blob: cb3b47dfe55f586403f7367d83454cd1ccacbc5e [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkBitmap.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkData.h"
#include "include/core/SkImageEncoder.h"
#include "include/core/SkImageFilter.h"
#include "include/core/SkImageGenerator.h"
#include "include/core/SkPicture.h"
#include "include/core/SkString.h"
#include "include/core/SkSurface.h"
#include "src/core/SkBitmapCache.h"
#include "src/core/SkCachedData.h"
#include "src/core/SkColorSpacePriv.h"
#include "src/core/SkImageFilterCache.h"
#include "src/core/SkImageFilter_Base.h"
#include "src/core/SkImagePriv.h"
#include "src/core/SkMipmap.h"
#include "src/core/SkNextID.h"
#include "src/core/SkSpecialImage.h"
#include "src/image/SkImage_Base.h"
#include "src/image/SkReadPixelsRec.h"
#include "src/image/SkRescaleAndReadPixels.h"
#include "src/shaders/SkImageShader.h"
#if SK_SUPPORT_GPU
#include "include/gpu/GrDirectContext.h"
#include "src/gpu/GrContextPriv.h"
#include "src/image/SkImage_Gpu.h"
#endif
#include "include/gpu/GrBackendSurface.h"
SkImage::SkImage(const SkImageInfo& info, uint32_t uniqueID)
: fInfo(info)
, fUniqueID(kNeedNewImageUniqueID == uniqueID ? SkNextID::ImageID() : uniqueID) {
SkASSERT(info.width() > 0);
SkASSERT(info.height() > 0);
}
bool SkImage::peekPixels(SkPixmap* pm) const {
SkPixmap tmp;
if (!pm) {
pm = &tmp;
}
return as_IB(this)->onPeekPixels(pm);
}
bool SkImage::readPixels(const SkImageInfo& dstInfo, void* dstPixels, size_t dstRowBytes, int srcX,
int srcY, CachingHint chint) const {
return as_IB(this)->onReadPixels(dstInfo, dstPixels, dstRowBytes, srcX, srcY, chint);
}
void SkImage::asyncRescaleAndReadPixels(const SkImageInfo& info,
const SkIRect& srcRect,
RescaleGamma rescaleGamma,
SkFilterQuality rescaleQuality,
ReadPixelsCallback callback,
ReadPixelsContext context) {
if (!SkIRect::MakeWH(this->width(), this->height()).contains(srcRect) ||
!SkImageInfoIsValid(info)) {
callback(context, nullptr);
return;
}
as_IB(this)->onAsyncRescaleAndReadPixels(
info, srcRect, rescaleGamma, rescaleQuality, callback, context);
}
void SkImage::asyncRescaleAndReadPixelsYUV420(SkYUVColorSpace yuvColorSpace,
sk_sp<SkColorSpace> dstColorSpace,
const SkIRect& srcRect,
const SkISize& dstSize,
RescaleGamma rescaleGamma,
SkFilterQuality rescaleQuality,
ReadPixelsCallback callback,
ReadPixelsContext context) {
if (!SkIRect::MakeWH(this->width(), this->height()).contains(srcRect) || dstSize.isZero() ||
(dstSize.width() & 0b1) || (dstSize.height() & 0b1)) {
callback(context, nullptr);
return;
}
as_IB(this)->onAsyncRescaleAndReadPixelsYUV420(yuvColorSpace,
std::move(dstColorSpace),
srcRect,
dstSize,
rescaleGamma,
rescaleQuality,
callback,
context);
}
bool SkImage::scalePixels(const SkPixmap& dst, SkFilterQuality quality, CachingHint chint) const {
if (this->width() == dst.width() && this->height() == dst.height()) {
return this->readPixels(dst, 0, 0, chint);
}
// Idea: If/when SkImageGenerator supports a native-scaling API (where the generator itself
// can scale more efficiently) we should take advantage of it here.
//
SkBitmap bm;
if (as_IB(this)->getROPixels(&bm, chint)) {
SkPixmap pmap;
// Note: By calling the pixmap scaler, we never cache the final result, so the chint
// is (currently) only being applied to the getROPixels. If we get a request to
// also attempt to cache the final (scaled) result, we would add that logic here.
