blob: 8dd5d30c5ced5d6f76ed266dc5c67c0fd23a8a7f [file] [log] [blame]
#include "SkPdfNativeTokenizer.h"
#include "SkPdfObject.h"
#include "SkPdfConfig.h"
#include "SkPdfStreamCommonDictionary_autogen.h"
#include "SkPdfImageDictionary_autogen.h"
// TODO(edisonn): perf!!!
// there could be 0s between start and end! but not in the needle.
static char* strrstrk(char* hayStart, char* hayEnd, const char* needle) {
int needleLen = strlen(needle);
if ((isPdfWhiteSpaceOrPdfDelimiter(*(hayStart+needleLen)) || (hayStart+needleLen == hayEnd)) &&
strncmp(hayStart, needle, needleLen) == 0) {
return hayStart;
}
hayStart++;
while (hayStart < hayEnd) {
if (isPdfWhiteSpaceOrPdfDelimiter(*(hayStart-1)) &&
(isPdfWhiteSpaceOrPdfDelimiter(*(hayStart+needleLen)) || (hayStart+needleLen == hayEnd)) &&
strncmp(hayStart, needle, needleLen) == 0) {
return hayStart;
}
hayStart++;
}
return NULL;
}
#ifdef PDF_TRACE_TOKENIZER
static void TRACE_INDENT(int level, const char* type) {
static int id = 0;
id++;
if (478613 == id) {
printf("break;\n");
}
// all types should have 2 letters, so the text is alligned nicely
printf("\n%10i %15s: ", id, type);
for (int i = 0 ; i < level; i++) {
printf(" ");
}
}
static void TRACE_COMMENT(char ch) {
printf("%c", ch);
}
static void TRACE_TK(char ch) {
printf("%c", ch);
}
static void TRACE_NAME(const unsigned char* start, const unsigned char* end) {
while (start < end) {
printf("%c", *start);
start++;
}
printf("\n");
}
static void TRACE_STRING(const unsigned char* start, const unsigned char* end) {
while (start < end) {
printf("%c", *start);
start++;
}
printf("\n");
}
static void TRACE_HEXSTRING(const unsigned char* start, const unsigned char* end) {
while (start < end) {
printf("%c", *start);
start++;
}
printf("\n");
}
#else
#define TRACE_INDENT(level,type)
#define TRACE_COMMENT(ch)
#define TRACE_TK(ch)
#define TRACE_NAME(start,end)
#define TRACE_STRING(start,end)
#define TRACE_HEXSTRING(start,end)
#endif
const unsigned char* skipPdfWhiteSpaces(int level, const unsigned char* start, const unsigned char* end) {
TRACE_INDENT(level, "White Space");
while (start < end && (isPdfWhiteSpace(*start) || *start == kComment_PdfDelimiter)) {
TRACE_COMMENT(*start);
if (*start == kComment_PdfDelimiter) {
// skip the comment until end of line
while (start < end && !isPdfEOL(*start)) {
//*start = '\0';
start++;
TRACE_COMMENT(*start);
}
} else {
//*start = '\0';
start++;
}
}
return start;
}
// TODO(edisonn) '(' can be used, will it break the string a delimiter or space inside () ?
const unsigned char* endOfPdfToken(int level, const unsigned char* start, const unsigned char* end) {
//int opened brackets
//TODO(edisonn): what out for special chars, like \n, \032
TRACE_INDENT(level, "Token");
SkASSERT(!isPdfWhiteSpace(*start));
if (start < end && isPdfDelimiter(*start)) {
TRACE_TK(*start);
start++;
return start;
}
while (start < end && !isPdfWhiteSpaceOrPdfDelimiter(*start)) {
TRACE_TK(*start);
start++;
}
return start;
}
// last elem has to be ]
static const unsigned char* readArray(int level, const unsigned char* start, const unsigned char* end, SkPdfObject* array, SkPdfAllocator* allocator, SkNativeParsedPDF* doc) {
if (allocator == NULL) {
// TODO(edisonn): report/warning error
return end;
}
TRACE_INDENT(level, "Array");
while (start < end) {
// skip white spaces
start = skipPdfWhiteSpaces(level + 1, start, end);
const unsigned char* endOfToken = endOfPdfToken(level + 1, start, end);
if (endOfToken == start) {
// TODO(edisonn): report error in pdf file (end of stream with ] for end of aray
return start;
}
if (endOfToken == start + 1 && *start == kClosedSquareBracket_PdfDelimiter) {
return endOfToken;
}
SkPdfObject* newObj = allocator->allocObject();
start = nextObject(level + 1, start, end, newObj, allocator, doc);
// TODO(edisonn): perf/memory: put the variables on the stack, and flush them on the array only when
// we are sure they are not references!
