blob: 2f670f62171590b456436af628cef55665e81375 [file] [log] [blame]
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include <ctype.h>
#include "Benchmark.h"
#include "CrashHandler.h"
#include "ResultsWriter.h"
#include "Stats.h"
#include "Timer.h"
#include "SkCanvas.h"
#include "SkCommandLineFlags.h"
#include "SkForceLinking.h"
#include "SkGraphics.h"
#include "SkString.h"
#include "SkSurface.h"
#if SK_SUPPORT_GPU
#include "GrContextFactory.h"
GrContextFactory gGrFactory;
#endif
__SK_FORCE_IMAGE_DECODER_LINKING;
#if SK_DEBUG
DEFINE_bool(runOnce, true, "Run each benchmark just once?");
#else
DEFINE_bool(runOnce, false, "Run each benchmark just once?");
#endif
DEFINE_int32(samples, 10, "Number of samples to measure for each bench.");
DEFINE_int32(overheadLoops, 100000, "Loops to estimate timer overhead.");
DEFINE_double(overheadGoal, 0.0001,
"Loop until timer overhead is at most this fraction of our measurments.");
DEFINE_string(match, "", "The usual filters on file names of benchmarks to measure.");
DEFINE_bool2(quiet, q, false, "Print only bench name and minimum sample.");
DEFINE_bool2(verbose, v, false, "Print all samples.");
DEFINE_string(config, "nonrendering 8888 gpu", "Configs to measure. Options: "
"565 8888 gpu nonrendering debug nullgpu msaa4 msaa16 nvprmsaa4 nvprmsaa16 angle");
DEFINE_double(gpuMs, 5, "Target bench time in millseconds for GPU.");
DEFINE_int32(gpuFrameLag, 5, "Overestimate of maximum number of frames GPU allows to lag.");
DEFINE_bool(cpu, true, "Master switch for CPU-bound work.");
DEFINE_bool(gpu, true, "Master switch for GPU-bound work.");
DEFINE_string(outResultsFile, "", "If given, write results here as JSON.");
DEFINE_bool(resetGpuContext, true, "Reset the GrContext before running each bench.");
DEFINE_int32(maxCalibrationAttempts, 3,
"Try up to this many times to guess loops for a bench, or skip the bench.");
DEFINE_int32(maxLoops, 1000000, "Never run a bench more times than this.");
DEFINE_bool2(veryVerbose, V, false, "Print lots for debugging bots.");
static SkString humanize(double ms) {
if (ms > 1e+3) return SkStringPrintf("%.3gs", ms/1e3);
if (ms < 1e-3) return SkStringPrintf("%.3gns", ms*1e6);
#ifdef SK_BUILD_FOR_WIN
if (ms < 1) return SkStringPrintf("%.3gus", ms*1e3);
#else
if (ms < 1) return SkStringPrintf("%.3gµs", ms*1e3);
#endif
return SkStringPrintf("%.3gms", ms);
}
#define HUMANIZE(ms) humanize(ms).c_str()
static double time(int loops, Benchmark* bench, SkCanvas* canvas, SkGLContextHelper* gl) {
WallTimer timer;
timer.start();
if (bench) {
if (FLAGS_veryVerbose) { SkDebugf("Timing %s for %d loops.\n", bench->getName(), loops); }
bench->draw(loops, canvas);
}
if (canvas) {
canvas->flush();
}
#if SK_SUPPORT_GPU
if (gl) {
SK_GL(*gl, Flush());
gl->swapBuffers();
}
#endif
timer.end();
return timer.fWall;
}
static double estimate_timer_overhead() {
double overhead = 0;
for (int i = 0; i < FLAGS_overheadLoops; i++) {
overhead += time(1, NULL, NULL, NULL);
}
return overhead / FLAGS_overheadLoops;
}
static int clamp_loops(int loops) {
if (loops < 1) {
SkDebugf("ERROR: clamping loops from %d to 1.\n", loops);
return 1;
}
if (loops > FLAGS_maxLoops) {
SkDebugf("WARNING: clamping loops from %d to FLAGS_maxLoops, %d.\n", loops, FLAGS_maxLoops);
return FLAGS_maxLoops;
}
return loops;
}
static int cpu_bench(const double overhead, Benchmark* bench, SkCanvas* canvas, double* samples) {
// First figure out approximately how many loops of bench it takes to make overhead negligible.
double bench_plus_overhead;
int round = 0;
do {
bench_plus_overhead = time(1, bench, canvas, NULL);
if (++round == FLAGS_maxCalibrationAttempts) {
SkDebugf("WARNING: Can't estimate loops for %s (%s vs. %s); skipping.\n",
bench->getName(), HUMANIZE(bench_plus_overhead), HUMANIZE(overhead));
return 0;
}
} while (bench_plus_overhead < overhead);
// Later we'll just start and stop the timer once but loop N times.
// We'll pick N to make timer overhead negligible:
//
// overhead
// ------------------------- < FLAGS_overheadGoal
// overhead + N * Bench Time
//
// where bench_plus_overhead ≈ overhead + Bench Time.
