| /* |
| * Copyright 2016 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/sksl/SkSLIRGenerator.h" |
| |
| #include "limits.h" |
| #include <memory> |
| #include <unordered_set> |
| |
| #include "src/sksl/SkSLAnalysis.h" |
| #include "src/sksl/SkSLCompiler.h" |
| #include "src/sksl/SkSLParser.h" |
| #include "src/sksl/SkSLUtil.h" |
| #include "src/sksl/ir/SkSLBinaryExpression.h" |
| #include "src/sksl/ir/SkSLBoolLiteral.h" |
| #include "src/sksl/ir/SkSLBreakStatement.h" |
| #include "src/sksl/ir/SkSLConstructor.h" |
| #include "src/sksl/ir/SkSLContinueStatement.h" |
| #include "src/sksl/ir/SkSLDiscardStatement.h" |
| #include "src/sksl/ir/SkSLDoStatement.h" |
| #include "src/sksl/ir/SkSLEnum.h" |
| #include "src/sksl/ir/SkSLExpressionStatement.h" |
| #include "src/sksl/ir/SkSLExternalFunctionCall.h" |
| #include "src/sksl/ir/SkSLExternalValueReference.h" |
| #include "src/sksl/ir/SkSLField.h" |
| #include "src/sksl/ir/SkSLFieldAccess.h" |
| #include "src/sksl/ir/SkSLFloatLiteral.h" |
| #include "src/sksl/ir/SkSLForStatement.h" |
| #include "src/sksl/ir/SkSLFunctionCall.h" |
| #include "src/sksl/ir/SkSLFunctionDeclaration.h" |
| #include "src/sksl/ir/SkSLFunctionDefinition.h" |
| #include "src/sksl/ir/SkSLFunctionReference.h" |
| #include "src/sksl/ir/SkSLIfStatement.h" |
| #include "src/sksl/ir/SkSLIndexExpression.h" |
| #include "src/sksl/ir/SkSLIntLiteral.h" |
| #include "src/sksl/ir/SkSLInterfaceBlock.h" |
| #include "src/sksl/ir/SkSLLayout.h" |
| #include "src/sksl/ir/SkSLNop.h" |
| #include "src/sksl/ir/SkSLNullLiteral.h" |
| #include "src/sksl/ir/SkSLPostfixExpression.h" |
| #include "src/sksl/ir/SkSLPrefixExpression.h" |
| #include "src/sksl/ir/SkSLReturnStatement.h" |
| #include "src/sksl/ir/SkSLSetting.h" |
| #include "src/sksl/ir/SkSLSwitchCase.h" |
| #include "src/sksl/ir/SkSLSwitchStatement.h" |
| #include "src/sksl/ir/SkSLSwizzle.h" |
| #include "src/sksl/ir/SkSLTernaryExpression.h" |
| #include "src/sksl/ir/SkSLUnresolvedFunction.h" |
| #include "src/sksl/ir/SkSLVarDeclarations.h" |
| #include "src/sksl/ir/SkSLVarDeclarationsStatement.h" |
| #include "src/sksl/ir/SkSLVariable.h" |
| #include "src/sksl/ir/SkSLVariableReference.h" |
| #include "src/sksl/ir/SkSLWhileStatement.h" |
| |
| namespace SkSL { |
| |
| class AutoSymbolTable { |
| public: |
| AutoSymbolTable(IRGenerator* ir) |
| : fIR(ir) |
| , fPrevious(fIR->fSymbolTable) { |
| fIR->pushSymbolTable(); |
| } |
| |
| ~AutoSymbolTable() { |
| fIR->popSymbolTable(); |
| SkASSERT(fPrevious == fIR->fSymbolTable); |
| } |
| |
| IRGenerator* fIR; |
| std::shared_ptr<SymbolTable> fPrevious; |
| }; |
| |
| class AutoLoopLevel { |
| public: |
| AutoLoopLevel(IRGenerator* ir) |
| : fIR(ir) { |
| fIR->fLoopLevel++; |
| } |
| |
| ~AutoLoopLevel() { |
| fIR->fLoopLevel--; |
| } |
| |
| IRGenerator* fIR; |
| }; |
| |
| class AutoSwitchLevel { |
| public: |
| AutoSwitchLevel(IRGenerator* ir) |
| : fIR(ir) { |
| fIR->fSwitchLevel++; |
| } |
| |
| ~AutoSwitchLevel() { |
| fIR->fSwitchLevel--; |
| } |
| |
| IRGenerator* fIR; |
| }; |
| |
| class AutoDisableInline { |
| public: |
| AutoDisableInline(IRGenerator* ir, bool canInline = false) |
| : fIR(ir) { |
| fOldCanInline = ir->fCanInline; |
| fIR->fCanInline &= canInline; |
| } |
| |
| ~AutoDisableInline() { |
| fIR->fCanInline = fOldCanInline; |
| } |
| |
| IRGenerator* fIR; |
| bool fOldCanInline; |
| }; |
| |
| IRGenerator::IRGenerator(const Context* context, std::shared_ptr<SymbolTable> symbolTable, |
| ErrorReporter& errorReporter) |
| : fContext(*context) |
| , fCurrentFunction(nullptr) |
| , fRootSymbolTable(symbolTable) |
| , fSymbolTable(symbolTable) |
| , fLoopLevel(0) |
| , fSwitchLevel(0) |
| , fErrors(errorReporter) {} |
| |
| void IRGenerator::pushSymbolTable() { |
| fSymbolTable.reset(new SymbolTable(std::move(fSymbolTable))); |
| } |
| |
| void IRGenerator::popSymbolTable() { |
| fSymbolTable = fSymbolTable->fParent; |
| } |
| |
| static void fill_caps(const SKSL_CAPS_CLASS& caps, |
| std::unordered_map<String, Program::Settings::Value>* capsMap) { |
| #define CAP(name) \ |
| capsMap->insert(std::make_pair(String(#name), Program::Settings::Value(caps.name()))) |
| CAP(fbFetchSupport); |
| CAP(fbFetchNeedsCustomOutput); |
| CAP(flatInterpolationSupport); |
| CAP(noperspectiveInterpolationSupport); |
| CAP(externalTextureSupport); |
| CAP(mustEnableAdvBlendEqs); |
| CAP(mustEnableSpecificAdvBlendEqs); |
| CAP(mustDeclareFragmentShaderOutput); |
| CAP(mustDoOpBetweenFloorAndAbs); |
| CAP(mustGuardDivisionEvenAfterExplicitZeroCheck); |
| CAP(inBlendModesFailRandomlyForAllZeroVec); |
| CAP(atan2ImplementedAsAtanYOverX); |
| CAP(canUseAnyFunctionInShader); |
| CAP(floatIs32Bits); |
| CAP(integerSupport); |
| #undef CAP |
| } |
| |
| void IRGenerator::start(const Program::Settings* settings, |
| std::vector<std::unique_ptr<ProgramElement>>* inherited, |
| bool isBuiltinCode) { |
| fSettings = settings; |
| fInherited = inherited; |
| fIsBuiltinCode = isBuiltinCode; |
| fCapsMap.clear(); |
| if (settings->fCaps) { |
| fill_caps(*settings->fCaps, &fCapsMap); |
| } else { |
| fCapsMap.insert(std::make_pair(String("integerSupport"), |
| Program::Settings::Value(true))); |
| } |
| this->pushSymbolTable(); |
| fInvocations = -1; |
| fInputs.reset(); |
| fSkPerVertex = nullptr; |
| fRTAdjust = nullptr; |
| fRTAdjustInterfaceBlock = nullptr; |
| fInlineVarCounter = 0; |
| if (inherited) { |
| for (const auto& e : *inherited) { |
| if (e->fKind == ProgramElement::kInterfaceBlock_Kind) { |
| InterfaceBlock& intf = e->as<InterfaceBlock>(); |
| if (intf.fVariable.fName == Compiler::PERVERTEX_NAME) { |
| SkASSERT(!fSkPerVertex); |
| fSkPerVertex = &intf.fVariable; |
| } |
| } |
| } |
| } |
| SkASSERT(fIntrinsics); |
| for (auto& pair : *fIntrinsics) { |
| pair.second.fAlreadyIncluded = false; |
| } |
| } |
| |
| std::unique_ptr<Extension> IRGenerator::convertExtension(int offset, StringFragment name) { |
| return std::make_unique<Extension>(offset, name); |
| } |
| |
| void IRGenerator::finish() { |
| this->popSymbolTable(); |
| fSettings = nullptr; |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertSingleStatement(const ASTNode& statement) { |
| switch (statement.fKind) { |
| case ASTNode::Kind::kBlock: |
| return this->convertBlock(statement); |
| case ASTNode::Kind::kVarDeclarations: |
| return this->convertVarDeclarationStatement(statement); |
| case ASTNode::Kind::kIf: |
| return this->convertIf(statement); |
| case ASTNode::Kind::kFor: |
| return this->convertFor(statement); |
| case ASTNode::Kind::kWhile: |
| return this->convertWhile(statement); |
| case ASTNode::Kind::kDo: |
| return this->convertDo(statement); |
| case ASTNode::Kind::kSwitch: |
| return this->convertSwitch(statement); |
