| /* |
| * Copyright 2020 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "include/core/SkCanvas.h" |
| #include "include/core/SkM44.h" |
| #include "include/core/SkPaint.h" |
| #include "include/core/SkRRect.h" |
| #include "include/core/SkVertices.h" |
| #include "include/utils/SkRandom.h" |
| #include "samplecode/Sample.h" |
| #include "tools/Resources.h" |
| |
| struct VSphere { |
| SkV2 fCenter; |
| SkScalar fRadius; |
| |
| VSphere(SkV2 center, SkScalar radius) : fCenter(center), fRadius(radius) {} |
| |
| bool contains(SkV2 v) const { |
| return (v - fCenter).length() <= fRadius; |
| } |
| |
| SkV2 pinLoc(SkV2 p) const { |
| auto v = p - fCenter; |
| if (v.length() > fRadius) { |
| v *= (fRadius / v.length()); |
| } |
| return fCenter + v; |
| } |
| |
| SkV3 computeUnitV3(SkV2 v) const { |
| v = (v - fCenter) * (1 / fRadius); |
| SkScalar len2 = v.lengthSquared(); |
| if (len2 > 1) { |
| v = v.normalize(); |
| len2 = 1; |
| } |
| SkScalar z = SkScalarSqrt(1 - len2); |
| return {v.x, v.y, z}; |
| } |
| |
| struct RotateInfo { |
| SkV3 fAxis; |
| SkScalar fAngle; |
| }; |
| |
| RotateInfo computeRotationInfo(SkV2 a, SkV2 b) const { |
| SkV3 u = this->computeUnitV3(a); |
| SkV3 v = this->computeUnitV3(b); |
| SkV3 axis = u.cross(v); |
| SkScalar length = axis.length(); |
| |
| if (!SkScalarNearlyZero(length)) { |
| return {axis * (1.0f / length), acos(u.dot(v))}; |
| } |
| return {{0, 0, 0}, 0}; |
| } |
| |
| SkM44 computeRotation(SkV2 a, SkV2 b) const { |
| auto [axis, angle] = this->computeRotationInfo(a, b); |
| return SkM44::Rotate(axis, angle); |
| } |
| }; |
| |
| static SkM44 inv(const SkM44& m) { |
| SkM44 inverse; |
| SkAssertResult(m.invert(&inverse)); |
| return inverse; |
| } |
| |
| class Sample3DView : public Sample { |
| protected: |
| float fNear = 0.05f; |
| float fFar = 4; |
| float fAngle = SK_ScalarPI / 12; |
| |
| SkV3 fEye { 0, 0, 1.0f/tan(fAngle/2) - 1 }; |
| SkV3 fCOA { 0, 0, 0 }; |
| SkV3 fUp { 0, 1, 0 }; |
| |
| const char* kLocalToWorld = "local_to_world"; |
| |
| public: |
| void concatCamera(SkCanvas* canvas, const SkRect& area, SkScalar zscale) { |
| SkM44 camera = Sk3LookAt(fEye, fCOA, fUp), |
| perspective = Sk3Perspective(fNear, fFar, fAngle), |
| viewport = SkM44::Translate(area.centerX(), area.centerY(), 0) * |
| SkM44::Scale(area.width()*0.5f, area.height()*0.5f, zscale); |
| |
| canvas->concat(viewport * perspective * camera * inv(viewport)); |
| } |
| }; |
| |
| struct Face { |
| SkScalar fRx, fRy; |
| SkColor fColor; |
| |
| static SkM44 T(SkScalar x, SkScalar y, SkScalar z) { |
| return SkM44::Translate(x, y, z); |
| } |
| |
| static SkM44 R(SkV3 axis, SkScalar rad) { |
| return SkM44::Rotate(axis, rad); |
| } |
| |
| SkM44 asM44(SkScalar scale) const { |
| return R({0,1,0}, fRy) * R({1,0,0}, fRx) * T(0, 0, scale); |
| } |
| }; |
| |
| static bool front(const SkM44& m) { |
| SkM44 m2(SkM44::kUninitialized_Constructor); |
| if (!m.invert(&m2)) { |
| m2.setIdentity(); |
| } |
| /* |
| * Classically we want to dot the transpose(inverse(ctm)) with our surface normal. |