//
// Doing some math, we get:
//
// (overhead / FLAGS_overheadGoal) - overhead
// ------------------------------------------ < N
// bench_plus_overhead - overhead)
//
// Luckily, this also works well in practice. :)
const double numer = overhead / FLAGS_overheadGoal - overhead;
const double denom = bench_plus_overhead - overhead;
const int loops = clamp_loops(FLAGS_runOnce ? 1 : (int)ceil(numer / denom));
for (int i = 0; i < FLAGS_samples; i++) {
samples[i] = time(loops, bench, canvas, NULL) / loops;
if (FLAGS_veryVerbose) { SkDebugf(" %s\n", HUMANIZE(samples[i])); }
}
return loops;
}
#if SK_SUPPORT_GPU
static int gpu_bench(SkGLContextHelper* gl,
Benchmark* bench,
SkCanvas* canvas,
double* samples) {
// Make sure we're done with whatever came before.
SK_GL(*gl, Finish());
// First, figure out how many loops it'll take to get a frame up to FLAGS_gpuMs.
int loops = 1;
if (!FLAGS_runOnce) {
double elapsed = 0;
do {
loops *= 2;
// If the GPU lets frames lag at all, we need to make sure we're timing
// _this_ round, not still timing last round. We force this by looping
// more times than any reasonable GPU will allow frames to lag.
for (int i = 0; i < FLAGS_gpuFrameLag; i++) {
elapsed = time(loops, bench, canvas, gl);
}
} while (elapsed < FLAGS_gpuMs);
// We've overshot at least a little. Scale back linearly.
loops = (int)ceil(loops * FLAGS_gpuMs / elapsed);
if (FLAGS_veryVerbose) { SkDebugf("elapsed %s, loops %d\n", HUMANIZE(elapsed), loops); }
// Might as well make sure we're not still timing our calibration.
SK_GL(*gl, Finish());
}
loops = clamp_loops(loops);
// Pretty much the same deal as the calibration: do some warmup to make
// sure we're timing steady-state pipelined frames.
for (int i = 0; i < FLAGS_gpuFrameLag; i++) {
time(loops, bench, canvas, gl);
}
// Now, actually do the timing!
for (int i = 0; i < FLAGS_samples; i++) {
samples[i] = time(loops, bench, canvas, gl) / loops;
if (FLAGS_veryVerbose) { SkDebugf(" %s\n", HUMANIZE(samples[i])); }
}
return loops;
}
#endif
static SkString to_lower(const char* str) {
SkString lower(str);
for (size_t i = 0; i < lower.size(); i++) {
lower[i] = tolower(lower[i]);
}
return lower;
}
struct Target {
const char* config;
Benchmark::Backend backend;
SkAutoTDelete<SkSurface> surface;
#if SK_SUPPORT_GPU
SkGLContextHelper* gl;
#endif
};
// If bench is enabled for backend/config, returns a Target* for them, otherwise NULL.
static Target* is_enabled(Benchmark* bench, Benchmark::Backend backend, const char* config) {
if (!bench->isSuitableFor(backend)) {
return NULL;
}
for (int i = 0; i < FLAGS_config.count(); i++) {
if (to_lower(FLAGS_config[i]).equals(config)) {
Target* target = new Target;
target->config = config;
target->backend = backend;
return target;
}
}
return NULL;
}
// Append all targets that are suitable for bench.
static void create_targets(Benchmark* bench, SkTDArray<Target*>* targets) {
const int w = bench->getSize().fX,
h = bench->getSize().fY;
const SkImageInfo _8888 = { w, h, kN32_SkColorType, kPremul_SkAlphaType },
_565 = { w, h, kRGB_565_SkColorType, kOpaque_SkAlphaType };
#define CPU_TARGET(config, backend, code) \
if (Target* t = is_enabled(bench, Benchmark::backend, #config)) { \
t->surface.reset(code); \
targets->push(t); \
}
if (FLAGS_cpu) {
CPU_TARGET(nonrendering, kNonRendering_Backend, NULL)
CPU_TARGET(8888, kRaster_Backend, SkSurface::NewRaster(_8888))
CPU_TARGET(565, kRaster_Backend, SkSurface::NewRaster(_565))
}
#if SK_SUPPORT_GPU
#define GPU_TARGET(config, ctxType, info, samples) \
if (Target* t = is_enabled(bench, Benchmark::kGPU_Backend, #config)) { \
t->surface.reset(SkSurface::NewRenderTarget(gGrFactory.get(ctxType), info, samples)); \
t->gl = gGrFactory.getGLContext(ctxType); \
targets->push(t); \
}
if (FLAGS_gpu) {
GPU_TARGET(gpu, GrContextFactory::kNative_GLContextType, _8888, 0)
GPU_TARGET(msaa4, GrContextFactory::kNative_GLContextType, _8888, 4)