| case ASTNode::Kind::kReturn: |
| return this->convertReturn(statement); |
| case ASTNode::Kind::kBreak: |
| return this->convertBreak(statement); |
| case ASTNode::Kind::kContinue: |
| return this->convertContinue(statement); |
| case ASTNode::Kind::kDiscard: |
| return this->convertDiscard(statement); |
| default: |
| // it's an expression |
| std::unique_ptr<Statement> result = this->convertExpressionStatement(statement); |
| if (fRTAdjust && Program::kGeometry_Kind == fKind) { |
| SkASSERT(result->fKind == Statement::kExpression_Kind); |
| Expression& expr = *result->as<ExpressionStatement>().fExpression; |
| if (expr.fKind == Expression::kFunctionCall_Kind) { |
| FunctionCall& fc = expr.as<FunctionCall>(); |
| if (fc.fFunction.fBuiltin && fc.fFunction.fName == "EmitVertex") { |
| std::vector<std::unique_ptr<Statement>> statements; |
| statements.push_back(getNormalizeSkPositionCode()); |
| statements.push_back(std::move(result)); |
| return std::make_unique<Block>(statement.fOffset, std::move(statements), |
| fSymbolTable); |
| } |
| } |
| } |
| return result; |
| } |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertStatement(const ASTNode& statement) { |
| std::vector<std::unique_ptr<Statement>> oldExtraStatements = std::move(fExtraStatements); |
| std::unique_ptr<Statement> result = this->convertSingleStatement(statement); |
| if (!result) { |
| fExtraStatements = std::move(oldExtraStatements); |
| return nullptr; |
| } |
| if (fExtraStatements.size()) { |
| fExtraStatements.push_back(std::move(result)); |
| std::unique_ptr<Statement> block(new Block(-1, std::move(fExtraStatements), nullptr, |
| false)); |
| fExtraStatements = std::move(oldExtraStatements); |
| return block; |
| } |
| fExtraStatements = std::move(oldExtraStatements); |
| return result; |
| } |
| |
| std::unique_ptr<Block> IRGenerator::convertBlock(const ASTNode& block) { |
| SkASSERT(block.fKind == ASTNode::Kind::kBlock); |
| AutoSymbolTable table(this); |
| std::vector<std::unique_ptr<Statement>> statements; |
| for (const auto& child : block) { |
| std::unique_ptr<Statement> statement = this->convertStatement(child); |
| if (!statement) { |
| return nullptr; |
| } |
| statements.push_back(std::move(statement)); |
| } |
| return std::make_unique<Block>(block.fOffset, std::move(statements), fSymbolTable); |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertVarDeclarationStatement(const ASTNode& s) { |
| SkASSERT(s.fKind == ASTNode::Kind::kVarDeclarations); |
| auto decl = this->convertVarDeclarations(s, Variable::kLocal_Storage); |
| if (!decl) { |
| return nullptr; |
| } |
| return std::unique_ptr<Statement>(new VarDeclarationsStatement(std::move(decl))); |
| } |
| |
| std::unique_ptr<VarDeclarations> IRGenerator::convertVarDeclarations(const ASTNode& decls, |
| Variable::Storage storage) { |
| SkASSERT(decls.fKind == ASTNode::Kind::kVarDeclarations); |
| auto declarationsIter = decls.begin(); |
| const Modifiers& modifiers = declarationsIter++->getModifiers(); |
| const ASTNode& rawType = *(declarationsIter++); |
| std::vector<std::unique_ptr<VarDeclaration>> variables; |
| const Type* baseType = this->convertType(rawType); |
| if (!baseType) { |
| return nullptr; |
| } |
| if (baseType->nonnullable() == *fContext.fFragmentProcessor_Type && |
| storage != Variable::kGlobal_Storage) { |
| fErrors.error(decls.fOffset, |
| "variables of type '" + baseType->displayName() + "' must be global"); |
| } |
| if (fKind != Program::kFragmentProcessor_Kind) { |
| if ((modifiers.fFlags & Modifiers::kIn_Flag) && |
| baseType->kind() == Type::Kind::kMatrix_Kind) { |
| fErrors.error(decls.fOffset, "'in' variables may not have matrix type"); |
| } |
| if ((modifiers.fFlags & Modifiers::kIn_Flag) && |
| (modifiers.fFlags & Modifiers::kUniform_Flag)) { |
| fErrors.error(decls.fOffset, |
| "'in uniform' variables only permitted within fragment processors"); |
| } |
| if (modifiers.fLayout.fWhen.fLength) { |
| fErrors.error(decls.fOffset, "'when' is only permitted within fragment processors"); |
| } |
| if (modifiers.fLayout.fFlags & Layout::kTracked_Flag) { |
| fErrors.error(decls.fOffset, "'tracked' is only permitted within fragment processors"); |
| } |
| if (modifiers.fLayout.fCType != Layout::CType::kDefault) { |
| fErrors.error(decls.fOffset, "'ctype' is only permitted within fragment processors"); |
| } |
| if (modifiers.fLayout.fKey) { |
| fErrors.error(decls.fOffset, "'key' is only permitted within fragment processors"); |
| } |
| } |
| if (fKind == Program::kPipelineStage_Kind) { |
| if ((modifiers.fFlags & Modifiers::kIn_Flag) && |
| baseType->nonnullable() != *fContext.fFragmentProcessor_Type) { |
| fErrors.error(decls.fOffset, "'in' variables not permitted in runtime effects"); |
| } |
| } |
| if (modifiers.fLayout.fKey && (modifiers.fFlags & Modifiers::kUniform_Flag)) { |
| fErrors.error(decls.fOffset, "'key' is not permitted on 'uniform' variables"); |
| } |
| if (modifiers.fLayout.fMarker.fLength) { |
| if (fKind != Program::kPipelineStage_Kind) { |
| fErrors.error(decls.fOffset, "'marker' is only permitted in runtime effects"); |
| } |
| if (!(modifiers.fFlags & Modifiers::kUniform_Flag)) { |
| fErrors.error(decls.fOffset, "'marker' is only permitted on 'uniform' variables"); |
| } |
| if (*baseType != *fContext.fFloat4x4_Type) { |
| fErrors.error(decls.fOffset, "'marker' is only permitted on float4x4 variables"); |
| } |
| } |
| if (modifiers.fLayout.fFlags & Layout::kSRGBUnpremul_Flag) { |
| if (fKind != Program::kPipelineStage_Kind) { |
| fErrors.error(decls.fOffset, "'srgb_unpremul' is only permitted in runtime effects"); |
| } |
| if (!(modifiers.fFlags & Modifiers::kUniform_Flag)) { |
| fErrors.error(decls.fOffset, |
| "'srgb_unpremul' is only permitted on 'uniform' variables"); |
| } |
| auto validColorXformType = [](const Type& t) { |
| return t.kind() == Type::kVector_Kind && t.componentType().isFloat() && |
| (t.columns() == 3 || t.columns() == 4); |
| }; |
| if (!validColorXformType(*baseType) && !(baseType->kind() == Type::kArray_Kind && |
| validColorXformType(baseType->componentType()))) { |
| fErrors.error(decls.fOffset, |
| "'srgb_unpremul' is only permitted on half3, half4, float3, or float4 " |
| "variables"); |
| } |
| } |
| if (modifiers.fFlags & Modifiers::kVarying_Flag) { |
| if (fKind != Program::kPipelineStage_Kind) { |
| fErrors.error(decls.fOffset, "'varying' is only permitted in runtime effects"); |
| } |
| if (!baseType->isFloat() && |
| !(baseType->kind() == Type::kVector_Kind && baseType->componentType().isFloat())) { |
| fErrors.error(decls.fOffset, "'varying' must be float scalar or vector"); |
| } |
| } |
| int permitted = Modifiers::kConst_Flag; |
| if (storage == Variable::kGlobal_Storage) { |