if (newObj->isKeywordReference() && array->size() >= 2 && array->objAtAIndex(array->size() - 1)->isInteger() && array->objAtAIndex(array->size() - 2)->isInteger()) {
SkPdfObject* gen = array->removeLastInArray();
SkPdfObject* id = array->removeLastInArray();
newObj->reset();
SkPdfObject::makeReference((unsigned int)id->intValue(), (unsigned int)gen->intValue(), newObj);
}
array->appendInArray(newObj);
}
printf("break;\n"); // DO NOT SUBMIT!
// TODO(edisonn): report not reached, we should never get here
// TODO(edisonn): there might be a bug here, enable an assert and run it on files
// or it might be that the files were actually corrupted
return start;
}
// When we read strings we will rewrite the string so we will reuse the memory
// when we start to read the string, we already consumed the opened bracket
// TODO(edisonn): space: add paramater, taht would report if we need to allocate new buffer, or we can reuse the one we have
static const unsigned char* readString(int level, const unsigned char* start, const unsigned char* end, unsigned char* out) {
TRACE_INDENT(level, "String");
const unsigned char* in = start;
bool hasOut = (out != NULL);
int openRoundBrackets = 1;
while (in < end) {
openRoundBrackets += ((*in) == kOpenedRoundBracket_PdfDelimiter);
openRoundBrackets -= ((*in) == kClosedRoundBracket_PdfDelimiter);
if (openRoundBrackets == 0) {
in++; // consumed )
break;
}
if (*in == kEscape_PdfSpecial) {
if (in + 1 < end) {
switch (in[1]) {
case 'n':
if (hasOut) { *out = kLF_PdfWhiteSpace; }
out++;
in += 2;
break;
case 'r':
if (hasOut) { *out = kCR_PdfWhiteSpace; }
out++;
in += 2;
break;
case 't':
if (hasOut) { *out = kHT_PdfWhiteSpace; }
out++;
in += 2;
break;
case 'b':
// TODO(edisonn): any special meaning to backspace?
if (hasOut) { *out = kBackspace_PdfSpecial; }
out++;
in += 2;
break;
case 'f':
if (hasOut) { *out = kFF_PdfWhiteSpace; }
out++;
in += 2;
break;
case kOpenedRoundBracket_PdfDelimiter:
if (hasOut) { *out = kOpenedRoundBracket_PdfDelimiter; }
out++;
in += 2;
break;
case kClosedRoundBracket_PdfDelimiter:
if (hasOut) { *out = kClosedRoundBracket_PdfDelimiter; }
out++;
in += 2;
break;
case kEscape_PdfSpecial:
if (hasOut) { *out = kEscape_PdfSpecial; }
out++;
in += 2;
break;
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7': {
//read octals
in++; // consume backslash
int code = 0;
int i = 0;
while (in < end && *in >= '0' && *in < '8') {
code = (code << 3) + ((*in) - '0'); // code * 8 + d
i++;
in++;
if (i == 3) {
if (hasOut) { *out = code & 0xff; }
out++;
i = 0;
}
}
if (i > 0) {
if (hasOut) { *out = code & 0xff; }
out++;
}
}
break;
default:
// Per spec, backslash is ignored is escaped ch is unknown
in++;
break;
}
} else {
in++;
}
} else {
// TODO(edisonn): perf, avoid copy into itself, maybe first do a simple scan until found backslash ?