//
return bm.peekPixels(&pmap) && pmap.scalePixels(dst, quality);
}
return false;
}
///////////////////////////////////////////////////////////////////////////////////////////////////
SkColorType SkImage::colorType() const { return fInfo.colorType(); }
SkAlphaType SkImage::alphaType() const { return fInfo.alphaType(); }
SkColorSpace* SkImage::colorSpace() const { return fInfo.colorSpace(); }
sk_sp<SkColorSpace> SkImage::refColorSpace() const { return fInfo.refColorSpace(); }
sk_sp<SkShader> SkImage::makeShader(SkTileMode tmx, SkTileMode tmy,
const SkMatrix* localMatrix) const {
return SkImageShader::Make(sk_ref_sp(const_cast<SkImage*>(this)), tmx, tmy, localMatrix,
SkImageShader::kInheritFromPaint);
}
sk_sp<SkShader> SkImage::makeShader(SkTileMode tmx, SkTileMode tmy,
const SkFilterOptions& options,
const SkMatrix* localMatrix) const {
return SkImageShader::Make(sk_ref_sp(const_cast<SkImage*>(this)), tmx, tmy,
options, localMatrix);
}
sk_sp<SkShader> SkImage::makeShader(SkTileMode tmx, SkTileMode tmy,
const SkMatrix* localMatrix, SkFilterQuality filtering) const {
return SkImageShader::Make(sk_ref_sp(const_cast<SkImage*>(this)), tmx, tmy, localMatrix,
SkImageShader::FilterEnum(filtering));
}
sk_sp<SkData> SkImage::encodeToData(SkEncodedImageFormat type, int quality) const {
SkBitmap bm;
if (as_IB(this)->getROPixels(&bm)) {
return SkEncodeBitmap(bm, type, quality);
}
return nullptr;
}
sk_sp<SkData> SkImage::encodeToData() const {
if (auto encoded = this->refEncodedData()) {
return encoded;
}
return this->encodeToData(SkEncodedImageFormat::kPNG, 100);
}
sk_sp<SkData> SkImage::refEncodedData() const {
return sk_sp<SkData>(as_IB(this)->onRefEncoded());
}
sk_sp<SkImage> SkImage::MakeFromEncoded(sk_sp<SkData> encoded, const SkIRect* subset) {
if (nullptr == encoded || 0 == encoded->size()) {
return nullptr;
}
return SkImage::MakeFromGenerator(SkImageGenerator::MakeFromEncoded(std::move(encoded)),
subset);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
sk_sp<SkImage> SkImage::makeSubset(const SkIRect& subset, GrDirectContext* direct) const {
if (subset.isEmpty()) {
return nullptr;
}
const SkIRect bounds = SkIRect::MakeWH(this->width(), this->height());
if (!bounds.contains(subset)) {
return nullptr;
}
#if SK_SUPPORT_GPU
auto myContext = as_IB(this)->context();
// This check is also performed in the subclass, but we do it here for the short-circuit below.
if (myContext && !myContext->priv().matches(direct)) {
return nullptr;
}
#endif
// optimization : return self if the subset == our bounds
if (bounds == subset) {
return sk_ref_sp(const_cast<SkImage*>(this));
}
return as_IB(this)->onMakeSubset(subset, direct);
}
#if SK_SUPPORT_GPU
bool SkImage::isTextureBacked() const { return as_IB(this)->onIsTextureBacked(); }
GrBackendTexture SkImage::getBackendTexture(bool flushPendingGrContextIO,
GrSurfaceOrigin* origin) const {
return as_IB(this)->onGetBackendTexture(flushPendingGrContextIO, origin);
}
bool SkImage::isValid(GrRecordingContext* rContext) const {
if (rContext && rContext->abandoned()) {
return false;
}
return as_IB(this)->onIsValid(rContext);
}