| permitted |= Modifiers::kIn_Flag | Modifiers::kOut_Flag | Modifiers::kUniform_Flag | |
| Modifiers::kFlat_Flag | Modifiers::kVarying_Flag | |
| Modifiers::kNoPerspective_Flag | Modifiers::kPLS_Flag | |
| Modifiers::kPLSIn_Flag | Modifiers::kPLSOut_Flag | |
| Modifiers::kRestrict_Flag | Modifiers::kVolatile_Flag | |
| Modifiers::kReadOnly_Flag | Modifiers::kWriteOnly_Flag | |
| Modifiers::kCoherent_Flag | Modifiers::kBuffer_Flag; |
| } |
| this->checkModifiers(decls.fOffset, modifiers, permitted); |
| for (; declarationsIter != decls.end(); ++declarationsIter) { |
| const ASTNode& varDecl = *declarationsIter; |
| if (modifiers.fLayout.fLocation == 0 && modifiers.fLayout.fIndex == 0 && |
| (modifiers.fFlags & Modifiers::kOut_Flag) && fKind == Program::kFragment_Kind && |
| varDecl.getVarData().fName != "sk_FragColor") { |
| fErrors.error(varDecl.fOffset, |
| "out location=0, index=0 is reserved for sk_FragColor"); |
| } |
| const ASTNode::VarData& varData = varDecl.getVarData(); |
| const Type* type = baseType; |
| std::vector<std::unique_ptr<Expression>> sizes; |
| auto iter = varDecl.begin(); |
| for (size_t i = 0; i < varData.fSizeCount; ++i, ++iter) { |
| const ASTNode& rawSize = *iter; |
| if (rawSize) { |
| auto size = this->coerce(this->convertExpression(rawSize), *fContext.fInt_Type); |
| if (!size) { |
| return nullptr; |
| } |
| String name(type->fName); |
| int64_t count; |
| if (size->fKind == Expression::kIntLiteral_Kind) { |
| count = size->as<IntLiteral>().fValue; |
| if (count <= 0) { |
| fErrors.error(size->fOffset, "array size must be positive"); |
| return nullptr; |
| } |
| name += "[" + to_string(count) + "]"; |
| } else { |
| fErrors.error(size->fOffset, "array size must be specified"); |
| return nullptr; |
| } |
| type = fSymbolTable->takeOwnershipOfSymbol( |
| std::make_unique<Type>(name, Type::kArray_Kind, *type, (int)count)); |
| sizes.push_back(std::move(size)); |
| } else { |
| type = fSymbolTable->takeOwnershipOfSymbol(std::make_unique<Type>( |
| type->name() + "[]", Type::kArray_Kind, *type, /*columns=*/-1)); |
| sizes.push_back(nullptr); |
| } |
| } |
| auto var = std::make_unique<Variable>(varDecl.fOffset, modifiers, varData.fName, *type, |
| storage); |
| if (var->fName == Compiler::RTADJUST_NAME) { |
| SkASSERT(!fRTAdjust); |
| SkASSERT(var->fType == *fContext.fFloat4_Type); |
| fRTAdjust = var.get(); |
| } |
| std::unique_ptr<Expression> value; |
| if (iter != varDecl.end()) { |
| value = this->convertExpression(*iter); |
| if (!value) { |
| return nullptr; |
| } |
| value = this->coerce(std::move(value), *type); |
| if (!value) { |
| return nullptr; |
| } |
| var->fWriteCount = 1; |
| var->fInitialValue = value.get(); |
| } |
| const Symbol* symbol = (*fSymbolTable)[var->fName]; |
| if (symbol && storage == Variable::kGlobal_Storage && var->fName == "sk_FragColor") { |
| // Already defined, ignore. |
| } else if (symbol && storage == Variable::kGlobal_Storage && |
| symbol->fKind == Symbol::kVariable_Kind && |
| symbol->as<Variable>().fModifiers.fLayout.fBuiltin >= 0) { |
| // Already defined, just update the modifiers. |
| symbol->as<Variable>().fModifiers = var->fModifiers; |
| } else { |
| variables.emplace_back(std::make_unique<VarDeclaration>(var.get(), std::move(sizes), |
| std::move(value))); |
| StringFragment name = var->fName; |
| fSymbolTable->add(name, std::move(var)); |
| } |
| } |
| return std::make_unique<VarDeclarations>(decls.fOffset, baseType, std::move(variables)); |
| } |
| |
| std::unique_ptr<ModifiersDeclaration> IRGenerator::convertModifiersDeclaration(const ASTNode& m) { |
| SkASSERT(m.fKind == ASTNode::Kind::kModifiers); |
| Modifiers modifiers = m.getModifiers(); |
| if (modifiers.fLayout.fInvocations != -1) { |
| if (fKind != Program::kGeometry_Kind) { |
| fErrors.error(m.fOffset, "'invocations' is only legal in geometry shaders"); |
| return nullptr; |
| } |
| fInvocations = modifiers.fLayout.fInvocations; |
| if (fSettings->fCaps && !fSettings->fCaps->gsInvocationsSupport()) { |
| modifiers.fLayout.fInvocations = -1; |
| const Variable& invocationId = (*fSymbolTable)["sk_InvocationID"]->as<Variable>(); |
| invocationId.fModifiers.fFlags = 0; |
| invocationId.fModifiers.fLayout.fBuiltin = -1; |
| if (modifiers.fLayout.description() == "") { |
| return nullptr; |
| } |
| } |
| } |
| if (modifiers.fLayout.fMaxVertices != -1 && fInvocations > 0 && fSettings->fCaps && |
| !fSettings->fCaps->gsInvocationsSupport()) { |
| modifiers.fLayout.fMaxVertices *= fInvocations; |
| } |
| return std::make_unique<ModifiersDeclaration>(modifiers); |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertIf(const ASTNode& n) { |
| SkASSERT(n.fKind == ASTNode::Kind::kIf); |
| auto iter = n.begin(); |
| std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*(iter++)), |
| *fContext.fBool_Type); |
| if (!test) { |
| return nullptr; |
| } |
| std::unique_ptr<Statement> ifTrue = this->convertStatement(*(iter++)); |
| if (!ifTrue) { |
| return nullptr; |
| } |
| std::unique_ptr<Statement> ifFalse; |
| if (iter != n.end()) { |
| ifFalse = this->convertStatement(*(iter++)); |
| if (!ifFalse) { |
| return nullptr; |
| } |
| } |
| if (test->fKind == Expression::kBoolLiteral_Kind) { |
| // static boolean value, fold down to a single branch |
| if (test->as<BoolLiteral>().fValue) { |
| return ifTrue; |
| } else if (ifFalse) { |
| return ifFalse; |
| } else { |
| // False & no else clause. Not an error, so don't return null! |
| std::vector<std::unique_ptr<Statement>> empty; |
| return std::unique_ptr<Statement>(new Block(n.fOffset, std::move(empty), |
| fSymbolTable)); |
| } |
| } |
| return std::unique_ptr<Statement>(new IfStatement(n.fOffset, n.getBool(), std::move(test), |
| std::move(ifTrue), std::move(ifFalse))); |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertFor(const ASTNode& f) { |
| SkASSERT(f.fKind == ASTNode::Kind::kFor); |
| AutoLoopLevel level(this); |
| AutoSymbolTable table(this); |
| std::unique_ptr<Statement> initializer; |
| auto iter = f.begin(); |
| if (*iter) { |
| initializer = this->convertStatement(*iter); |
| if (!initializer) { |
| return nullptr; |
| } |
| } |
| ++iter; |
| std::unique_ptr<Expression> test; |
| if (*iter) { |
| AutoDisableInline disableInline(this); |
| test = this->coerce(this->convertExpression(*iter), *fContext.fBool_Type); |
| if (!test) { |
| return nullptr; |
| } |
| |
| } |
| ++iter; |
| std::unique_ptr<Expression> next; |
| if (*iter) { |
| AutoDisableInline disableInline(this); |
| next = this->convertExpression(*iter); |
| if (!next) { |
| return nullptr; |
| } |
| this->checkValid(*next); |
| } |
| ++iter; |
| std::unique_ptr<Statement> statement = this->convertStatement(*iter); |
| if (!statement) { |