| * In this case, the normal is known to be {0, 0, 1}, so we only actually need to look |
| * at the z-scale of the inverse (the transpose doesn't change the main diagonal, so |
| * no need to actually transpose). |
| */ |
| return m2.rc(2,2) > 0; |
| } |
| |
| const Face faces[] = { |
| { 0, 0, SK_ColorRED }, // front |
| { 0, SK_ScalarPI, SK_ColorGREEN }, // back |
| |
| { SK_ScalarPI/2, 0, SK_ColorBLUE }, // top |
| {-SK_ScalarPI/2, 0, SK_ColorCYAN }, // bottom |
| |
| { 0, SK_ScalarPI/2, SK_ColorMAGENTA }, // left |
| { 0,-SK_ScalarPI/2, SK_ColorYELLOW }, // right |
| }; |
| |
| #include "include/effects/SkRuntimeEffect.h" |
| |
| struct LightOnSphere { |
| SkV2 fLoc; |
| SkScalar fDistance; |
| SkScalar fRadius; |
| |
| SkV3 computeWorldPos(const VSphere& s) const { |
| return s.computeUnitV3(fLoc) * fDistance; |
| } |
| |
| void draw(SkCanvas* canvas) const { |
| SkPaint paint; |
| paint.setAntiAlias(true); |
| paint.setColor(SK_ColorWHITE); |
| canvas->drawCircle(fLoc.x, fLoc.y, fRadius + 2, paint); |
| paint.setColor(SK_ColorBLACK); |
| canvas->drawCircle(fLoc.x, fLoc.y, fRadius, paint); |
| } |
| }; |
| |
| #include "include/core/SkTime.h" |
| |
| class RotateAnimator { |
| SkV3 fAxis = {0, 0, 0}; |
| SkScalar fAngle = 0, |
| fPrevAngle = 1234567; |
| double fNow = 0, |
| fPrevNow = 0; |
| |
| SkScalar fAngleSpeed = 0, |
| fAngleSign = 1; |
| |
| static constexpr double kSlowDown = 4; |
| static constexpr SkScalar kMaxSpeed = 16; |
| |
| public: |
| void update(SkV3 axis, SkScalar angle) { |
| if (angle != fPrevAngle) { |
| fPrevAngle = fAngle; |
| fAngle = angle; |
| |
| fPrevNow = fNow; |
| fNow = SkTime::GetSecs(); |
| |
| fAxis = axis; |
| } |
| } |
| |
| SkM44 rotation() { |
| if (fAngleSpeed > 0) { |
| double now = SkTime::GetSecs(); |
| double dtime = now - fPrevNow; |
| fPrevNow = now; |
| double delta = fAngleSign * fAngleSpeed * dtime; |
| fAngle += delta; |
| fAngleSpeed -= kSlowDown * dtime; |
| if (fAngleSpeed < 0) { |
| fAngleSpeed = 0; |
| } |
| } |
| return SkM44::Rotate(fAxis, fAngle); |
| |
| } |
| |
| void start() { |
| if (fPrevNow != fNow) { |
| fAngleSpeed = (fAngle - fPrevAngle) / (fNow - fPrevNow); |
| fAngleSign = fAngleSpeed < 0 ? -1 : 1; |
| fAngleSpeed = std::min(kMaxSpeed, std::abs(fAngleSpeed)); |
| } else { |
| fAngleSpeed = 0; |
| } |
| fPrevNow = SkTime::GetSecs(); |
| fAngle = 0; |
| } |
| |
| void reset() { |
| fAngleSpeed = 0; |
| fAngle = 0; |
| fPrevAngle = 1234567; |
| } |
| |
| bool isAnimating() const { return fAngleSpeed != 0; } |
| }; |
| |
| class SampleCubeBase : public Sample3DView { |
| enum { |
| DX = 400, |
| DY = 300 |
| }; |
| |
| SkM44 fRotation; // part of model |
| |
| RotateAnimator fRotateAnimator; |
| |
| protected: |
| enum Flags { |
| kCanRunOnCPU = 1 << 0, |
| kShowLightDome = 1 << 1, |
| }; |
| |
| LightOnSphere fLight = {{200 + DX, 200 + DY}, 800, 12}; |
| |
| VSphere fSphere; |
| Flags fFlags; |
| |
| public: |
| SampleCubeBase(Flags flags) |
| : fSphere({200 + DX, 200 + DY}, 400) |
| , fFlags(flags) |
| {} |
| |
| bool onChar(SkUnichar uni) override { |
