| /* |
| * Copyright 2016 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SKSL_CONSTRUCTOR |
| #define SKSL_CONSTRUCTOR |
| |
| #include "SkSLExpression.h" |
| #include "SkSLFloatLiteral.h" |
| #include "SkSLIntLiteral.h" |
| #include "SkSLIRGenerator.h" |
| |
| namespace SkSL { |
| |
| /** |
| * Represents the construction of a compound type, such as "float2(x, y)". |
| * |
| * Vector constructors will always consist of either exactly 1 scalar, or a collection of vectors |
| * and scalars totalling exactly the right number of scalar components. |
| * |
| * Matrix constructors will always consist of either exactly 1 scalar, exactly 1 matrix, or a |
| * collection of vectors and scalars totalling exactly the right number of scalar components. |
| */ |
| struct Constructor : public Expression { |
| Constructor(int offset, const Type& type, std::vector<std::unique_ptr<Expression>> arguments) |
| : INHERITED(offset, kConstructor_Kind, type) |
| , fArguments(std::move(arguments)) {} |
| |
| std::unique_ptr<Expression> constantPropagate(const IRGenerator& irGenerator, |
| const DefinitionMap& definitions) override { |
| if (fArguments.size() == 1 && fArguments[0]->fKind == Expression::kIntLiteral_Kind) { |
| if (fType == *irGenerator.fContext.fFloat_Type || |
| fType == *irGenerator.fContext.fHalf_Type) { |
| // promote float(1) to 1.0 |
| int64_t intValue = ((IntLiteral&) *fArguments[0]).fValue; |
| return std::unique_ptr<Expression>(new FloatLiteral(irGenerator.fContext, |
| fOffset, |
| intValue)); |
| } else if (fType == *irGenerator.fContext.fUInt_Type || |
| fType == *irGenerator.fContext.fUShort_Type) { |
| // promote uint(1) to 1u |
| int64_t intValue = ((IntLiteral&) *fArguments[0]).fValue; |
| return std::unique_ptr<Expression>(new IntLiteral(irGenerator.fContext, |
| fOffset, |
| intValue, |
| &fType)); |
| } |
| } |
| return nullptr; |
| } |
| |
| bool hasSideEffects() const override { |
| for (const auto& arg : fArguments) { |
| if (arg->hasSideEffects()) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| String description() const override { |
| String result = fType.description() + "("; |
| String separator; |
| for (size_t i = 0; i < fArguments.size(); i++) { |
| result += separator; |
| result += fArguments[i]->description(); |
| separator = ", "; |
| } |
| result += ")"; |
| return result; |
| } |
| |
| bool isConstant() const override { |
| for (size_t i = 0; i < fArguments.size(); i++) { |
| if (!fArguments[i]->isConstant()) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool compareConstant(const Context& context, const Expression& other) const override { |
| ASSERT(other.fKind == Expression::kConstructor_Kind && other.fType == fType); |
| Constructor& c = (Constructor&) other; |
| if (c.fType.kind() == Type::kVector_Kind) { |
| for (int i = 0; i < fType.columns(); i++) { |
| if (!this->getVecComponent(i).compareConstant(context, c.getVecComponent(i))) { |
| return false; |
| } |
| } |
| return true; |
| } |
| // shouldn't be possible to have a constant constructor that isn't a vector or matrix; |
| // a constant scalar constructor should have been collapsed down to the appropriate |
| // literal |
| ASSERT(fType.kind() == Type::kMatrix_Kind); |
| const FloatLiteral fzero(context, -1, 0); |
| const IntLiteral izero(context, -1, 0); |
| const Expression* zero; |
| if (fType.componentType() == *context.fFloat_Type) { |
| zero = &fzero; |
| } else { |
| ASSERT(fType.componentType() == *context.fInt_Type); |