| return nullptr; |
| } |
| return std::make_unique<ForStatement>(f.fOffset, std::move(initializer), std::move(test), |
| std::move(next), std::move(statement), fSymbolTable); |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertWhile(const ASTNode& w) { |
| SkASSERT(w.fKind == ASTNode::Kind::kWhile); |
| AutoLoopLevel level(this); |
| std::unique_ptr<Expression> test; |
| auto iter = w.begin(); |
| { |
| AutoDisableInline disableInline(this); |
| test = this->coerce(this->convertExpression(*(iter++)), *fContext.fBool_Type); |
| } |
| if (!test) { |
| return nullptr; |
| } |
| std::unique_ptr<Statement> statement = this->convertStatement(*(iter++)); |
| if (!statement) { |
| return nullptr; |
| } |
| return std::make_unique<WhileStatement>(w.fOffset, std::move(test), std::move(statement)); |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertDo(const ASTNode& d) { |
| SkASSERT(d.fKind == ASTNode::Kind::kDo); |
| AutoLoopLevel level(this); |
| auto iter = d.begin(); |
| std::unique_ptr<Statement> statement = this->convertStatement(*(iter++)); |
| if (!statement) { |
| return nullptr; |
| } |
| std::unique_ptr<Expression> test; |
| { |
| AutoDisableInline disableInline(this); |
| test = this->coerce(this->convertExpression(*(iter++)), *fContext.fBool_Type); |
| } |
| if (!test) { |
| return nullptr; |
| } |
| return std::make_unique<DoStatement>(d.fOffset, std::move(statement), std::move(test)); |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertSwitch(const ASTNode& s) { |
| SkASSERT(s.fKind == ASTNode::Kind::kSwitch); |
| AutoSwitchLevel level(this); |
| auto iter = s.begin(); |
| std::unique_ptr<Expression> value = this->convertExpression(*(iter++)); |
| if (!value) { |
| return nullptr; |
| } |
| if (value->fType != *fContext.fUInt_Type && value->fType.kind() != Type::kEnum_Kind) { |
| value = this->coerce(std::move(value), *fContext.fInt_Type); |
| if (!value) { |
| return nullptr; |
| } |
| } |
| AutoSymbolTable table(this); |
| std::unordered_set<int> caseValues; |
| std::vector<std::unique_ptr<SwitchCase>> cases; |
| for (; iter != s.end(); ++iter) { |
| const ASTNode& c = *iter; |
| SkASSERT(c.fKind == ASTNode::Kind::kSwitchCase); |
| std::unique_ptr<Expression> caseValue; |
| auto childIter = c.begin(); |
| if (*childIter) { |
| caseValue = this->convertExpression(*childIter); |
| if (!caseValue) { |
| return nullptr; |
| } |
| caseValue = this->coerce(std::move(caseValue), value->fType); |
| if (!caseValue) { |
| return nullptr; |
| } |
| int64_t v = 0; |
| if (!this->getConstantInt(*caseValue, &v)) { |
| fErrors.error(caseValue->fOffset, "case value must be a constant integer"); |
| return nullptr; |
| } |
| if (caseValues.find(v) != caseValues.end()) { |
| fErrors.error(caseValue->fOffset, "duplicate case value"); |
| } |
| caseValues.insert(v); |
| } |
| ++childIter; |
| std::vector<std::unique_ptr<Statement>> statements; |
| for (; childIter != c.end(); ++childIter) { |
| std::unique_ptr<Statement> converted = this->convertStatement(*childIter); |
| if (!converted) { |
| return nullptr; |
| } |
| statements.push_back(std::move(converted)); |
| } |
| cases.emplace_back(new SwitchCase(c.fOffset, std::move(caseValue), |
| std::move(statements))); |
| } |
| return std::unique_ptr<Statement>(new SwitchStatement(s.fOffset, s.getBool(), |
| std::move(value), std::move(cases), |
| fSymbolTable)); |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertExpressionStatement(const ASTNode& s) { |
| std::unique_ptr<Expression> e = this->convertExpression(s); |
| if (!e) { |
| return nullptr; |
| } |
| this->checkValid(*e); |
| return std::unique_ptr<Statement>(new ExpressionStatement(std::move(e))); |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertReturn(const ASTNode& r) { |
| SkASSERT(r.fKind == ASTNode::Kind::kReturn); |
| SkASSERT(fCurrentFunction); |
| // early returns from a vertex main function will bypass the sk_Position normalization, so |
| // SkASSERT that we aren't doing that. It is of course possible to fix this by adding a |
| // normalization before each return, but it will probably never actually be necessary. |
| SkASSERT(Program::kVertex_Kind != fKind || !fRTAdjust || "main" != fCurrentFunction->fName); |
| if (r.begin() != r.end()) { |
| std::unique_ptr<Expression> result = this->convertExpression(*r.begin()); |
| if (!result) { |
| return nullptr; |
| } |
| if (fCurrentFunction->fReturnType == *fContext.fVoid_Type) { |
| fErrors.error(result->fOffset, "may not return a value from a void function"); |
| } else { |
| result = this->coerce(std::move(result), fCurrentFunction->fReturnType); |
| if (!result) { |
| return nullptr; |
| } |
| } |
| return std::unique_ptr<Statement>(new ReturnStatement(std::move(result))); |
| } else { |
| if (fCurrentFunction->fReturnType != *fContext.fVoid_Type) { |
| fErrors.error(r.fOffset, "expected function to return '" + |
| fCurrentFunction->fReturnType.displayName() + "'"); |
| } |
| return std::unique_ptr<Statement>(new ReturnStatement(r.fOffset)); |
| } |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertBreak(const ASTNode& b) { |
| SkASSERT(b.fKind == ASTNode::Kind::kBreak); |
| if (fLoopLevel > 0 || fSwitchLevel > 0) { |
| return std::unique_ptr<Statement>(new BreakStatement(b.fOffset)); |
| } else { |
| fErrors.error(b.fOffset, "break statement must be inside a loop or switch"); |
| return nullptr; |
| } |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertContinue(const ASTNode& c) { |
| SkASSERT(c.fKind == ASTNode::Kind::kContinue); |
| if (fLoopLevel > 0) { |
| return std::unique_ptr<Statement>(new ContinueStatement(c.fOffset)); |
| } else { |
| fErrors.error(c.fOffset, "continue statement must be inside a loop"); |
| return nullptr; |
| } |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::convertDiscard(const ASTNode& d) { |
| SkASSERT(d.fKind == ASTNode::Kind::kDiscard); |
| return std::unique_ptr<Statement>(new DiscardStatement(d.fOffset)); |
| } |
| |
| std::unique_ptr<Block> IRGenerator::applyInvocationIDWorkaround(std::unique_ptr<Block> main) { |
| Layout invokeLayout; |
| Modifiers invokeModifiers(invokeLayout, Modifiers::kHasSideEffects_Flag); |
| const FunctionDeclaration* invokeDecl = fSymbolTable->add( |
| "_invoke", std::make_unique<FunctionDeclaration>(/*offset=*/-1, |
| invokeModifiers, |
| "_invoke", |
| std::vector<const Variable*>(), |
| *fContext.fVoid_Type, |
| /*builtin=*/false)); |
| fProgramElements->push_back(std::make_unique<FunctionDefinition>(/*offset=*/-1, |
| *invokeDecl, |
| std::move(main))); |
| |
| std::vector<std::unique_ptr<VarDeclaration>> variables; |
| const Variable* loopIdx = &(*fSymbolTable)["sk_InvocationID"]->as<Variable>(); |
| std::unique_ptr<Expression> test(new BinaryExpression(-1, |