| switch (uni) { |
| case 'Z': fLight.fDistance += 10; return true; |
| case 'z': fLight.fDistance -= 10; return true; |
| } |
| return this->Sample3DView::onChar(uni); |
| } |
| |
| virtual void drawContent(SkCanvas* canvas, SkColor, int index, bool drawFront) = 0; |
| |
| void onDrawContent(SkCanvas* canvas) override { |
| if (!canvas->recordingContext() && !(fFlags & kCanRunOnCPU)) { |
| return; |
| } |
| |
| canvas->save(); |
| canvas->translate(DX, DY); |
| |
| this->concatCamera(canvas, {0, 0, 400, 400}, 200); |
| |
| for (bool drawFront : {false, true}) { |
| int index = 0; |
| for (auto f : faces) { |
| SkAutoCanvasRestore acr(canvas, true); |
| |
| SkM44 trans = SkM44::Translate(200, 200, 0); // center of the rotation |
| SkM44 m = fRotateAnimator.rotation() * fRotation * f.asM44(200); |
| |
| canvas->concat(trans); |
| |
| // "World" space - content is centered at the origin, in device scale (+-200) |
| canvas->markCTM(kLocalToWorld); |
| |
| canvas->concat(m * inv(trans)); |
| this->drawContent(canvas, f.fColor, index++, drawFront); |
| } |
| } |
| |
| canvas->restore(); // camera & center the content in the window |
| |
| if (fFlags & kShowLightDome){ |
| fLight.draw(canvas); |
| |
| SkPaint paint; |
| paint.setAntiAlias(true); |
| paint.setStyle(SkPaint::kStroke_Style); |
| paint.setColor(0x40FF0000); |
| canvas->drawCircle(fSphere.fCenter.x, fSphere.fCenter.y, fSphere.fRadius, paint); |
| canvas->drawLine(fSphere.fCenter.x, fSphere.fCenter.y - fSphere.fRadius, |
| fSphere.fCenter.x, fSphere.fCenter.y + fSphere.fRadius, paint); |
| canvas->drawLine(fSphere.fCenter.x - fSphere.fRadius, fSphere.fCenter.y, |
| fSphere.fCenter.x + fSphere.fRadius, fSphere.fCenter.y, paint); |
| } |
| } |
| |
| Click* onFindClickHandler(SkScalar x, SkScalar y, skui::ModifierKey modi) override { |
| SkV2 p = fLight.fLoc - SkV2{x, y}; |
| if (p.length() <= fLight.fRadius) { |
| Click* c = new Click(); |
| c->fMeta.setS32("type", 0); |
| return c; |
| } |
| if (fSphere.contains({x, y})) { |
| Click* c = new Click(); |
| c->fMeta.setS32("type", 1); |
| |
| fRotation = fRotateAnimator.rotation() * fRotation; |
| fRotateAnimator.reset(); |
| return c; |
| } |
| return nullptr; |
| } |
| bool onClick(Click* click) override { |
| if (click->fMeta.hasS32("type", 0)) { |
| fLight.fLoc = fSphere.pinLoc({click->fCurr.fX, click->fCurr.fY}); |
| return true; |
| } |
| if (click->fMeta.hasS32("type", 1)) { |
| if (click->fState == skui::InputState::kUp) { |
| fRotation = fRotateAnimator.rotation() * fRotation; |
| fRotateAnimator.start(); |
| } else { |
| auto [axis, angle] = fSphere.computeRotationInfo( |
| {click->fOrig.fX, click->fOrig.fY}, |
| {click->fCurr.fX, click->fCurr.fY}); |
| fRotateAnimator.update(axis, angle); |
| } |
| return true; |
| } |
| return true; |
| } |
| |
| bool onAnimate(double nanos) override { |
| return fRotateAnimator.isAnimating(); |
| } |
| |
| private: |
| typedef Sample3DView INHERITED; |
| }; |
| |
| class SampleBump3D : public SampleCubeBase { |
| sk_sp<SkShader> fBmpShader, fImgShader; |