GrSemaphoresSubmitted SkImage::flush(GrContext* context, const GrFlushInfo& flushInfo) {
return as_IB(this)->onFlush(context, flushInfo);
}
void SkImage::flushAndSubmit(GrContext* context) {
this->flush(context, {});
context->submit();
}
#else
bool SkImage::isTextureBacked() const { return false; }
GrBackendTexture SkImage::getBackendTexture(bool flushPendingGrContextIO,
GrSurfaceOrigin* origin) const {
return GrBackendTexture(); // invalid
}
bool SkImage::isValid(GrRecordingContext* rContext) const {
if (rContext) {
return false;
}
return as_IB(this)->onIsValid(nullptr);
}
GrSemaphoresSubmitted SkImage::flush(GrContext*, const GrFlushInfo&) {
return GrSemaphoresSubmitted::kNo;
}
void SkImage::flushAndSubmit(GrContext*) {}
#endif
///////////////////////////////////////////////////////////////////////////////
SkImage_Base::SkImage_Base(const SkImageInfo& info, uint32_t uniqueID)
: INHERITED(info, uniqueID), fAddedToRasterCache(false) {}
SkImage_Base::~SkImage_Base() {
if (fAddedToRasterCache.load()) {
SkNotifyBitmapGenIDIsStale(this->uniqueID());
}
}
void SkImage_Base::onAsyncRescaleAndReadPixels(const SkImageInfo& info,
const SkIRect& origSrcRect,
RescaleGamma rescaleGamma,
SkFilterQuality rescaleQuality,
ReadPixelsCallback callback,
ReadPixelsContext context) {
SkBitmap src;
SkPixmap peek;
SkIRect srcRect;
if (this->peekPixels(&peek)) {
src.installPixels(peek);
srcRect = origSrcRect;
} else {
src.setInfo(this->imageInfo().makeDimensions(origSrcRect.size()));
src.allocPixels();
if (!this->readPixels(src.pixmap(), origSrcRect.x(), origSrcRect.y())) {
callback(context, nullptr);
return;
}
srcRect = SkIRect::MakeSize(src.dimensions());
}
return SkRescaleAndReadPixels(
src, info, srcRect, rescaleGamma, rescaleQuality, callback, context);
}
void SkImage_Base::onAsyncRescaleAndReadPixelsYUV420(SkYUVColorSpace,
sk_sp<SkColorSpace> dstColorSpace,
const SkIRect& srcRect,
const SkISize& dstSize,
RescaleGamma,
SkFilterQuality,
ReadPixelsCallback callback,
ReadPixelsContext context) {
// TODO: Call non-YUV asyncRescaleAndReadPixels and then make our callback convert to YUV and
// call client's callback.
callback(context, nullptr);
}
GrBackendTexture SkImage_Base::onGetBackendTexture(bool flushPendingGrContextIO,
GrSurfaceOrigin* origin) const {
return GrBackendTexture(); // invalid
}
bool SkImage::readPixels(const SkPixmap& pmap, int srcX, int srcY, CachingHint chint) const {
return this->readPixels(pmap.info(), pmap.writable_addr(), pmap.rowBytes(), srcX, srcY, chint);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
sk_sp<SkImage> SkImage::MakeFromBitmap(const SkBitmap& bm) {
if (!bm.pixelRef()) {
return nullptr;
}
return SkMakeImageFromRasterBitmap(bm, kIfMutable_SkCopyPixelsMode);
}
bool SkImage::asLegacyBitmap(SkBitmap* bitmap, LegacyBitmapMode ) const {
return as_IB(this)->onAsLegacyBitmap(bitmap);
}
sk_sp<SkCachedData> SkImage_Base::getPlanes(SkYUVASizeInfo*, SkYUVAIndex[4],
SkYUVColorSpace*, const void*[4]) {
return nullptr;
}
bool SkImage_Base::onAsLegacyBitmap(SkBitmap* bitmap) const {
// As the base-class, all we can do is make a copy (regardless of mode).
// Subclasses that want to be more optimal should override.