| std::unique_ptr<Expression>(new VariableReference(-1, *loopIdx)), |
| Token::Kind::TK_LT, |
| std::make_unique<IntLiteral>(fContext, -1, fInvocations), |
| *fContext.fBool_Type)); |
| std::unique_ptr<Expression> next(new PostfixExpression( |
| std::unique_ptr<Expression>( |
| new VariableReference(-1, |
| *loopIdx, |
| VariableReference::kReadWrite_RefKind)), |
| Token::Kind::TK_PLUSPLUS)); |
| ASTNode endPrimitiveID(&fFile->fNodes, -1, ASTNode::Kind::kIdentifier, "EndPrimitive"); |
| std::unique_ptr<Expression> endPrimitive = this->convertExpression(endPrimitiveID); |
| SkASSERT(endPrimitive); |
| |
| std::vector<std::unique_ptr<Statement>> loopBody; |
| std::vector<std::unique_ptr<Expression>> invokeArgs; |
| loopBody.push_back(std::unique_ptr<Statement>(new ExpressionStatement( |
| this->call(-1, |
| *invokeDecl, |
| std::vector<std::unique_ptr<Expression>>())))); |
| loopBody.push_back(std::unique_ptr<Statement>(new ExpressionStatement( |
| this->call(-1, |
| std::move(endPrimitive), |
| std::vector<std::unique_ptr<Expression>>())))); |
| std::unique_ptr<Expression> assignment(new BinaryExpression(-1, |
| std::unique_ptr<Expression>(new VariableReference(-1, *loopIdx, |
| VariableReference::kWrite_RefKind)), |
| Token::Kind::TK_EQ, |
| std::make_unique<IntLiteral>(fContext, -1, 0), |
| *fContext.fInt_Type)); |
| std::unique_ptr<Statement> initializer(new ExpressionStatement(std::move(assignment))); |
| std::unique_ptr<Statement> loop = std::unique_ptr<Statement>( |
| new ForStatement(-1, |
| std::move(initializer), |
| std::move(test), |
| std::move(next), |
| std::make_unique<Block>(-1, std::move(loopBody)), |
| fSymbolTable)); |
| std::vector<std::unique_ptr<Statement>> children; |
| children.push_back(std::move(loop)); |
| return std::make_unique<Block>(-1, std::move(children)); |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::getNormalizeSkPositionCode() { |
| // sk_Position = float4(sk_Position.xy * rtAdjust.xz + sk_Position.ww * rtAdjust.yw, |
| // 0, |
| // sk_Position.w); |
| SkASSERT(fSkPerVertex && fRTAdjust); |
| #define REF(var) std::unique_ptr<Expression>(\ |
| new VariableReference(-1, *var, VariableReference::kRead_RefKind)) |
| #define WREF(var) std::unique_ptr<Expression>(\ |
| new VariableReference(-1, *var, VariableReference::kWrite_RefKind)) |
| #define FIELD(var, idx) std::unique_ptr<Expression>(\ |
| new FieldAccess(REF(var), idx, FieldAccess::kAnonymousInterfaceBlock_OwnerKind)) |
| #define POS std::unique_ptr<Expression>(new FieldAccess(WREF(fSkPerVertex), 0, \ |
| FieldAccess::kAnonymousInterfaceBlock_OwnerKind)) |
| #define ADJUST (fRTAdjustInterfaceBlock ? \ |
| FIELD(fRTAdjustInterfaceBlock, fRTAdjustFieldIndex) : \ |
| REF(fRTAdjust)) |
| #define SWIZZLE(expr, ...) std::unique_ptr<Expression>(new Swizzle(fContext, expr, \ |
| { __VA_ARGS__ })) |
| #define OP(left, op, right) std::unique_ptr<Expression>( \ |
| new BinaryExpression(-1, left, op, right, \ |
| *fContext.fFloat2_Type)) |
| std::vector<std::unique_ptr<Expression>> children; |
| children.push_back(OP(OP(SWIZZLE(POS, 0, 1), Token::Kind::TK_STAR, SWIZZLE(ADJUST, 0, 2)), |
| Token::Kind::TK_PLUS, |
| OP(SWIZZLE(POS, 3, 3), Token::Kind::TK_STAR, SWIZZLE(ADJUST, 1, 3)))); |
| children.push_back(std::unique_ptr<Expression>(new FloatLiteral(fContext, -1, 0.0))); |
| children.push_back(SWIZZLE(POS, 3)); |
| std::unique_ptr<Expression> result = OP(POS, Token::Kind::TK_EQ, |
| std::unique_ptr<Expression>(new Constructor(-1, |
| *fContext.fFloat4_Type, |
| std::move(children)))); |
| return std::unique_ptr<Statement>(new ExpressionStatement(std::move(result))); |
| } |
| |
| template<typename T> |
| class AutoClear { |
| public: |
| AutoClear(T* container) |
| : fContainer(container) { |
| SkASSERT(container->empty()); |
| } |
| |
| ~AutoClear() { |
| fContainer->clear(); |
| } |
| |
| private: |
| T* fContainer; |
| }; |
| |
| template <typename T> AutoClear(T* c) -> AutoClear<T>; |
| |
| void IRGenerator::checkModifiers(int offset, const Modifiers& modifiers, int permitted) { |
| int flags = modifiers.fFlags; |
| #define CHECK(flag, name) \ |
| if (!flags) return; \ |
| if (flags & flag) { \ |
| if (!(permitted & flag)) { \ |
| fErrors.error(offset, "'" name "' is not permitted here"); \ |
| } \ |
| flags &= ~flag; \ |
| } |
| CHECK(Modifiers::kConst_Flag, "const") |
| CHECK(Modifiers::kIn_Flag, "in") |
| CHECK(Modifiers::kOut_Flag, "out") |
| CHECK(Modifiers::kUniform_Flag, "uniform") |
| CHECK(Modifiers::kFlat_Flag, "flat") |
| CHECK(Modifiers::kNoPerspective_Flag, "noperspective") |
| CHECK(Modifiers::kReadOnly_Flag, "readonly") |
| CHECK(Modifiers::kWriteOnly_Flag, "writeonly") |
| CHECK(Modifiers::kCoherent_Flag, "coherent") |
| CHECK(Modifiers::kVolatile_Flag, "volatile") |
| CHECK(Modifiers::kRestrict_Flag, "restrict") |
| CHECK(Modifiers::kBuffer_Flag, "buffer") |
| CHECK(Modifiers::kHasSideEffects_Flag, "sk_has_side_effects") |
| CHECK(Modifiers::kPLS_Flag, "__pixel_localEXT") |
| CHECK(Modifiers::kPLSIn_Flag, "__pixel_local_inEXT") |
| CHECK(Modifiers::kPLSOut_Flag, "__pixel_local_outEXT") |
| CHECK(Modifiers::kVarying_Flag, "varying") |
| CHECK(Modifiers::kInline_Flag, "inline") |
| SkASSERT(flags == 0); |
| } |
| |
| void IRGenerator::convertFunction(const ASTNode& f) { |
| AutoClear clear(&fReferencedIntrinsics); |
| auto iter = f.begin(); |
| const Type* returnType = this->convertType(*(iter++)); |
| if (returnType == nullptr) { |
| return; |
| } |
| auto type_is_allowed = [&](const Type* t) { |
| #if defined(SKSL_STANDALONE) |
| return true; |
| #else |
| GrSLType unusedSLType; |
| return fKind != Program::kPipelineStage_Kind || |
| type_to_grsltype(fContext, *t, &unusedSLType); |
| #endif |
| }; |
| if (returnType->nonnullable() == *fContext.fFragmentProcessor_Type || |
| !type_is_allowed(returnType)) { |
| fErrors.error(f.fOffset, |
| "functions may not return type '" + returnType->displayName() + "'"); |
| return; |
| } |
| const ASTNode::FunctionData& funcData = f.getFunctionData(); |
| this->checkModifiers(f.fOffset, funcData.fModifiers, Modifiers::kHasSideEffects_Flag | |
| Modifiers::kInline_Flag); |
| std::vector<const Variable*> parameters; |
| for (size_t i = 0; i < funcData.fParameterCount; ++i) { |
| const ASTNode& param = *(iter++); |
| SkASSERT(param.fKind == ASTNode::Kind::kParameter); |
| ASTNode::ParameterData pd = param.getParameterData(); |
| this->checkModifiers(param.fOffset, pd.fModifiers, Modifiers::kIn_Flag | |
| Modifiers::kOut_Flag); |
| auto paramIter = param.begin(); |
| const Type* type = this->convertType(*(paramIter++)); |
| if (!type) { |
| return; |
| } |
| for (int j = (int) pd.fSizeCount; j >= 1; j--) { |
| int size = (param.begin() + j)->getInt(); |
