blob: 900b6eee6b7044940bf7eae68e9548c2e8a1e27b [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "glsl/GrGLSLProgramBuilder.h"
#include "GrPipeline.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLGeometryProcessor.h"
#include "glsl/GrGLSLXferProcessor.h"
const int GrGLSLProgramBuilder::kVarsPerBlock = 8;
GrGLSLProgramBuilder::GrGLSLProgramBuilder(const DrawArgs& args)
: fVS(this)
, fGS(this)
, fFS(this, args.fDesc->header().fFragPosKey)
, fStageIndex(-1)
, fArgs(args)
, fGeometryProcessor(nullptr)
, fXferProcessor(nullptr) {
}
bool GrGLSLProgramBuilder::emitAndInstallProcs(GrGLSLExpr4* inputColor,
GrGLSLExpr4* inputCoverage,
int maxTextures) {
// First we loop over all of the installed processors and collect coord transforms. These will
// be sent to the GrGLSLPrimitiveProcessor in its emitCode function
const GrPrimitiveProcessor& primProc = this->primitiveProcessor();
int totalTextures = primProc.numTextures();
for (int i = 0; i < this->pipeline().numFragmentProcessors(); i++) {
const GrFragmentProcessor& processor = this->pipeline().getFragmentProcessor(i);
if (!primProc.hasTransformedLocalCoords()) {
SkTArray<const GrCoordTransform*, true>& procCoords = fCoordTransforms.push_back();
processor.gatherCoordTransforms(&procCoords);
}
totalTextures += processor.numTextures();
if (totalTextures >= maxTextures) {
GrCapsDebugf(this->caps(), "Program would use too many texture units\n");
return false;
}
}
this->emitAndInstallPrimProc(primProc, inputColor, inputCoverage);
int numProcs = this->pipeline().numFragmentProcessors();
this->emitAndInstallFragProcs(0, this->pipeline().numColorFragmentProcessors(), inputColor);
this->emitAndInstallFragProcs(this->pipeline().numColorFragmentProcessors(), numProcs,
inputCoverage);
if (primProc.getPixelLocalStorageState() !=
GrPixelLocalStorageState::kDraw_GrPixelLocalStorageState) {
this->emitAndInstallXferProc(this->pipeline().getXferProcessor(), *inputColor,
*inputCoverage, this->pipeline().ignoresCoverage(),
primProc.getPixelLocalStorageState());
this->emitFSOutputSwizzle(this->pipeline().getXferProcessor().hasSecondaryOutput());
}
return true;
}
void GrGLSLProgramBuilder::emitAndInstallPrimProc(const GrPrimitiveProcessor& proc,
GrGLSLExpr4* outputColor,
GrGLSLExpr4* outputCoverage) {
// Program builders have a bit of state we need to clear with each effect
AutoStageAdvance adv(this);
this->nameExpression(outputColor, "outputColor");
this->nameExpression(outputCoverage, "outputCoverage");
// Enclose custom code in a block to avoid namespace conflicts
SkString openBrace;
openBrace.printf("{ // Stage %d, %s\n", fStageIndex, proc.name());
fFS.codeAppend(openBrace.c_str());
fVS.codeAppendf("// Primitive Processor %s\n", proc.name());
SkASSERT(!fGeometryProcessor);
fGeometryProcessor = proc.createGLSLInstance(*this->glslCaps());
SkSTArray<4, GrGLSLTextureSampler> samplers(proc.numTextures());
this->emitSamplers(proc, &samplers);
GrGLSLGeometryProcessor::EmitArgs args(&fVS,
&fFS,
this->varyingHandler(),
this->uniformHandler(),
this->glslCaps(),
proc,
outputColor->c_str(),
outputCoverage->c_str(),
samplers,
fCoordTransforms,
&fOutCoords);
fGeometryProcessor->emitCode(args);
// We have to check that effects and the code they emit are consistent, ie if an effect
// asks for dst color, then the emit code needs to follow suit
verify(proc);
fFS.codeAppend("}");
}
void GrGLSLProgramBuilder::emitAndInstallFragProcs(int procOffset,
int numProcs,
GrGLSLExpr4* inOut) {
for (int i = procOffset; i < numProcs; ++i) {
GrGLSLExpr4 output;
const GrFragmentProcessor& fp = this->pipeline().getFragmentProcessor(i);
this->emitAndInstallFragProc(fp, i, *inOut, &output);
*inOut = output;
}
}
// TODO Processors cannot output zeros because an empty string is all 1s
// the fix is to allow effects to take the GrGLSLExpr4 directly
void GrGLSLProgramBuilder::emitAndInstallFragProc(const GrFragmentProcessor& fp,
int index,
const GrGLSLExpr4& input,
GrGLSLExpr4* output) {
// Program builders have a bit of state we need to clear with each effect
AutoStageAdvance adv(this);
this->nameExpression(output, "output");
// Enclose custom code in a block to avoid namespace conflicts
SkString openBrace;
openBrace.printf("{ // Stage %d, %s\n", fStageIndex, fp.name());
fFS.codeAppend(openBrace.c_str());
GrGLSLFragmentProcessor* fragProc = fp.createGLSLInstance();
SkSTArray<4, GrGLSLTextureSampler> samplers(fp.numTextures());
this->emitSamplers(fp, &samplers);
GrGLSLFragmentProcessor::EmitArgs args(&fFS,
this->uniformHandler(),