SkImageInfo info = fInfo.makeColorType(kN32_SkColorType).makeColorSpace(nullptr);
if (!bitmap->tryAllocPixels(info)) {
return false;
}
if (!this->readPixels(bitmap->info(), bitmap->getPixels(), bitmap->rowBytes(), 0, 0)) {
bitmap->reset();
return false;
}
bitmap->setImmutable();
return true;
}
sk_sp<SkImage> SkImage::MakeFromPicture(sk_sp<SkPicture> picture, const SkISize& dimensions,
const SkMatrix* matrix, const SkPaint* paint,
BitDepth bitDepth, sk_sp<SkColorSpace> colorSpace) {
return MakeFromGenerator(SkImageGenerator::MakeFromPicture(dimensions, std::move(picture),
matrix, paint, bitDepth,
std::move(colorSpace)));
}
sk_sp<SkImage> SkImage::makeWithFilter(GrRecordingContext* rContext, const SkImageFilter* filter,
const SkIRect& subset, const SkIRect& clipBounds,
SkIRect* outSubset, SkIPoint* offset) const {
if (!filter || !outSubset || !offset || !this->bounds().contains(subset)) {
return nullptr;
}
sk_sp<SkSpecialImage> srcSpecialImage;
#if SK_SUPPORT_GPU
auto myContext = as_IB(this)->context();
if (myContext && !myContext->priv().matches(rContext)) {
return nullptr;
}
srcSpecialImage = SkSpecialImage::MakeFromImage(rContext, subset,
sk_ref_sp(const_cast<SkImage*>(this)));
#else
srcSpecialImage = SkSpecialImage::MakeFromImage(nullptr, subset,
sk_ref_sp(const_cast<SkImage*>(this)));
#endif
if (!srcSpecialImage) {
return nullptr;
}
sk_sp<SkImageFilterCache> cache(
SkImageFilterCache::Create(SkImageFilterCache::kDefaultTransientSize));
// The filters operate in the local space of the src image, where (0,0) corresponds to the
// subset's top left corner. But the clip bounds and any crop rects on the filters are in the
// original coordinate system, so configure the CTM to correct crop rects and explicitly adjust
// the clip bounds (since it is assumed to already be in image space).
SkImageFilter_Base::Context context(SkMatrix::Translate(-subset.x(), -subset.y()),
clipBounds.makeOffset(-subset.topLeft()),
cache.get(), fInfo.colorType(), fInfo.colorSpace(),
srcSpecialImage.get());
sk_sp<SkSpecialImage> result = as_IFB(filter)->filterImage(context).imageAndOffset(offset);
if (!result) {
return nullptr;
}
// The output image and offset are relative to the subset rectangle, so the offset needs to
// be shifted to put it in the correct spot with respect to the original coordinate system
offset->fX += subset.x();
offset->fY += subset.y();
// Final clip against the exact clipBounds (the clip provided in the context gets adjusted
// to account for pixel-moving filters so doesn't always exactly match when finished). The
// clipBounds are translated into the clippedDstRect coordinate space, including the
// result->subset() ensures that the result's image pixel origin does not affect results.
SkIRect dstRect = result->subset();
SkIRect clippedDstRect = dstRect;
if (!clippedDstRect.intersect(clipBounds.makeOffset(result->subset().topLeft() - *offset))) {
return nullptr;
}
// Adjust the geometric offset if the top-left corner moved as well
offset->fX += (clippedDstRect.x() - dstRect.x());
offset->fY += (clippedDstRect.y() - dstRect.y());
*outSubset = clippedDstRect;
return result->asImage();
}
#ifdef SK_IMAGE_MAKE_WITH_FILTER_LEGACY_API
sk_sp<SkImage> SkImage::makeWithFilter(const SkImageFilter* filter, const SkIRect& subset,
const SkIRect& clipBounds, SkIRect* outSubset,
SkIPoint* offset) const {
GrRecordingContext* rContext = nullptr;
#if SK_SUPPORT_GPU
rContext = as_IB(this)->context();
#endif
return this->makeWithFilter(rContext, filter, subset, clipBounds, outSubset, offset);
}
#endif
bool SkImage::isLazyGenerated() const {
return as_IB(this)->onIsLazyGenerated();
}
bool SkImage::isAlphaOnly() const { return SkColorTypeIsAlphaOnly(fInfo.colorType()); }
sk_sp<SkImage> SkImage::makeColorSpace(sk_sp<SkColorSpace> target, GrDirectContext* direct) const {
return this->makeColorTypeAndColorSpace(this->colorType(), std::move(target), direct);
}
sk_sp<SkImage> SkImage::makeColorTypeAndColorSpace(SkColorType targetColorType,
sk_sp<SkColorSpace> targetColorSpace,
GrDirectContext* direct) const {
if (kUnknown_SkColorType == targetColorType || !targetColorSpace) {
return nullptr;
}
#if SK_SUPPORT_GPU
auto myContext = as_IB(this)->context();
#ifdef SK_IMAGE_MAKE_COLOR_TYPE_AND_SPACE_USE_SOURCE_CONTEXT
if (!direct) {
direct = GrAsDirectContext(myContext);
}
#endif
// This check is also performed in the subclass, but we do it here for the short-circuit below.