// we could have one look that first just inc current, and when we find the backslash
// we go to this loop
if (hasOut) { *out = *in; }
in++;
out++;
}
}
if (hasOut) {
return in; // consumed already ) at the end of the string
} else {
return start + (out - (const unsigned char*)NULL); // return where the string would end if we reuse the string
}
}
static int readStringLength(int level, const unsigned char* start, const unsigned char* end) {
return readString(level, start, end, NULL) - start;
}
static const unsigned char* readString(int level, const unsigned char* start, const unsigned char* end, SkPdfObject* str, SkPdfAllocator* allocator) {
if (!allocator) {
return end;
}
int outLength = readStringLength(level, start, end);
// TODO(edisonn): optimize the allocation, don't allocate new string, but put it in a preallocated buffer
unsigned char* out = (unsigned char*)allocator->alloc(outLength);
start = readString(level, start, end, out);
SkPdfObject::makeString(out, out + outLength, str);
TRACE_STRING(out, out + outLength);
return start; // consumed already ) at the end of the string
}
static const unsigned char* readHexString(int level, const unsigned char* start, const unsigned char* end, unsigned char* out) {
TRACE_INDENT(level, "HexString");
bool hasOut = (out != NULL);
const unsigned char* in = start;
unsigned char code = 0;
while (in < end) {
while (in < end && isPdfWhiteSpace(*in)) {
in++;
}
if (*in == kClosedInequityBracket_PdfDelimiter) {
//*in = '\0';
in++; // consume >
// normal exit
break;
}
if (in >= end) {
// end too soon
break;
}
switch (*in) {
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
code = (*in - '0') << 4;
break;
case 'a':
case 'b':
case 'c':
case 'd':
case 'e':
case 'f':
code = (*in - 'a' + 10) << 4;
break;
case 'A':
case 'B':
case 'C':
case 'D':
case 'E':
case 'F':
code = (*in - 'A' + 10) << 4;
break;
// TODO(edisonn): spec does not say how to handle this error
default:
break;
}
in++; // advance
while (in < end && isPdfWhiteSpace(*in)) {
in++;
}
// TODO(edisonn): report error
if (in >= end) {
if (hasOut) { *out = code; }
out++;
break;
}
if (*in == kClosedInequityBracket_PdfDelimiter) {
if (hasOut) { *out = code; }
out++;
in++;
break;
}
switch (*in) {
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
code += (*in - '0');
break;
case 'a':
case 'b':
case 'c':
case 'd':
case 'e':
case 'f':
code += (*in - 'a' + 10);
break;
case 'A':
case 'B':
case 'C':
case 'D':
case 'E':
case 'F':
code += (*in - 'A' + 10);
break;
// TODO(edisonn): spec does not say how to handle this error
default:
break;
}
if (hasOut) { *out = code; }
out++;
in++;
}
if (hasOut) {
return in; // consumed already > at the end of the string
} else {
return start + (out - (const unsigned char*)NULL); // return where the string would end if we reuse the string
}
}
static int readHexStringLength(int level, const unsigned char* start, const unsigned char* end) {
return readHexString(level, start, end, NULL) - start;
}
static const unsigned char* readHexString(int level, const unsigned char* start, const unsigned char* end, SkPdfObject* str, SkPdfAllocator* allocator) {
if (!allocator) {
return end;
}
int outLength = readHexStringLength(level, start, end);
// TODO(edisonn): optimize the allocation, don't allocate new string, but put it in a preallocated buffer
unsigned char* out = (unsigned char*)allocator->alloc(outLength);
start = readHexString(level, start, end, out);
SkPdfObject::makeHexString(out, out + outLength, str);
TRACE_HEXSTRING(out, out + outLength);
return start; // consumed already > at the end of the string
}
// TODO(edisonn): before PDF 1.2 name could not have special characters, add version parameter
static const unsigned char* readName(int level, const unsigned char* start, const unsigned char* end, unsigned char* out) {
TRACE_INDENT(level, "Name");
bool hasOut = (out != NULL);
const unsigned char* in = start;
unsigned char code = 0;
while (in < end) {
if (isPdfWhiteSpaceOrPdfDelimiter(*in)) {
break;
}
if (*in == '#' && in + 2 < end) {
in++;
switch (*in) {
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
code = (*in - '0') << 4;
break;
case 'a':
case 'b':
case 'c':
case 'd':
case 'e':
case 'f':
code = (*in - 'a' + 10) << 4;
break;
case 'A':
case 'B':
case 'C':
case 'D':
case 'E':
case 'F':