| String name = type->name() + "[" + to_string(size) + "]"; |
| type = fSymbolTable->takeOwnershipOfSymbol( |
| std::make_unique<Type>(std::move(name), Type::kArray_Kind, *type, size)); |
| } |
| // Only the (builtin) declarations of 'sample' are allowed to have FP parameters |
| if ((type->nonnullable() == *fContext.fFragmentProcessor_Type && !fIsBuiltinCode) || |
| !type_is_allowed(type)) { |
| fErrors.error(param.fOffset, |
| "parameters of type '" + type->displayName() + "' not allowed"); |
| return; |
| } |
| StringFragment name = pd.fName; |
| const Variable* var = fSymbolTable->takeOwnershipOfSymbol(std::make_unique<Variable>( |
| param.fOffset, pd.fModifiers, name, *type, Variable::kParameter_Storage)); |
| parameters.push_back(var); |
| } |
| |
| auto paramIsCoords = [&](int idx) { |
| return parameters[idx]->fType == *fContext.fFloat2_Type && |
| parameters[idx]->fModifiers.fFlags == 0; |
| }; |
| |
| if (funcData.fName == "main") { |
| switch (fKind) { |
| case Program::kPipelineStage_Kind: { |
| // half4 main() -or- half4 main(float2) |
| bool valid = (*returnType == *fContext.fHalf4_Type) && |
| ((parameters.size() == 0) || |
| (parameters.size() == 1 && paramIsCoords(0))); |
| if (!valid) { |
| fErrors.error(f.fOffset, "pipeline stage 'main' must be declared " |
| "half4 main() or half4 main(float2)"); |
| return; |
| } |
| break; |
| } |
| case Program::kFragmentProcessor_Kind: { |
| bool valid = (parameters.size() == 0) || |
| (parameters.size() == 1 && paramIsCoords(0)); |
| if (!valid) { |
| fErrors.error(f.fOffset, ".fp 'main' must be declared main() or main(float2)"); |
| return; |
| } |
| break; |
| } |
| case Program::kGeneric_Kind: |
| break; |
| default: |
| if (parameters.size()) { |
| fErrors.error(f.fOffset, "shader 'main' must have zero parameters"); |
| } |
| } |
| } |
| |
| // find existing declaration |
| const FunctionDeclaration* decl = nullptr; |
| const Symbol* entry = (*fSymbolTable)[funcData.fName]; |
| if (entry) { |
| std::vector<const FunctionDeclaration*> functions; |
| switch (entry->fKind) { |
| case Symbol::kUnresolvedFunction_Kind: |
| functions = entry->as<UnresolvedFunction>().fFunctions; |
| break; |
| case Symbol::kFunctionDeclaration_Kind: |
| functions.push_back(&entry->as<FunctionDeclaration>()); |
| break; |
| default: |
| fErrors.error(f.fOffset, "symbol '" + funcData.fName + "' was already defined"); |
| return; |
| } |
| for (const FunctionDeclaration* other : functions) { |
| SkASSERT(other->fName == funcData.fName); |
| if (parameters.size() == other->fParameters.size()) { |
| bool match = true; |
| for (size_t i = 0; i < parameters.size(); i++) { |
| if (parameters[i]->fType != other->fParameters[i]->fType) { |
| match = false; |
| break; |
| } |
| } |
| if (match) { |
| if (*returnType != other->fReturnType) { |
| FunctionDeclaration newDecl(f.fOffset, funcData.fModifiers, funcData.fName, |
| parameters, *returnType, fIsBuiltinCode); |
| fErrors.error(f.fOffset, "functions '" + newDecl.description() + |
| "' and '" + other->description() + |
| "' differ only in return type"); |
| return; |
| } |
| decl = other; |
| for (size_t i = 0; i < parameters.size(); i++) { |
| if (parameters[i]->fModifiers != other->fParameters[i]->fModifiers) { |
| fErrors.error(f.fOffset, "modifiers on parameter " + |
| to_string((uint64_t) i + 1) + |
| " differ between declaration and definition"); |
| return; |
| } |
| } |
| if (other->fDefinition && !other->fBuiltin) { |
| fErrors.error(f.fOffset, "duplicate definition of " + other->description()); |
| } |
| break; |
| } |
| } |
| } |
| } |
| if (!decl) { |
| // Conservatively assume all user-defined functions have side effects. |
| Modifiers declModifiers = funcData.fModifiers; |
| if (!fIsBuiltinCode) { |
| declModifiers.fFlags |= Modifiers::kHasSideEffects_Flag; |
| } |
| |
| // Create a new declaration. |
| decl = fSymbolTable->add(funcData.fName, |
| std::make_unique<FunctionDeclaration>(f.fOffset, |
| declModifiers, |
| funcData.fName, |
| parameters, |
| *returnType, |
| fIsBuiltinCode)); |
| } |
| if (iter != f.end()) { |
| // compile body |
| SkASSERT(!fCurrentFunction); |
| fCurrentFunction = decl; |
| std::shared_ptr<SymbolTable> old = fSymbolTable; |
| AutoSymbolTable table(this); |
| if (funcData.fName == "main" && (fKind == Program::kPipelineStage_Kind || |
| fKind == Program::kFragmentProcessor_Kind)) { |
| if (parameters.size() == 1) { |
| SkASSERT(paramIsCoords(0)); |
| parameters[0]->fModifiers.fLayout.fBuiltin = SK_MAIN_COORDS_BUILTIN; |
| } |
| } |
| for (size_t i = 0; i < parameters.size(); i++) { |
| fSymbolTable->addWithoutOwnership(parameters[i]->fName, decl->fParameters[i]); |
| } |
| bool needInvocationIDWorkaround = fInvocations != -1 && funcData.fName == "main" && |
| fSettings->fCaps && |
| !fSettings->fCaps->gsInvocationsSupport(); |
| std::unique_ptr<Block> body = this->convertBlock(*iter); |
| fCurrentFunction = nullptr; |
| if (!body) { |
| return; |
| } |
| if (needInvocationIDWorkaround) { |
| body = this->applyInvocationIDWorkaround(std::move(body)); |
| } |
| if (Program::kVertex_Kind == fKind && funcData.fName == "main" && fRTAdjust) { |
| body->fStatements.insert(body->fStatements.end(), this->getNormalizeSkPositionCode()); |
| } |
| auto result = std::make_unique<FunctionDefinition>(f.fOffset, *decl, std::move(body), |
| std::move(fReferencedIntrinsics)); |
| decl->fDefinition = result.get(); |
| result->fSource = &f; |
| fProgramElements->push_back(std::move(result)); |
| } |
| } |
| |
| std::unique_ptr<InterfaceBlock> IRGenerator::convertInterfaceBlock(const ASTNode& intf) { |
| SkASSERT(intf.fKind == ASTNode::Kind::kInterfaceBlock); |
| ASTNode::InterfaceBlockData id = intf.getInterfaceBlockData(); |
| std::shared_ptr<SymbolTable> old = fSymbolTable; |
| this->pushSymbolTable(); |
| std::shared_ptr<SymbolTable> symbols = fSymbolTable; |
| std::vector<Type::Field> fields; |
| bool haveRuntimeArray = false; |
| bool foundRTAdjust = false; |
| auto iter = intf.begin(); |
| for (size_t i = 0; i < id.fDeclarationCount; ++i) { |
| std::unique_ptr<VarDeclarations> decl = this->convertVarDeclarations( |
| *(iter++), |
| Variable::kInterfaceBlock_Storage); |
| if (!decl) { |
| return nullptr; |
| } |
| for (const auto& stmt : decl->fVars) { |
| VarDeclaration& vd = stmt->as<VarDeclaration>(); |
| if (haveRuntimeArray) { |
| fErrors.error(decl->fOffset, |
| "only the last entry in an interface block may be a runtime-sized " |
| "array"); |
| } |
| if (vd.fVar == fRTAdjust) { |
| foundRTAdjust = true; |
| SkASSERT(vd.fVar->fType == *fContext.fFloat4_Type); |
| fRTAdjustFieldIndex = fields.size(); |
| } |
| fields.push_back(Type::Field(vd.fVar->fModifiers, vd.fVar->fName, |