this->glslCaps(),
fp,
output->c_str(),
input.isOnes() ? nullptr : input.c_str(),
fOutCoords[index],
samplers);
fragProc->emitCode(args);
// We have to check that effects and the code they emit are consistent, ie if an effect
// asks for dst color, then the emit code needs to follow suit
verify(fp);
fFragmentProcessors.push_back(fragProc);
fFS.codeAppend("}");
}
void GrGLSLProgramBuilder::emitAndInstallXferProc(const GrXferProcessor& xp,
const GrGLSLExpr4& colorIn,
const GrGLSLExpr4& coverageIn,
bool ignoresCoverage,
GrPixelLocalStorageState plsState) {
// Program builders have a bit of state we need to clear with each effect
AutoStageAdvance adv(this);
SkASSERT(!fXferProcessor);
fXferProcessor = xp.createGLSLInstance();
// Enable dual source secondary output if we have one
if (xp.hasSecondaryOutput()) {
fFS.enableSecondaryOutput();
}
if (this->glslCaps()->mustDeclareFragmentShaderOutput()) {
fFS.enableCustomOutput();
}
SkString openBrace;
openBrace.printf("{ // Xfer Processor: %s\n", xp.name());
fFS.codeAppend(openBrace.c_str());
SkSTArray<4, GrGLSLTextureSampler> samplers(xp.numTextures());
this->emitSamplers(xp, &samplers);
bool usePLSDstRead = (plsState == GrPixelLocalStorageState::kFinish_GrPixelLocalStorageState);
GrGLSLXferProcessor::EmitArgs args(&fFS,
this->uniformHandler(),
this->glslCaps(),
xp, colorIn.c_str(),
ignoresCoverage ? nullptr : coverageIn.c_str(),
fFS.getPrimaryColorOutputName(),
fFS.getSecondaryColorOutputName(),
samplers,
usePLSDstRead);
fXferProcessor->emitCode(args);
// We have to check that effects and the code they emit are consistent, ie if an effect
// asks for dst color, then the emit code needs to follow suit
verify(xp);
fFS.codeAppend("}");
}
void GrGLSLProgramBuilder::emitFSOutputSwizzle(bool hasSecondaryOutput) {
// Swizzle the fragment shader outputs if necessary.
GrSwizzle swizzle;
swizzle.setFromKey(this->desc().header().fOutputSwizzle);
if (swizzle != GrSwizzle::RGBA()) {
fFS.codeAppendf("%s = %s.%s;", fFS.getPrimaryColorOutputName(),
fFS.getPrimaryColorOutputName(),
swizzle.c_str());
if (hasSecondaryOutput) {
fFS.codeAppendf("%s = %s.%s;", fFS.getSecondaryColorOutputName(),
fFS.getSecondaryColorOutputName(),
swizzle.c_str());
}
}
}
void GrGLSLProgramBuilder::verify(const GrPrimitiveProcessor& gp) {
SkASSERT(fFS.hasReadFragmentPosition() == gp.willReadFragmentPosition());
}
void GrGLSLProgramBuilder::verify(const GrXferProcessor& xp) {
SkASSERT(fFS.hasReadDstColor() == xp.willReadDstColor());
}
void GrGLSLProgramBuilder::verify(const GrFragmentProcessor& fp) {
SkASSERT(fFS.hasReadFragmentPosition() == fp.willReadFragmentPosition());
}
void GrGLSLProgramBuilder::nameVariable(SkString* out, char prefix, const char* name, bool mangle) {
if ('\0' == prefix) {
*out = name;
} else {
out->printf("%c%s", prefix, name);
}
if (mangle) {
if (out->endsWith('_')) {
// Names containing "__" are reserved.
out->append("x");
}
out->appendf("_Stage%d%s", fStageIndex, fFS.getMangleString().c_str());
}
}
void GrGLSLProgramBuilder::nameExpression(GrGLSLExpr4* output, const char* baseName) {
// create var to hold stage result. If we already have a valid output name, just use that
// otherwise create a new mangled one. This name is only valid if we are reordering stages
// and have to tell stage exactly where to put its output.
SkString outName;
if (output->isValid()) {
outName = output->c_str();
} else {
this->nameVariable(&outName, '\0', baseName);
}
fFS.codeAppendf("vec4 %s;", outName.c_str());
*output = outName;
}
void GrGLSLProgramBuilder::appendUniformDecls(ShaderVisibility visibility,
SkString* out) const {
this->uniformHandler()->appendUniformDecls(visibility, out);
}
void GrGLSLProgramBuilder::addRTAdjustmentUniform(GrSLPrecision precision,
const char* name,
const char** outName) {
SkASSERT(!fUniformHandles.fRTAdjustmentUni.isValid());
fUniformHandles.fRTAdjustmentUni =
this->uniformHandler()->addUniform(GrGLSLUniformHandler::kVertex_Visibility,
kVec4f_GrSLType,
precision,
name,
outName);
}
void GrGLSLProgramBuilder::addRTHeightUniform(const char* name, const char** outName) {
SkASSERT(!fUniformHandles.fRTHeightUni.isValid());
GrGLSLUniformHandler* uniformHandler = this->uniformHandler();
fUniformHandles.fRTHeightUni =
uniformHandler->internalAddUniformArray(GrGLSLUniformHandler::kFragment_Visibility,
kFloat_GrSLType, kDefault_GrSLPrecision,
name, false, 0, outName);
}
void GrGLSLProgramBuilder::cleanupFragmentProcessors() {
for (int i = 0; i < fFragmentProcessors.count(); ++i) {
delete fFragmentProcessors[i];
}
}