code = (*in - 'A' + 10) << 4;
break;
// TODO(edisonn): spec does not say how to handle this error
default:
break;
}
in++; // advance
switch (*in) {
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
code += (*in - '0');
break;
case 'a':
case 'b':
case 'c':
case 'd':
case 'e':
case 'f':
code += (*in - 'a' + 10);
break;
case 'A':
case 'B':
case 'C':
case 'D':
case 'E':
case 'F':
code += (*in - 'A' + 10);
break;
// TODO(edisonn): spec does not say how to handle this error
default:
break;
}
if (hasOut) { *out = code; }
out++;
in++;
} else {
if (hasOut) { *out = *in; }
out++;
in++;
}
}
if (hasOut) {
return in;
} else {
return start + (out - (const unsigned char*)NULL); // return where the string would end if we reuse the string
}
}
static int readNameLength(int level, const unsigned char* start, const unsigned char* end) {
return readName(level, start, end, NULL) - start;
}
static const unsigned char* readName(int level, const unsigned char* start, const unsigned char* end, SkPdfObject* name, SkPdfAllocator* allocator) {
if (!allocator) {
return end;
}
int outLength = readNameLength(level, start, end);
// TODO(edisonn): optimize the allocation, don't allocate new string, but put it in a preallocated buffer
unsigned char* out = (unsigned char*)allocator->alloc(outLength);
start = readName(level, start, end, out);
SkPdfObject::makeName(out, out + outLength, name);
TRACE_NAME(out, out + outLength);
return start;
}
// TODO(edisonn): pdf spec let Length to be an indirect object define after the stream
// that makes for an interesting scenario, where the stream itself contains endstream, together
// with a reference object with the length, but the real length object would be somewhere else
// it could confuse the parser
/*example:
7 0 obj
<< /length 8 0 R>>
stream
...............
endstream
8 0 obj #we are in stream actually, not a real object
<< 10 >> #we are in stream actually, not a real object
endobj
endstream
8 0 obj #real obj
<< 100 >> #real obj
endobj
and it could get worse, with multiple object like this
*/
// right now implement the silly algorithm that assumes endstream is finishing the stream
static const unsigned char* readStream(int level, const unsigned char* start, const unsigned char* end, SkPdfObject* dict, SkNativeParsedPDF* doc) {
TRACE_INDENT(level, "Stream");
start = skipPdfWhiteSpaces(level, start, end);
if (!(start[0] == 's' && start[1] == 't' && start[2] == 'r' && start[3] == 'e' && start[4] == 'a' && start[5] == 'm')) {
// no stream. return.
return start;
}
start += 6; // strlen("stream")
if (start[0] == kCR_PdfWhiteSpace && start[1] == kLF_PdfWhiteSpace) {
start += 2;
} else if (start[0] == kLF_PdfWhiteSpace) {
start += 1;
} else if (isPdfWhiteSpace(start[0])) {
start += 1;
} else {
// TODO(edisonn): warn it should be isPdfDelimiter(start[0])) ?
// TODO(edisonn): warning?
}
SkPdfStreamCommonDictionary* stream = (SkPdfStreamCommonDictionary*) dict;
// TODO(edisonn): load Length
int64_t length = -1;
// TODO(edisonn): very basic implementation
if (stream->has_Length() && stream->Length(doc) > 0) {
length = stream->Length(doc);
}
// TODO(edisonn): laod external streams
// TODO(edisonn): look at the last filter, to determione how to deal with possible issue
if (length >= 0) {
const unsigned char* endstream = start + length;
if (endstream[0] == kCR_PdfWhiteSpace && endstream[1] == kLF_PdfWhiteSpace) {
endstream += 2;
} else if (endstream[0] == kLF_PdfWhiteSpace) {
endstream += 1;
}
if (strncmp((const char*)endstream, "endstream", strlen("endstream")) != 0) {
length = -1;
}
}
if (length < 0) {
// scan the buffer, until we find first endstream
// TODO(edisonn): all buffers must have a 0 at the end now,
const unsigned char* endstream = (const unsigned char*)strrstrk((char*)start, (char*)end, "endstream");
if (endstream) {
length = endstream - start;
if (*(endstream-1) == kLF_PdfWhiteSpace) length--;
if (*(endstream-2) == kCR_PdfWhiteSpace) length--;
}
}
if (length >= 0) {
const unsigned char* endstream = start + length;
if (endstream[0] == kCR_PdfWhiteSpace && endstream[1] == kLF_PdfWhiteSpace) {
endstream += 2;
} else if (endstream[0] == kLF_PdfWhiteSpace) {
endstream += 1;
}
// TODO(edisonn): verify the next bytes are "endstream"
endstream += strlen("endstream");
// TODO(edisonn): Assert? report error/warning?