| &vd.fVar->fType)); |
| if (vd.fValue) { |
| fErrors.error(decl->fOffset, |
| "initializers are not permitted on interface block fields"); |
| } |
| if (vd.fVar->fType.kind() == Type::kArray_Kind && |
| vd.fVar->fType.columns() == -1) { |
| haveRuntimeArray = true; |
| } |
| } |
| } |
| this->popSymbolTable(); |
| const Type* type = |
| old->takeOwnershipOfSymbol(std::make_unique<Type>(intf.fOffset, id.fTypeName, fields)); |
| std::vector<std::unique_ptr<Expression>> sizes; |
| for (size_t i = 0; i < id.fSizeCount; ++i) { |
| const ASTNode& size = *(iter++); |
| if (size) { |
| std::unique_ptr<Expression> converted = this->convertExpression(size); |
| if (!converted) { |
| return nullptr; |
| } |
| String name = type->fName; |
| int64_t count; |
| if (converted->fKind == Expression::kIntLiteral_Kind) { |
| count = converted->as<IntLiteral>().fValue; |
| if (count <= 0) { |
| fErrors.error(converted->fOffset, "array size must be positive"); |
| return nullptr; |
| } |
| name += "[" + to_string(count) + "]"; |
| } else { |
| fErrors.error(intf.fOffset, "array size must be specified"); |
| return nullptr; |
| } |
| type = symbols->takeOwnershipOfSymbol( |
| std::make_unique<Type>(name, Type::kArray_Kind, *type, (int)count)); |
| sizes.push_back(std::move(converted)); |
| } else { |
| fErrors.error(intf.fOffset, "array size must be specified"); |
| return nullptr; |
| } |
| } |
| const Variable* var = old->takeOwnershipOfSymbol( |
| std::make_unique<Variable>(intf.fOffset, |
| id.fModifiers, |
| id.fInstanceName.fLength ? id.fInstanceName : id.fTypeName, |
| *type, |
| Variable::kGlobal_Storage)); |
| if (foundRTAdjust) { |
| fRTAdjustInterfaceBlock = var; |
| } |
| if (id.fInstanceName.fLength) { |
| old->addWithoutOwnership(id.fInstanceName, var); |
| } else { |
| for (size_t i = 0; i < fields.size(); i++) { |
| old->add(fields[i].fName, std::make_unique<Field>(intf.fOffset, *var, (int)i)); |
| } |
| } |
| return std::make_unique<InterfaceBlock>(intf.fOffset, |
| var, |
| id.fTypeName, |
| id.fInstanceName, |
| std::move(sizes), |
| symbols); |
| } |
| |
| bool IRGenerator::getConstantInt(const Expression& value, int64_t* out) { |
| switch (value.fKind) { |
| case Expression::kIntLiteral_Kind: |
| *out = static_cast<const IntLiteral&>(value).fValue; |
| return true; |
| case Expression::kVariableReference_Kind: { |
| const Variable& var = static_cast<const VariableReference&>(value).fVariable; |
| return (var.fModifiers.fFlags & Modifiers::kConst_Flag) && |
| var.fInitialValue && |
| this->getConstantInt(*var.fInitialValue, out); |
| } |
| default: |
| return false; |
| } |
| } |
| |
| void IRGenerator::convertEnum(const ASTNode& e) { |
| SkASSERT(e.fKind == ASTNode::Kind::kEnum); |
| int64_t currentValue = 0; |
| Layout layout; |
| ASTNode enumType(e.fNodes, e.fOffset, ASTNode::Kind::kType, |
| ASTNode::TypeData(e.getString(), false, false)); |
| const Type* type = this->convertType(enumType); |
| Modifiers modifiers(layout, Modifiers::kConst_Flag); |
| AutoSymbolTable table(this); |
| for (auto iter = e.begin(); iter != e.end(); ++iter) { |
| const ASTNode& child = *iter; |
| SkASSERT(child.fKind == ASTNode::Kind::kEnumCase); |
| std::unique_ptr<Expression> value; |
| if (child.begin() != child.end()) { |
| value = this->convertExpression(*child.begin()); |
| if (!value) { |
| return; |
| } |
| if (!this->getConstantInt(*value, ¤tValue)) { |
| fErrors.error(value->fOffset, "enum value must be a constant integer"); |
| return; |
| } |
| } |
| value = std::unique_ptr<Expression>(new IntLiteral(fContext, e.fOffset, currentValue)); |
| ++currentValue; |
| fSymbolTable->add(child.getString(), |
| std::make_unique<Variable>(e.fOffset, modifiers, child.getString(), *type, |
| Variable::kGlobal_Storage, value.get())); |
| fSymbolTable->takeOwnershipOfIRNode(std::move(value)); |
| } |
| fProgramElements->push_back(std::unique_ptr<ProgramElement>( |
| new Enum(e.fOffset, e.getString(), fSymbolTable, fIsBuiltinCode))); |
| } |
| |
| const Type* IRGenerator::convertType(const ASTNode& type) { |
| ASTNode::TypeData td = type.getTypeData(); |
| const Symbol* result = (*fSymbolTable)[td.fName]; |
| if (result && result->fKind == Symbol::kType_Kind) { |
| if (td.fIsNullable) { |
| if (result->as<Type>() == *fContext.fFragmentProcessor_Type) { |
| if (type.begin() != type.end()) { |
| fErrors.error(type.fOffset, "type '" + td.fName + "' may not be used in " |
| "an array"); |
| } |
| result = fSymbolTable->takeOwnershipOfSymbol(std::make_unique<Type>( |
| String(result->fName) + "?", Type::kNullable_Kind, result->as<Type>())); |
| } else { |
| fErrors.error(type.fOffset, "type '" + td.fName + "' may not be nullable"); |
| } |
| } |
| for (const auto& size : type) { |
| String name(result->fName); |
| name += "["; |
| if (size) { |
| name += to_string(size.getInt()); |
| } |
| name += "]"; |
| result = fSymbolTable->takeOwnershipOfSymbol(std::make_unique<Type>( |
| name, Type::kArray_Kind, result->as<Type>(), size ? size.getInt() : 0)); |
| } |
| return &result->as<Type>(); |
| } |
| fErrors.error(type.fOffset, "unknown type '" + td.fName + "'"); |
| return nullptr; |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertExpression(const ASTNode& expr) { |
| switch (expr.fKind) { |
| case ASTNode::Kind::kBinary: |
| return this->convertBinaryExpression(expr); |
| case ASTNode::Kind::kBool: |
| return std::unique_ptr<Expression>(new BoolLiteral(fContext, expr.fOffset, |
| expr.getBool())); |
| case ASTNode::Kind::kCall: |
| return this->convertCallExpression(expr); |
| case ASTNode::Kind::kField: |
| return this->convertFieldExpression(expr); |
| case ASTNode::Kind::kFloat: |
| return std::unique_ptr<Expression>(new FloatLiteral(fContext, expr.fOffset, |
| expr.getFloat())); |
| case ASTNode::Kind::kIdentifier: |
| return this->convertIdentifier(expr); |
| case ASTNode::Kind::kIndex: |
| return this->convertIndexExpression(expr); |
| case ASTNode::Kind::kInt: |
| return std::unique_ptr<Expression>(new IntLiteral(fContext, expr.fOffset, |
| expr.getInt())); |
| case ASTNode::Kind::kNull: |
| return std::unique_ptr<Expression>(new NullLiteral(fContext, expr.fOffset)); |
| case ASTNode::Kind::kPostfix: |
| return this->convertPostfixExpression(expr); |
| case ASTNode::Kind::kPrefix: |
| return this->convertPrefixExpression(expr); |
| case ASTNode::Kind::kTernary: |
| return this->convertTernaryExpression(expr); |
| default: |
| #ifdef SK_DEBUG |
| ABORT("unsupported expression: %s\n", expr.description().c_str()); |
| #endif |
| return nullptr; |
| } |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertIdentifier(const ASTNode& identifier) { |
| SkASSERT(identifier.fKind == ASTNode::Kind::kIdentifier); |