if (myContext && !myContext->priv().matches(direct)) {
return nullptr;
}
#endif
SkColorType colorType = this->colorType();
SkColorSpace* colorSpace = this->colorSpace();
if (!colorSpace) {
colorSpace = sk_srgb_singleton();
}
if (colorType == targetColorType &&
(SkColorSpace::Equals(colorSpace, targetColorSpace.get()) || this->isAlphaOnly())) {
return sk_ref_sp(const_cast<SkImage*>(this));
}
return as_IB(this)->onMakeColorTypeAndColorSpace(targetColorType,
std::move(targetColorSpace), direct);
}
sk_sp<SkImage> SkImage::reinterpretColorSpace(sk_sp<SkColorSpace> target) const {
if (!target) {
return nullptr;
}
// No need to create a new image if:
// (1) The color spaces are equal.
// (2) The color type is kAlpha8.
SkColorSpace* colorSpace = this->colorSpace();
if (!colorSpace) {
colorSpace = sk_srgb_singleton();
}
if (SkColorSpace::Equals(colorSpace, target.get()) || this->isAlphaOnly()) {
return sk_ref_sp(const_cast<SkImage*>(this));
}
return as_IB(this)->onReinterpretColorSpace(std::move(target));
}
sk_sp<SkImage> SkImage::makeNonTextureImage() const {
if (!this->isTextureBacked()) {
return sk_ref_sp(const_cast<SkImage*>(this));
}
return this->makeRasterImage();
}
sk_sp<SkImage> SkImage::makeRasterImage(CachingHint chint) const {
SkPixmap pm;
if (this->peekPixels(&pm)) {
return sk_ref_sp(const_cast<SkImage*>(this));
}
const size_t rowBytes = fInfo.minRowBytes();
size_t size = fInfo.computeByteSize(rowBytes);
if (SkImageInfo::ByteSizeOverflowed(size)) {
return nullptr;
}
sk_sp<SkData> data = SkData::MakeUninitialized(size);
pm = {fInfo.makeColorSpace(nullptr), data->writable_data(), fInfo.minRowBytes()};
if (!this->readPixels(pm, 0, 0, chint)) {
return nullptr;
}
return SkImage::MakeRasterData(fInfo, std::move(data), rowBytes);
}
//////////////////////////////////////////////////////////////////////////////////////
#if !SK_SUPPORT_GPU
sk_sp<SkImage> SkImage::DecodeToTexture(GrDirectContext*, const void*, size_t, const SkIRect*) {
return nullptr;
}
sk_sp<SkImage> SkImage::MakeFromTexture(GrContext* ctx,
const GrBackendTexture& tex, GrSurfaceOrigin origin,
SkColorType ct, SkAlphaType at, sk_sp<SkColorSpace> cs,
TextureReleaseProc releaseP, ReleaseContext releaseC) {
return nullptr;
}
sk_sp<SkImage> SkImage::MakeFromCompressedTexture(GrContext* ctx,
const GrBackendTexture& tex,
GrSurfaceOrigin origin,
SkAlphaType at,
sk_sp<SkColorSpace> cs,
TextureReleaseProc releaseP,
ReleaseContext releaseC) {
return nullptr;
}
bool SkImage::MakeBackendTextureFromSkImage(GrContext*,
sk_sp<SkImage>,
GrBackendTexture*,
BackendTextureReleaseProc*) {
return false;
}
sk_sp<SkImage> SkImage::MakeFromAdoptedTexture(GrContext* ctx,
const GrBackendTexture& tex, GrSurfaceOrigin origin,
SkColorType ct, SkAlphaType at,
sk_sp<SkColorSpace> cs) {
return nullptr;
}
sk_sp<SkImage> SkImage::MakeFromYUVATexturesCopy(GrContext* context,
SkYUVColorSpace yuvColorSpace,
const GrBackendTexture yuvaTextures[],
const SkYUVAIndex yuvaIndices[4],
SkISize imageSize,
GrSurfaceOrigin imageOrigin,