dict->addStream(start, (size_t)length);
return endstream;
}
return start;
}
static const unsigned char* readInlineImageStream(int level, const unsigned char* start, const unsigned char* end, SkPdfImageDictionary* inlineImage, SkNativeParsedPDF* doc) {
TRACE_INDENT(level, "Inline Image");
// We already processed ID keyword, and we should be positioned immediately after it
// TODO(edisonn): security: read after end check, or make buffers with extra 2 bytes
if (start[0] == kCR_PdfWhiteSpace && start[1] == kLF_PdfWhiteSpace) {
start += 2;
} else if (start[0] == kLF_PdfWhiteSpace) {
start += 1;
} else if (isPdfWhiteSpace(start[0])) {
start += 1;
} else {
SkASSERT(isPdfDelimiter(start[0]));
// TODO(edisonn): warning?
}
const unsigned char* endstream = (const unsigned char*)strrstrk((char*)start, (char*)end, "EI");
const unsigned char* endEI = endstream ? endstream + 2 : NULL; // 2 == strlen("EI")
if (endstream) {
int length = endstream - start;
if (*(endstream-1) == kLF_PdfWhiteSpace) length--;
if (*(endstream-2) == kCR_PdfWhiteSpace) length--;
inlineImage->addStream(start, (size_t)length);
} else {
// TODO(edisonn): report error in inline image stream (ID-EI) section
// TODO(edisonn): based on filter, try to ignore a missing EI, and read data properly
return end;
}
return endEI;
}
static const unsigned char* readDictionary(int level, const unsigned char* start, const unsigned char* end, SkPdfObject* dict, SkPdfAllocator* allocator, SkNativeParsedPDF* doc) {
if (allocator == NULL) {
// TODO(edisonn): report/warning error
return end;
}
TRACE_INDENT(level, "Dictionary");
SkPdfObject::makeEmptyDictionary(dict);
start = skipPdfWhiteSpaces(level, start, end);
SkPdfAllocator tmpStorage; // keys will be stored in dict, we can free them immediately after set.
while (start < end && *start == kNamed_PdfDelimiter) {
SkPdfObject key;
//*start = '\0';
start++;
start = readName(level + 1, start, end, &key, &tmpStorage);
start = skipPdfWhiteSpaces(level + 1, start, end);
if (start < end) {
SkPdfObject* value = allocator->allocObject();
start = nextObject(level + 1, start, end, value, allocator, doc);
start = skipPdfWhiteSpaces(level + 1, start, end);
if (start < end) {
// seems we have an indirect reference
if (isPdfDigit(*start)) {
SkPdfObject generation;
start = nextObject(level + 1, start, end, &generation, allocator, doc);
SkPdfObject keywordR;
start = nextObject(level + 1, start, end, &keywordR, allocator, doc);
if (value->isInteger() && generation.isInteger() && keywordR.isKeywordReference()) {
int64_t id = value->intValue();
value->reset();
SkPdfObject::makeReference((unsigned int)id, (unsigned int)generation.intValue(), value);
dict->set(&key, value);
} else {
// error, ignore
dict->set(&key, value);
}
} else {
// next elem is not a digit, but it might not be / either!