| zero = &izero; |
| } |
| for (int col = 0; col < fType.columns(); col++) { |
| for (int row = 0; row < fType.rows(); row++) { |
| const Expression* component1 = getMatComponent(col, row); |
| const Expression* component2 = c.getMatComponent(col, row); |
| if (!(component1 ? component1 : zero)->compareConstant( |
| context, |
| component2 ? *component2 : *zero)) { |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| const Expression& getVecComponent(int index) const { |
| ASSERT(fType.kind() == Type::kVector_Kind); |
| if (fArguments.size() == 1 && fArguments[0]->fType.kind() == Type::kScalar_Kind) { |
| return *fArguments[0]; |
| } |
| int current = 0; |
| for (const auto& arg : fArguments) { |
| ASSERT(current <= index); |
| if (arg->fType.kind() == Type::kScalar_Kind) { |
| if (index == current) { |
| return *arg; |
| } |
| current++; |
| } else { |
| ASSERT(arg->fType.kind() == Type::kVector_Kind); |
| ASSERT(arg->fKind == Expression::kConstructor_Kind); |
| if (current + arg->fType.columns() > index) { |
| return ((const Constructor&) *arg).getVecComponent(index - current); |
| } |
| current += arg->fType.columns(); |
| } |
| } |
| ABORT("failed to find vector component %d in %s\n", index, description().c_str()); |
| } |
| |
| double getFVecComponent(int index) const { |
| const Expression& c = this->getVecComponent(index); |
| ASSERT(c.fKind == Expression::kFloatLiteral_Kind); |
| return ((FloatLiteral&) c).fValue; |
| } |
| |
| int64_t getIVecComponent(int index) const { |
| const Expression& c = this->getVecComponent(index); |
| ASSERT(c.fKind == Expression::kIntLiteral_Kind); |
| return ((IntLiteral&) c).fValue; |
| } |
| |
| // null return should be interpreted as zero |
| const Expression* getMatComponent(int col, int row) const { |
| ASSERT(this->isConstant()); |
| ASSERT(fType.kind() == Type::kMatrix_Kind); |
| ASSERT(col < fType.columns() && row < fType.rows()); |
| if (fArguments.size() == 1) { |
| if (fArguments[0]->fType.kind() == Type::kScalar_Kind) { |
| // single scalar argument, so matrix is of the form: |
| // x 0 0 |
| // 0 x 0 |
| // 0 0 x |
| // return x if col == row |
| return col == row ? fArguments[0].get() : nullptr; |
| } |
| if (fArguments[0]->fType.kind() == Type::kMatrix_Kind) { |
| ASSERT(fArguments[0]->fKind == Expression::kConstructor_Kind); |
| // single matrix argument. make sure we're within the argument's bounds. |
| const Type& argType = ((Constructor&) *fArguments[0]).fType; |
| if (col < argType.columns() && row < argType.rows()) { |
| // within bounds, defer to argument |
| return ((Constructor&) *fArguments[0]).getMatComponent(col, row); |
| } |
| // out of bounds, return 0 |
| return nullptr; |
| } |
| } |
| int currentIndex = 0; |
| int targetIndex = col * fType.rows() + row; |
| for (const auto& arg : fArguments) { |
| ASSERT(targetIndex >= currentIndex); |
| ASSERT(arg->fType.rows() == 1); |
| if (currentIndex + arg->fType.columns() > targetIndex) { |
| if (arg->fType.columns() == 1) { |
| return arg.get(); |
| } else { |
| ASSERT(arg->fType.kind() == Type::kVector_Kind); |
| ASSERT(arg->fKind == Expression::kConstructor_Kind); |
| return &((Constructor&) *arg).getVecComponent(targetIndex - currentIndex); |
| } |
| } |
| currentIndex += arg->fType.columns(); |
| } |
| ABORT("can't happen, matrix component out of bounds"); |
| } |
| |
| std::vector<std::unique_ptr<Expression>> fArguments; |
| |
| typedef Expression INHERITED; |
| }; |
| |
| } // namespace |
| |
| #endif |