GPU_TARGET(msaa16, GrContextFactory::kNative_GLContextType, _8888, 16)
GPU_TARGET(nvprmsaa4, GrContextFactory::kNVPR_GLContextType, _8888, 4)
GPU_TARGET(nvprmsaa16, GrContextFactory::kNVPR_GLContextType, _8888, 16)
GPU_TARGET(debug, GrContextFactory::kDebug_GLContextType, _8888, 0)
GPU_TARGET(nullgpu, GrContextFactory::kNull_GLContextType, _8888, 0)
#if SK_ANGLE
GPU_TARGET(angle, GrContextFactory::kANGLE_GLContextType, _8888, 0)
#endif
}
#endif
}
static void fill_static_options(ResultsWriter* log) {
#if defined(SK_BUILD_FOR_WIN32)
log->option("system", "WIN32");
#elif defined(SK_BUILD_FOR_MAC)
log->option("system", "MAC");
#elif defined(SK_BUILD_FOR_ANDROID)
log->option("system", "ANDROID");
#elif defined(SK_BUILD_FOR_UNIX)
log->option("system", "UNIX");
#else
log->option("system", "other");
#endif
#if defined(SK_DEBUG)
log->option("build", "DEBUG");
#else
log->option("build", "RELEASE");
#endif
}
int tool_main(int argc, char** argv);
int tool_main(int argc, char** argv) {
SetupCrashHandler();
SkAutoGraphics ag;
SkCommandLineFlags::Parse(argc, argv);
if (FLAGS_runOnce) {
FLAGS_samples = 1;
FLAGS_gpuFrameLag = 0;
}
MultiResultsWriter log;
SkAutoTDelete<JSONResultsWriter> json;
if (!FLAGS_outResultsFile.isEmpty()) {
json.reset(SkNEW(JSONResultsWriter(FLAGS_outResultsFile[0])));
log.add(json.get());
}
CallEnd<MultiResultsWriter> ender(log);
fill_static_options(&log);
const double overhead = estimate_timer_overhead();
SkDebugf("Timer overhead: %s\n", HUMANIZE(overhead));
SkAutoTMalloc<double> samples(FLAGS_samples);
if (FLAGS_runOnce) {
SkDebugf("--runOnce is true; times would only be misleading so we won't print them.\n");
} else if (FLAGS_verbose) {
// No header.
} else if (FLAGS_quiet) {
SkDebugf("median\tbench\tconfig\n");
} else {
SkDebugf("loops\tmin\tmedian\tmean\tmax\tstddev\tsamples\tconfig\tbench\n");
}
for (const BenchRegistry* r = BenchRegistry::Head(); r != NULL; r = r->next()) {
SkAutoTDelete<Benchmark> bench(r->factory()(NULL));
if (SkCommandLineFlags::ShouldSkip(FLAGS_match, bench->getName())) {
continue;
}
log.bench(bench->getName(), bench->getSize().fX, bench->getSize().fY);
SkTDArray<Target*> targets;
create_targets(bench.get(), &targets);
bench->preDraw();
for (int j = 0; j < targets.count(); j++) {
SkCanvas* canvas = targets[j]->surface.get() ? targets[j]->surface->getCanvas() : NULL;
const char* config = targets[j]->config;
const int loops =
#if SK_SUPPORT_GPU
Benchmark::kGPU_Backend == targets[j]->backend
? gpu_bench(targets[j]->gl, bench.get(), canvas, samples.get())
:
#endif
cpu_bench( overhead, bench.get(), canvas, samples.get());
if (loops == 0) {
continue;
}
Stats stats(samples.get(), FLAGS_samples);
log.config(config);
log.timer("min_ms", stats.min);
log.timer("median_ms", stats.median);
log.timer("mean_ms", stats.mean);
log.timer("max_ms", stats.max);
log.timer("stddev_ms", sqrt(stats.var));
if (FLAGS_runOnce) {
if (targets.count() == 1) {
config = ""; // Only print the config if we run the same bench on more than one.
}
SkDebugf("%s\t%s\n", bench->getName(), config);
} else if (FLAGS_verbose) {
for (int i = 0; i < FLAGS_samples; i++) {
SkDebugf("%s ", HUMANIZE(samples[i]));
}
SkDebugf("%s\n", bench->getName());
} else if (FLAGS_quiet) {
if (targets.count() == 1) {
config = ""; // Only print the config if we run the same bench on more than one.
}
SkDebugf("%s\t%s\t%s\n", HUMANIZE(stats.median), bench->getName(), config);
} else {
const double stddev_percent = 100 * sqrt(stats.var) / stats.mean;
SkDebugf("%d\t%s\t%s\t%s\t%s\t%.0f%%\t%s\t%s\t%s\n"
, loops
, HUMANIZE(stats.min)
, HUMANIZE(stats.median)
, HUMANIZE(stats.mean)
, HUMANIZE(stats.max)
, stddev_percent
, stats.plot.c_str()
, config
, bench->getName()
);
}
}
targets.deleteAll();
#if SK_SUPPORT_GPU
if (FLAGS_resetGpuContext) {
gGrFactory.destroyContexts();
}
#endif
}
return 0;
}
#if !defined SK_BUILD_FOR_IOS
int main(int argc, char * const argv[]) {
return tool_main(argc, (char**) argv);
}
#endif