dict->set(&key, value);
}
} else {
// /key >>
dict->set(&key, value);
return end;
}
start = skipPdfWhiteSpaces(level + 1, start, end);
} else {
dict->set(&key, &SkPdfObject::kNull);
return end;
}
}
// TODO(edisonn): options to ignore these errors
// now we should expect >>
start = skipPdfWhiteSpaces(level, start, end);
if (*start != kClosedInequityBracket_PdfDelimiter) {
// TODO(edisonn): report/warning
}
//*start = '\0';
start++; // skip >
if (*start != kClosedInequityBracket_PdfDelimiter) {
// TODO(edisonn): report/warning
}
//*start = '\0';
start++; // skip >
start = readStream(level, start, end, dict, doc);
return start;
}
const unsigned char* nextObject(int level, const unsigned char* start, const unsigned char* end, SkPdfObject* token, SkPdfAllocator* allocator, SkNativeParsedPDF* doc) {
const unsigned char* current;
// skip white spaces
start = skipPdfWhiteSpaces(level, start, end);
current = endOfPdfToken(level, start, end);
// no token, len would be 0
if (current == start) {
return NULL;
}
int tokenLen = current - start;
if (tokenLen == 1) {
// start array
switch (*start) {
case kOpenedSquareBracket_PdfDelimiter:
//*start = '\0';
SkPdfObject::makeEmptyArray(token);
return readArray(level + 1, current, end, token, allocator, doc);
case kOpenedRoundBracket_PdfDelimiter:
//*start = '\0';
return readString(level, start + 1, end, token, allocator);
case kOpenedInequityBracket_PdfDelimiter:
//*start = '\0';
if (end > start + 1 && start[1] == kOpenedInequityBracket_PdfDelimiter) {
//start[1] = '\0'; // optional
// TODO(edisonn): pass here the length somehow?
return readDictionary(level + 1, start + 2, end, token, allocator, doc); // skip <<
} else {
return readHexString(level, start + 1, end, token, allocator); // skip <
}
case kNamed_PdfDelimiter:
//*start = '\0';
return readName(level, start + 1, end, token, allocator);
// TODO(edisonn): what to do curly brackets? read spec!
case kOpenedCurlyBracket_PdfDelimiter:
default:
break;
}
SkASSERT(!isPdfWhiteSpace(*start));
if (isPdfDelimiter(*start)) {
// TODO(edisonn): how stream ] } > ) will be handled?
// for now ignore, and it will become a keyword to be ignored
}
}
if (tokenLen == 4 && start[0] == 'n' && start[1] == 'u' && start[2] == 'l' && start[3] == 'l') {
SkPdfObject::makeNull(token);
return current;
}
if (tokenLen == 4 && start[0] == 't' && start[1] == 'r' && start[2] == 'u' && start[3] == 'e') {
SkPdfObject::makeBoolean(true, token);
return current;
}
if (tokenLen == 5 && start[0] == 'f' && start[1] == 'a' && start[2] == 'l' && start[3] == 's' && start[4] == 'e') {
SkPdfObject::makeBoolean(false, token);
return current;
}
if (isPdfNumeric(*start)) {
SkPdfObject::makeNumeric(start, current, token);
} else {
SkPdfObject::makeKeyword(start, current, token);
}
return current;
}
SkPdfObject* SkPdfAllocator::allocBlock() {
fSizeInBytes += BUFFER_SIZE * sizeof(SkPdfObject);
return new SkPdfObject[BUFFER_SIZE];
}
SkPdfAllocator::~SkPdfAllocator() {
for (int i = 0 ; i < fHandles.count(); i++) {
free(fHandles[i]);
}
for (int i = 0 ; i < fHistory.count(); i++) {
for (int j = 0 ; j < BUFFER_SIZE; j++) {
fHistory[i][j].reset();
}
delete[] fHistory[i];
}
for (int j = 0 ; j < BUFFER_SIZE; j++) {
fCurrent[j].reset();
}
delete[] fCurrent;
}
SkPdfObject* SkPdfAllocator::allocObject() {
if (fCurrentUsed >= BUFFER_SIZE) {
fHistory.push(fCurrent);
fCurrent = allocBlock();
fCurrentUsed = 0;
fSizeInBytes += sizeof(SkPdfObject*);
}
fCurrentUsed++;
return &fCurrent[fCurrentUsed - 1];
}
// TODO(edisonn): perf: do no copy the buffers, but use them, and mark cache the result, so there is no need of a second pass