| sk_sp<SkRuntimeEffect> fEffect; |
| SkRRect fRR; |
| |
| public: |
| SampleBump3D() : SampleCubeBase(Flags(kCanRunOnCPU | kShowLightDome)) {} |
| |
| SkString name() override { return SkString("bump3d"); } |
| |
| void onOnceBeforeDraw() override { |
| fRR = SkRRect::MakeRectXY({20, 20, 380, 380}, 50, 50); |
| auto img = GetResourceAsImage("images/brickwork-texture.jpg"); |
| fImgShader = img->makeShader(SkMatrix::Scale(2, 2)); |
| img = GetResourceAsImage("images/brickwork_normal-map.jpg"); |
| fBmpShader = img->makeShader(SkMatrix::Scale(2, 2)); |
| |
| const char code[] = R"( |
| in shader color_map; |
| in shader normal_map; |
| |
| layout (marker=local_to_world) uniform float4x4 localToWorld; |
| layout (marker=normals(local_to_world)) uniform float4x4 localToWorldAdjInv; |
| uniform float3 lightPos; |
| |
| float3 convert_normal_sample(half4 c) { |
| float3 n = 2 * c.rgb - 1; |
| n.y = -n.y; |
| return n; |
| } |
| |
| void main(float2 p, inout half4 color) { |
| float3 norm = convert_normal_sample(sample(normal_map, p)); |
| float3 plane_norm = normalize(localToWorldAdjInv * float4(norm, 0)).xyz; |
| |
| float3 plane_pos = (localToWorld * float4(p, 0, 1)).xyz; |
| float3 light_dir = normalize(lightPos - plane_pos); |
| |
| float ambient = 0.2; |
| float dp = dot(plane_norm, light_dir); |
| float scale = min(ambient + max(dp, 0), 1); |
| |
| color = sample(color_map, p) * half4(float4(scale, scale, scale, 1)); |
| } |
| )"; |
| auto [effect, error] = SkRuntimeEffect::Make(SkString(code)); |
| if (!effect) { |
| SkDebugf("runtime error %s\n", error.c_str()); |
| } |
| fEffect = effect; |
| } |
| |
| void drawContent(SkCanvas* canvas, SkColor color, int index, bool drawFront) override { |
| if (!drawFront || !front(canvas->getLocalToDevice())) { |
| return; |
| } |
| |
| SkRuntimeShaderBuilder builder(fEffect); |
| builder.input("lightPos") = fLight.computeWorldPos(fSphere); |
| // localToWorld matrices are automatically populated, via layout(marker) |
| |
| builder.child("color_map") = fImgShader; |
| builder.child("normal_map") = fBmpShader; |
| |
| SkPaint paint; |
| paint.setColor(color); |
| paint.setShader(builder.makeShader(nullptr, true)); |
| |
| canvas->drawRRect(fRR, paint); |
| } |
| }; |
| DEF_SAMPLE( return new SampleBump3D; ) |
| |
| class SampleVerts3D : public SampleCubeBase { |
| sk_sp<SkRuntimeEffect> fEffect; |
| sk_sp<SkVertices> fVertices; |
| |
| public: |
| SampleVerts3D() : SampleCubeBase(kShowLightDome) {} |
| |
| SkString name() override { return SkString("verts3d"); } |
| |
| void onOnceBeforeDraw() override { |
| using Attr = SkVertices::Attribute; |
| Attr attrs[] = { |
| Attr(Attr::Type::kFloat3, Attr::Usage::kNormalVector), |
| }; |
| |
| SkVertices::Builder builder(SkVertices::kTriangleFan_VertexMode, 66, 0, attrs, 1); |
| |
| SkPoint* pos = builder.positions(); |
| SkV3* nrm = (SkV3*)builder.customData(); |
| |
| SkPoint center = { 200, 200 }; |
| SkScalar radius = 200; |
| |
| pos[0] = center; |
| nrm[0] = { 0, 0, 1 }; |
| |
| for (int i = 0; i < 65; ++i) { |
