dimensions,
const GrBackendFormat&,
GrRenderable,
int renderTargetSampleCnt,
GrMipmapped,
GrProtected);
/**
* Creates a compressed texture. The GrGpu must support the SkImageImage::Compression type.
* It will not be renderable.
*/
sk_sp<GrTexture> createCompressedTexture(SkISize dimensions,
const GrBackendFormat&,
SkBudgeted,
GrMipmapped,
GrProtected,
SkData* data);
///////////////////////////////////////////////////////////////////////////
// Wrapped Backend Surfaces
/**
* Wraps an existing texture with a GrTexture object.
*
* GrIOType must either be kRead or kRW. kRead blocks any operations that would modify the
* pixels (e.g. dst for a copy, regenerating MIP levels, write pixels).
*
* OpenGL: if the object is a texture Gr may change its GL texture params
* when it is drawn.
*
* @return GrTexture object or NULL on failure.
*/
sk_sp<GrTexture> wrapBackendTexture(const GrBackendTexture& tex,
GrWrapOwnership,
GrWrapCacheable,
GrIOType);
sk_sp<GrTexture> wrapCompressedBackendTexture(const GrBackendTexture& tex,
GrWrapOwnership,
GrWrapCacheable);
/**
* This makes the backend texture be renderable. If sampleCnt is > 1 and the underlying API
* uses separate MSAA render buffers then a MSAA render buffer is created that resolves
* to the texture.
*/
sk_sp<GrTexture> wrapRenderableBackendTexture(const GrBackendTexture& tex,
int sampleCnt,
GrWrapOwnership,
GrWrapCacheable);
/**
* Wraps an existing render target with a GrRenderTarget object. It is
* similar to wrapBackendTexture but can be used to draw into surfaces
* that are not also textures (e.g. FBO 0 in OpenGL, or an MSAA buffer that
* the client will resolve to a texture). Currently wrapped render targets
* always use the kBorrow_GrWrapOwnership and GrWrapCacheable::kNo semantics.
*
* @return GrRenderTarget object or NULL on failure.
*/
sk_sp<GrRenderTarget> wrapBackendRenderTarget(const GrBackendRenderTarget&);
sk_sp<GrRenderTarget> wrapVulkanSecondaryCBAsRenderTarget(const SkImageInfo&,
const GrVkDrawableInfo&);
static const int kMinScratchTextureSize;
/**
* Either finds and refs a buffer with the given unique key, or creates a new new, fills its
* contents with the InitializeBufferDataFn() callback, and assigns it the unique key.
*
* @param intendedType hint to the graphics subsystem about how the buffer will be used.
* @param size minimum size of buffer to return.
* @param key Key to be assigned to the buffer.
* @param InitializeBufferFn callback with which to initialize the buffer.
*
* @return The buffer if successful, otherwise nullptr.
*/
using InitializeBufferFn = void(*)(GrVertexWriter, size_t bufferSize);
sk_sp<const GrGpuBuffer> findOrMakeStaticBuffer(GrGpuBufferType intendedType, size_t size,
const GrUniqueKey& key, InitializeBufferFn);
/**
* Either finds and refs, or creates a static buffer with the given parameters and contents.
*
* @param intendedType hint to the graphics subsystem about what the buffer will be used for.
* @param size minimum size of buffer to return.
* @param data optional data with which to initialize the buffer.
* @param key Key to be assigned to the buffer.
*
* @return The buffer if successful, otherwise nullptr.
*/
sk_sp<const GrGpuBuffer> findOrMakeStaticBuffer(GrGpuBufferType intendedType, size_t size,
const void* staticData, const GrUniqueKey& key);
/**
* Either finds and refs, or creates an index buffer with a repeating pattern for drawing
* contiguous vertices of a repeated mesh. If the return is non-null, the caller owns a ref on
* the returned GrBuffer.
*
* @param pattern the pattern of indices to repeat
* @param patternSize size in bytes of the pattern
* @param reps number of times to repeat the pattern
* @param vertCount number of vertices the pattern references
* @param key Key to be assigned to the index buffer.
*
* @return The index buffer if successful, otherwise nullptr.
*/
sk_sp<const GrGpuBuffer> findOrCreatePatternedIndexBuffer(const uint16_t* pattern,
int patternSize,
int reps,
int vertCount,
const GrUniqueKey& key) {
if (auto buffer = this->findByUniqueKey<const GrGpuBuffer>(key)) {
return buffer;
}
return this->createPatternedIndexBuffer(pattern, patternSize, reps, vertCount, &key);
}
/**
* Returns an index buffer that can be used to render non-antialiased quads.
* Each quad consumes 6 indices (0, 1, 2, 2, 1, 3) and 4 vertices.
* Call MaxNumNonAAQuads to get the max allowed number of non-AA quads.
* Draw with GrPrimitiveType::kTriangles
* @ return the non-AA quad index buffer
*/
sk_sp<const GrGpuBuffer> refNonAAQuadIndexBuffer() {
if (!fNonAAQuadIndexBuffer) {
fNonAAQuadIndexBuffer = this->createNonAAQuadIndexBuffer();
}
return fNonAAQuadIndexBuffer;
}
static int MaxNumNonAAQuads();
static int NumVertsPerNonAAQuad();
static int NumIndicesPerNonAAQuad();
/**
* Returns an index buffer that can be used to render antialiased quads.
* Each quad consumes 30 indices and 8 vertices.
* Call MaxNumAAQuads to get the max allowed number of AA quads.