SkPdfNativeTokenizer::SkPdfNativeTokenizer(SkPdfObject* objWithStream, const SkPdfMapper* mapper, SkPdfAllocator* allocator, SkNativeParsedPDF* doc) : fDoc(doc), fMapper(mapper), fAllocator(allocator), fUncompressedStream(NULL), fUncompressedStreamEnd(NULL), fEmpty(false), fHasPutBack(false) {
const unsigned char* buffer = NULL;
size_t len = 0;
objWithStream->GetFilteredStreamRef(&buffer, &len);
// TODO(edisonn): hack, find end of object
char* endobj = strrstrk((char*)buffer, (char*)buffer + len, "endobj");
if (endobj) {
len = endobj - (char*)buffer + strlen("endobj");
}
fUncompressedStreamStart = fUncompressedStream = buffer;
fUncompressedStreamEnd = fUncompressedStream + len;
}
SkPdfNativeTokenizer::SkPdfNativeTokenizer(const unsigned char* buffer, int len, const SkPdfMapper* mapper, SkPdfAllocator* allocator, SkNativeParsedPDF* doc) : fDoc(doc), fMapper(mapper), fAllocator(allocator), fEmpty(false), fHasPutBack(false) {
// TODO(edisonn): hack, find end of object
char* endobj = strrstrk((char*)buffer, (char*)buffer + len, "endobj");
if (endobj) {
len = endobj - (char*)buffer + strlen("endobj");
}
fUncompressedStreamStart = fUncompressedStream = buffer;
fUncompressedStreamEnd = fUncompressedStream + len;
}
SkPdfNativeTokenizer::~SkPdfNativeTokenizer() {
}
bool SkPdfNativeTokenizer::readTokenCore(PdfToken* token) {
token->fKeyword = NULL;
token->fObject = NULL;
fUncompressedStream = skipPdfWhiteSpaces(0, fUncompressedStream, fUncompressedStreamEnd);
if (fUncompressedStream >= fUncompressedStreamEnd) {
return false;
}
SkPdfObject obj;
fUncompressedStream = nextObject(0, fUncompressedStream, fUncompressedStreamEnd, &obj, fAllocator, fDoc);
// If it is a keyword, we will only get the pointer of the string
if (obj.type() == SkPdfObject::kKeyword_PdfObjectType) {
token->fKeyword = obj.c_str();
token->fKeywordLength = obj.lenstr();
token->fType = kKeyword_TokenType;
} else {
SkPdfObject* pobj = fAllocator->allocObject();
*pobj = obj;
token->fObject = pobj;
token->fType = kObject_TokenType;
}
#ifdef PDF_TRACE_READ_TOKEN
static int read_op = 0;
read_op++;
if (548 == read_op) {
printf("break;\n");
}
printf("%i READ %s %s\n", read_op, token->fType == kKeyword_TokenType ? "Keyword" : "Object", token->fKeyword ? std::string(token->fKeyword, token->fKeywordLength).c_str() : token->fObject->toString().c_str());
#endif
return true;
}
void SkPdfNativeTokenizer::PutBack(PdfToken token) {
SkASSERT(!fHasPutBack);
fHasPutBack = true;
fPutBack = token;
#ifdef PDF_TRACE_READ_TOKEN
printf("PUT_BACK %s %s\n", token.fType == kKeyword_TokenType ? "Keyword" : "Object", token.fKeyword ? std::string(token.fKeyword, token.fKeywordLength).c_str(): token.fObject->toString().c_str());
#endif
}
bool SkPdfNativeTokenizer::readToken(PdfToken* token) {
if (fHasPutBack) {
*token = fPutBack;
fHasPutBack = false;
#ifdef PDF_TRACE_READ_TOKEN
printf("READ_BACK %s %s\n", token->fType == kKeyword_TokenType ? "Keyword" : "Object", token->fKeyword ? std::string(token->fKeyword, token->fKeywordLength).c_str() : token->fObject->toString().c_str());
#endif
return true;
}
if (fEmpty) {
#ifdef PDF_TRACE_READ_TOKEN
printf("EMPTY TOKENIZER\n");
#endif
return false;
}
return readTokenCore(token);
}
#define DECLARE_PDF_NAME(longName) SkPdfName longName((char*)#longName)
// keys
DECLARE_PDF_NAME(BitsPerComponent);
DECLARE_PDF_NAME(ColorSpace);
DECLARE_PDF_NAME(Decode);
DECLARE_PDF_NAME(DecodeParms);
DECLARE_PDF_NAME(Filter);
DECLARE_PDF_NAME(Height);
DECLARE_PDF_NAME(ImageMask);
DECLARE_PDF_NAME(Intent); // PDF 1.1 - the key, or the abreviations?