sk_sp<SkColorSpace> imageColorSpace) {
return nullptr;
}
sk_sp<SkImage> SkImage::MakeFromYUVATexturesCopyWithExternalBackend(
GrContext* context,
SkYUVColorSpace yuvColorSpace,
const GrBackendTexture yuvaTextures[],
const SkYUVAIndex yuvaIndices[4],
SkISize imageSize,
GrSurfaceOrigin imageOrigin,
const GrBackendTexture& backendTexture,
sk_sp<SkColorSpace> imageColorSpace,
TextureReleaseProc textureReleaseProc,
ReleaseContext releaseContext) {
return nullptr;
}
sk_sp<SkImage> SkImage::MakeFromYUVTexturesCopyWithExternalBackend(
GrContext* context, SkYUVColorSpace yuvColorSpace, const GrBackendTexture yuvTextures[3],
GrSurfaceOrigin surfaceOrigin, const GrBackendTexture& backendTexture,
sk_sp<SkColorSpace> colorSpace) {
return nullptr;
}
sk_sp<SkImage> SkImage::MakeFromNV12TexturesCopy(GrContext* ctx, SkYUVColorSpace space,
const GrBackendTexture[2],
GrSurfaceOrigin origin,
sk_sp<SkColorSpace> imageColorSpace) {
return nullptr;
}
#ifndef SK_IMAGE_MAKE_TEXTURE_IMAGE_ALLOW_GR_CONTEXT
sk_sp<SkImage> SkImage::makeTextureImage(GrDirectContext*, GrMipmapped, SkBudgeted) const {
return nullptr;
}
#else
sk_sp<SkImage> SkImage::makeTextureImage(GrContext*, GrMipmapped, SkBudgeted) const {
return nullptr;
}
#endif
sk_sp<SkImage> SkImage::MakeFromNV12TexturesCopyWithExternalBackend(
GrContext* context,
SkYUVColorSpace yuvColorSpace,
const GrBackendTexture nv12Textures[2],
GrSurfaceOrigin imageOrigin,
const GrBackendTexture& backendTexture,
sk_sp<SkColorSpace> imageColorSpace,
TextureReleaseProc textureReleaseProc,
ReleaseContext releaseContext) {
return nullptr;
}
#endif
///////////////////////////////////////////////////////////////////////////////////////////////////
bool SkImage_pinAsTexture(const SkImage* image, GrRecordingContext* rContext) {
SkASSERT(image);
SkASSERT(rContext);
return as_IB(image)->onPinAsTexture(rContext);
}
void SkImage_unpinAsTexture(const SkImage* image, GrRecordingContext* rContext) {
SkASSERT(image);
SkASSERT(rContext);
as_IB(image)->onUnpinAsTexture(rContext);
}
SkIRect SkImage_getSubset(const SkImage* image) {
SkASSERT(image);
return as_IB(image)->onGetSubset();
}
///////////////////////////////////////////////////////////////////////////////////////////////////
SkMipmapBuilder::SkMipmapBuilder(const SkImageInfo& info) {
fMM = sk_sp<SkMipmap>(SkMipmap::Build({info, nullptr, 0}, nullptr, false));
}
SkMipmapBuilder::~SkMipmapBuilder() {}
int SkMipmapBuilder::countLevels() const {
return fMM ? fMM->countLevels() : 0;
}
SkPixmap SkMipmapBuilder::level(int index) const {
SkPixmap pm;
SkMipmap::Level level;
if (fMM && fMM->getLevel(index, &level)) {
pm = level.fPixmap;
}
return pm;
}
sk_sp<SkMipmap> SkMipmapBuilder::detach() {
return std::move(fMM);
}
bool SkImage::hasMipmaps() const {
return as_IB(this)->onPeekMips() != nullptr;
}
sk_sp<SkImage> SkImage::withMipmaps(sk_sp<SkMipmap> data) const {
auto result = as_IB(this)->onMakeWithMipmaps(std::move(data));
if (!result) {
result = sk_ref_sp((const_cast<SkImage*>(this)));
}
return result;
}