| SkScalar t = (i / 64.0f) * 2 * SK_ScalarPI; |
| SkScalar s = SkScalarSin(t), |
| c = SkScalarCos(t); |
| pos[i + 1] = center + SkPoint { c * radius, s * radius }; |
| nrm[i + 1] = { c, s, 0 }; |
| } |
| |
| fVertices = builder.detach(); |
| |
| const char code[] = R"( |
| varying float3 vtx_normal; |
| |
| layout (marker=local_to_world) uniform float4x4 localToWorld; |
| layout (marker=normals(local_to_world)) uniform float4x4 localToWorldAdjInv; |
| uniform float3 lightPos; |
| |
| void main(float2 p, inout half4 color) { |
| float3 norm = normalize(vtx_normal); |
| float3 plane_norm = normalize(localToWorldAdjInv * float4(norm, 0)).xyz; |
| |
| float3 plane_pos = (localToWorld * float4(p, 0, 1)).xyz; |
| float3 light_dir = normalize(lightPos - plane_pos); |
| |
| float ambient = 0.2; |
| float dp = dot(plane_norm, light_dir); |
| float scale = min(ambient + max(dp, 0), 1); |
| |
| color = half4(0.7, 0.9, 0.3, 1) * half4(float4(scale, scale, scale, 1)); |
| } |
| )"; |
| auto [effect, error] = SkRuntimeEffect::Make(SkString(code)); |
| if (!effect) { |
| SkDebugf("runtime error %s\n", error.c_str()); |
| } |
| fEffect = effect; |
| } |
| |
| void drawContent(SkCanvas* canvas, SkColor color, int index, bool drawFront) override { |
| if (!drawFront || !front(canvas->getLocalToDevice())) { |
| return; |
| } |
| |
| SkRuntimeShaderBuilder builder(fEffect); |
| builder.input("lightPos") = fLight.computeWorldPos(fSphere); |
| |
| SkPaint paint; |
| paint.setColor(color); |
| paint.setShader(builder.makeShader(nullptr, true)); |
| |
| canvas->drawVertices(fVertices, paint); |
| } |
| }; |
| DEF_SAMPLE( return new SampleVerts3D; ) |
| |
| #include "modules/skottie/include/Skottie.h" |
| |
| class SampleSkottieCube : public SampleCubeBase { |
| sk_sp<skottie::Animation> fAnim[6]; |
| |
| public: |
| SampleSkottieCube() : SampleCubeBase(kCanRunOnCPU) {} |
| |
| SkString name() override { return SkString("skottie3d"); } |
| |
| void onOnceBeforeDraw() override { |
| const char* files[] = { |
| "skottie/skottie-chained-mattes.json", |
| "skottie/skottie-gradient-ramp.json", |
| "skottie/skottie_sample_2.json", |
| "skottie/skottie-3d-3planes.json", |
| "skottie/skottie-text-animator-4.json", |
| "skottie/skottie-motiontile-effect-phase.json", |
| |
| }; |
| for (unsigned i = 0; i < SK_ARRAY_COUNT(files); ++i) { |
| if (auto stream = GetResourceAsStream(files[i])) { |
| fAnim[i] = skottie::Animation::Make(stream.get()); |
| } |
| } |
| } |
| |
| void drawContent(SkCanvas* canvas, SkColor color, int index, bool drawFront) override { |
| if (!drawFront || !front(canvas->getLocalToDevice())) { |
| return; |
| } |
| |
| SkPaint paint; |
| paint.setColor(color); |
| SkRect r = {0, 0, 400, 400}; |
| canvas->drawRect(r, paint); |
| fAnim[index]->render(canvas, &r); |
| } |
| |
| bool onAnimate(double nanos) override { |
| for (auto& anim : fAnim) { |
| SkScalar dur = anim->duration(); |
| SkScalar t = fmod(1e-9 * nanos, dur) / dur; |
| anim->seek(t); |
| } |
| return true; |
| } |
| }; |
| DEF_SAMPLE( return new SampleSkottieCube; ) |