DECLARE_PDF_NAME(Interpolate);
DECLARE_PDF_NAME(Width);
// values
DECLARE_PDF_NAME(DeviceGray);
DECLARE_PDF_NAME(DeviceRGB);
DECLARE_PDF_NAME(DeviceCMYK);
DECLARE_PDF_NAME(Indexed);
DECLARE_PDF_NAME(ASCIIHexDecode);
DECLARE_PDF_NAME(ASCII85Decode);
DECLARE_PDF_NAME(LZWDecode);
DECLARE_PDF_NAME(FlateDecode); // PDF 1.2
DECLARE_PDF_NAME(RunLengthDecode);
DECLARE_PDF_NAME(CCITTFaxDecode);
DECLARE_PDF_NAME(DCTDecode);
#define HANDLE_NAME_ABBR(obj,longName,shortName) if (obj->isName(#shortName)) return &longName;
static SkPdfObject* inlineImageKeyAbbreviationExpand(SkPdfObject* key) {
if (!key || !key->isName()) {
return key;
}
// TODO(edisonn): use autogenerated code!
HANDLE_NAME_ABBR(key, BitsPerComponent, BPC);
HANDLE_NAME_ABBR(key, ColorSpace, CS);
HANDLE_NAME_ABBR(key, Decode, D);
HANDLE_NAME_ABBR(key, DecodeParms, DP);
HANDLE_NAME_ABBR(key, Filter, F);
HANDLE_NAME_ABBR(key, Height, H);
HANDLE_NAME_ABBR(key, ImageMask, IM);
// HANDLE_NAME_ABBR(key, Intent, );
HANDLE_NAME_ABBR(key, Interpolate, I);
HANDLE_NAME_ABBR(key, Width, W);
return key;
}
static SkPdfObject* inlineImageValueAbbreviationExpand(SkPdfObject* value) {
if (!value || !value->isName()) {
return value;
}
// TODO(edisonn): use autogenerated code!
HANDLE_NAME_ABBR(value, DeviceGray, G);
HANDLE_NAME_ABBR(value, DeviceRGB, RGB);
HANDLE_NAME_ABBR(value, DeviceCMYK, CMYK);
HANDLE_NAME_ABBR(value, Indexed, I);
HANDLE_NAME_ABBR(value, ASCIIHexDecode, AHx);
HANDLE_NAME_ABBR(value, ASCII85Decode, A85);
HANDLE_NAME_ABBR(value, LZWDecode, LZW);
HANDLE_NAME_ABBR(value, FlateDecode, Fl); // (PDF 1.2)
HANDLE_NAME_ABBR(value, RunLengthDecode, RL);
HANDLE_NAME_ABBR(value, CCITTFaxDecode, CCF);
HANDLE_NAME_ABBR(value, DCTDecode, DCT);
return value;
}
SkPdfImageDictionary* SkPdfNativeTokenizer::readInlineImage() {
// BI already processed
fUncompressedStream = skipPdfWhiteSpaces(0, fUncompressedStream, fUncompressedStreamEnd);
if (fUncompressedStream >= fUncompressedStreamEnd) {
return NULL;
}
SkPdfImageDictionary* inlineImage = (SkPdfImageDictionary*)fAllocator->allocObject();
SkPdfObject::makeEmptyDictionary(inlineImage);
while (fUncompressedStream < fUncompressedStreamEnd) {
SkPdfObject* key = fAllocator->allocObject();
fUncompressedStream = nextObject(0, fUncompressedStream, fUncompressedStreamEnd, key, fAllocator, fDoc);
if (key->isKeyword() && key->lenstr() == 2 && key->c_str()[0] == 'I' && key->c_str()[1] == 'D') { // ID
fUncompressedStream = readInlineImageStream(0, fUncompressedStream, fUncompressedStreamEnd, inlineImage, fDoc);
return inlineImage;
} else {
SkPdfObject* obj = fAllocator->allocObject();
fUncompressedStream = nextObject(0, fUncompressedStream, fUncompressedStreamEnd, obj, fAllocator, fDoc);
// TODO(edisonn): perf maybe we should not expand abreviation like this
inlineImage->set(inlineImageKeyAbbreviationExpand(key),
inlineImageValueAbbreviationExpand(obj));
}
}
// TODO(edisonn): report end of data with inline image without an EI
return inlineImage;
}