* Draw with GrPrimitiveType::kTriangles
* @ return the AA quad index buffer
*/
sk_sp<const GrGpuBuffer> refAAQuadIndexBuffer() {
if (!fAAQuadIndexBuffer) {
fAAQuadIndexBuffer = this->createAAQuadIndexBuffer();
}
return fAAQuadIndexBuffer;
}
static int MaxNumAAQuads();
static int NumVertsPerAAQuad();
static int NumIndicesPerAAQuad();
/**
* Returns a buffer.
*
* @param size minimum size of buffer to return.
* @param intendedType hint to the graphics subsystem about what the buffer will be used for.
* @param GrAccessPattern hint to the graphics subsystem about how the data will be accessed.
* @param flags see Flags enum.
* @param data optional data with which to initialize the buffer.
*
* @return the buffer if successful, otherwise nullptr.
*/
sk_sp<GrGpuBuffer> createBuffer(size_t size,
GrGpuBufferType intendedType,
GrAccessPattern,
const void* data = nullptr);
/**
* If passed in render target already has a stencil buffer on the specified surface, return
* true. Otherwise attempt to attach one and return true on success.
*/
bool attachStencilAttachment(GrRenderTarget* rt, bool useMSAASurface);
sk_sp<GrAttachment> makeMSAAAttachment(SkISize dimensions,
const GrBackendFormat& format,
int sampleCnt,
GrProtected isProtected);
/**
* Gets a GrAttachment that can be used for MSAA rendering. This attachment may be shared by
* other users. Thus any renderpass that uses the attachment should not assume any specific
* data at the start and should not try to save written data at the end. Ideally the render pass
* should discard the data at the end.
*/
sk_sp<GrAttachment> getDiscardableMSAAAttachment(SkISize dimensions,
const GrBackendFormat& format,
int sampleCnt,
GrProtected isProtected);
/**
* Assigns a unique key to a resource. If the key is associated with another resource that
* association is removed and replaced by this resource.
*/
void assignUniqueKeyToResource(const GrUniqueKey&, GrGpuResource*);
std::unique_ptr<GrSemaphore> SK_WARN_UNUSED_RESULT makeSemaphore(bool isOwned = true);
std::unique_ptr<GrSemaphore> wrapBackendSemaphore(const GrBackendSemaphore&,
GrSemaphoreWrapType,
GrWrapOwnership = kBorrow_GrWrapOwnership);
void abandon() {
fCache = nullptr;
fGpu = nullptr;
}
uint32_t contextUniqueID() const { return fCache->contextUniqueID(); }
const GrCaps* caps() const { return fCaps.get(); }
bool overBudget() const { return fCache->overBudget(); }
static SkISize MakeApprox(SkISize);
inline GrResourceProviderPriv priv();
inline const GrResourceProviderPriv priv() const; // NOLINT(readability-const-return-type)
private:
sk_sp<GrGpuResource> findResourceByUniqueKey(const GrUniqueKey&);
/*
* Try to find an existing scratch texture that exactly matches 'desc'. If successful
* update the budgeting accordingly.
*/
sk_sp<GrTexture> getExactScratch(SkISize dimensions,
const GrBackendFormat&,
GrRenderable,
int renderTargetSampleCnt,
SkBudgeted,
GrMipmapped,
GrProtected);
// Attempts to find a resource in the cache that exactly matches the SkISize. Failing that
// it returns null. If non-null, the resulting msaa attachment is always budgeted.
sk_sp<GrAttachment> refScratchMSAAAttachment(SkISize dimensions,
const GrBackendFormat&,
int sampleCnt,
GrProtected);
// Used to perform any conversions necessary to texel data before creating a texture with
// existing data or uploading to a scratch texture.
using TempLevels = SkAutoSTArray<14, GrMipLevel>;
using TempLevelDatas = SkAutoSTArray<14, std::unique_ptr<char[]>>;
GrColorType prepareLevels(const GrBackendFormat& format,
GrColorType,
SkISize baseSize,
const GrMipLevel texels[],
int mipLevelCount,
TempLevels*,
TempLevelDatas*) const;
// GrResourceProvider may be asked to "create" a new texture with initial pixel data to populate
// it. In implementation it may pull an existing texture from GrResourceCache and then write the
// pixel data to the texture. It takes a width/height for the base level because we may be
// using an approximate-sized scratch texture. On success the texture is returned and nullptr
// on failure.
sk_sp<GrTexture> writePixels(sk_sp<GrTexture> texture,
GrColorType colorType,
SkISize baseSize,
const GrMipLevel texels[],
int mipLevelCount) const;
GrResourceCache* cache() { return fCache; }
const GrResourceCache* cache() const { return fCache; }
friend class GrResourceProviderPriv;
// Method made available via GrResourceProviderPriv
GrGpu* gpu() { return fGpu; }
const GrGpu* gpu() const { return fGpu; }
bool isAbandoned() const {
SkASSERT(SkToBool(fGpu) == SkToBool(fCache));
return !SkToBool(fCache);
}
sk_sp<const GrGpuBuffer> createPatternedIndexBuffer(const uint16_t* pattern,
int patternSize,
int reps,
int vertCount,
const GrUniqueKey* key);
sk_sp<const GrGpuBuffer> createNonAAQuadIndexBuffer();
sk_sp<const GrGpuBuffer> createAAQuadIndexBuffer();
GrResourceCache* fCache;
GrGpu* fGpu;
sk_sp<const GrCaps> fCaps;
sk_sp<const GrGpuBuffer> fNonAAQuadIndexBuffer;
sk_sp<const GrGpuBuffer> fAAQuadIndexBuffer;
// In debug builds we guard against improper thread handling
SkDEBUGCODE(mutable GrSingleOwner* fSingleOwner;)
};
#endif