| const Symbol* result = (*fSymbolTable)[identifier.getString()]; |
| if (!result) { |
| fErrors.error(identifier.fOffset, "unknown identifier '" + identifier.getString() + "'"); |
| return nullptr; |
| } |
| switch (result->fKind) { |
| case Symbol::kFunctionDeclaration_Kind: { |
| std::vector<const FunctionDeclaration*> f = { |
| &result->as<FunctionDeclaration>() |
| }; |
| return std::make_unique<FunctionReference>(fContext, identifier.fOffset, f); |
| } |
| case Symbol::kUnresolvedFunction_Kind: { |
| const UnresolvedFunction* f = &result->as<UnresolvedFunction>(); |
| return std::make_unique<FunctionReference>(fContext, identifier.fOffset, f->fFunctions); |
| } |
| case Symbol::kVariable_Kind: { |
| const Variable* var = &result->as<Variable>(); |
| switch (var->fModifiers.fLayout.fBuiltin) { |
| case SK_WIDTH_BUILTIN: |
| fInputs.fRTWidth = true; |
| break; |
| case SK_HEIGHT_BUILTIN: |
| fInputs.fRTHeight = true; |
| break; |
| #ifndef SKSL_STANDALONE |
| case SK_FRAGCOORD_BUILTIN: |
| fInputs.fFlipY = true; |
| if (fSettings->fFlipY && |
| (!fSettings->fCaps || |
| !fSettings->fCaps->fragCoordConventionsExtensionString())) { |
| fInputs.fRTHeight = true; |
| } |
| #endif |
| } |
| if (fKind == Program::kFragmentProcessor_Kind && |
| (var->fModifiers.fFlags & Modifiers::kIn_Flag) && |
| !(var->fModifiers.fFlags & Modifiers::kUniform_Flag) && |
| !var->fModifiers.fLayout.fKey && |
| var->fModifiers.fLayout.fBuiltin == -1 && |
| var->fType.nonnullable() != *fContext.fFragmentProcessor_Type && |
| var->fType.kind() != Type::kSampler_Kind) { |
| bool valid = false; |
| for (const auto& decl : fFile->root()) { |
| if (decl.fKind == ASTNode::Kind::kSection) { |
| ASTNode::SectionData section = decl.getSectionData(); |
| if (section.fName == "setData") { |
| valid = true; |
| break; |
| } |
| } |
| } |
| if (!valid) { |
| fErrors.error(identifier.fOffset, "'in' variable must be either 'uniform' or " |
| "'layout(key)', or there must be a custom " |
| "@setData function"); |
| } |
| } |
| // default to kRead_RefKind; this will be corrected later if the variable is written to |
| return std::make_unique<VariableReference>(identifier.fOffset, |
| *var, |
| VariableReference::kRead_RefKind); |
| } |
| case Symbol::kField_Kind: { |
| const Field* field = &result->as<Field>(); |
| VariableReference* base = new VariableReference(identifier.fOffset, field->fOwner, |
| VariableReference::kRead_RefKind); |
| return std::unique_ptr<Expression>(new FieldAccess( |
| std::unique_ptr<Expression>(base), |
| field->fFieldIndex, |
| FieldAccess::kAnonymousInterfaceBlock_OwnerKind)); |
| } |
| case Symbol::kType_Kind: { |
| const Type* t = &result->as<Type>(); |
| return std::make_unique<TypeReference>(fContext, identifier.fOffset, *t); |
| } |
| case Symbol::kExternal_Kind: { |
| const ExternalValue* r = &result->as<ExternalValue>(); |
| return std::make_unique<ExternalValueReference>(identifier.fOffset, r); |
| } |
| default: |
| ABORT("unsupported symbol type %d\n", result->fKind); |
| } |
| } |
| |
| std::unique_ptr<Section> IRGenerator::convertSection(const ASTNode& s) { |
| ASTNode::SectionData section = s.getSectionData(); |
| return std::make_unique<Section>(s.fOffset, section.fName, section.fArgument, |
| section.fText); |
| } |
| |
| |
| std::unique_ptr<Expression> IRGenerator::coerce(std::unique_ptr<Expression> expr, |
| const Type& type) { |
| if (!expr) { |
| return nullptr; |
| } |
| if (expr->fType == type) { |
| return expr; |
| } |
| this->checkValid(*expr); |
| if (expr->fType == *fContext.fInvalid_Type) { |
| return nullptr; |
| } |
| if (expr->coercionCost(type) == INT_MAX) { |
| fErrors.error(expr->fOffset, "expected '" + type.displayName() + "', but found '" + |
| expr->fType.displayName() + "'"); |
| return nullptr; |
| } |
| if (type.kind() == Type::kScalar_Kind) { |
| std::vector<std::unique_ptr<Expression>> args; |
| args.push_back(std::move(expr)); |
| std::unique_ptr<Expression> ctor; |
| if (type == *fContext.fFloatLiteral_Type) { |
| ctor = this->convertIdentifier(ASTNode(&fFile->fNodes, -1, ASTNode::Kind::kIdentifier, |
| "float")); |
| } else if (type == *fContext.fIntLiteral_Type) { |
| ctor = this->convertIdentifier(ASTNode(&fFile->fNodes, -1, ASTNode::Kind::kIdentifier, |
| "int")); |
| } else { |
| ctor = this->convertIdentifier(ASTNode(&fFile->fNodes, -1, ASTNode::Kind::kIdentifier, |
| type.fName)); |
| } |
| if (!ctor) { |
| printf("error, null identifier: %s\n", String(type.fName).c_str()); |
| } |
| SkASSERT(ctor); |
| return this->call(-1, std::move(ctor), std::move(args)); |
| } |
| if (expr->fKind == Expression::kNullLiteral_Kind) { |
| SkASSERT(type.kind() == Type::kNullable_Kind); |
| return std::unique_ptr<Expression>(new NullLiteral(expr->fOffset, type)); |
| } |
| std::vector<std::unique_ptr<Expression>> args; |
| args.push_back(std::move(expr)); |
| return std::unique_ptr<Expression>(new Constructor(-1, type, std::move(args))); |
| } |
| |
| static bool is_matrix_multiply(const Type& left, const Type& right) { |
| if (left.kind() == Type::kMatrix_Kind) { |
| return right.kind() == Type::kMatrix_Kind || right.kind() == Type::kVector_Kind; |
| } |
| return left.kind() == Type::kVector_Kind && right.kind() == Type::kMatrix_Kind; |
| } |
| |
| /** |
| * Determines the operand and result types of a binary expression. Returns true if the expression is |
| * legal, false otherwise. If false, the values of the out parameters are undefined. |
| */ |
| static bool determine_binary_type(const Context& context, |
| Token::Kind op, |
| const Type& left, |
| const Type& right, |
| const Type** outLeftType, |
| const Type** outRightType, |
| const Type** outResultType, |
| bool tryFlipped) { |
| bool isLogical; |
| bool validMatrixOrVectorOp; |
| switch (op) { |
| case Token::Kind::TK_EQ: |
| *outLeftType = &left; |
| *outRightType = &left; |
| *outResultType = &left; |
| return right.canCoerceTo(left); |
| case Token::Kind::TK_EQEQ: // fall through |
| case Token::Kind::TK_NEQ: |
| if (right.canCoerceTo(left)) { |
| *outLeftType = &left; |
| *outRightType = &left; |
| *outResultType = context.fBool_Type.get(); |
| return true; |
| } if (left.canCoerceTo(right)) { |
| *outLeftType = &right; |
| *outRightType = &right; |
| *outResultType = context.fBool_Type.get(); |
| return true; |
| } |
| return false; |
| case Token::Kind::TK_LT: // fall through |
| case Token::Kind::TK_GT: // fall through |
| case Token::Kind::TK_LTEQ: // fall through |
| case Token::Kind::TK_GTEQ: |
| isLogical = true; |
| validMatrixOrVectorOp = false; |
| break; |
| case Token::Kind::TK_LOGICALOR: // fall through |
| case Token::Kind::TK_LOGICALAND: // fall through |
| case Token::Kind::TK_LOGICALXOR: // fall through |
| case Token::Kind::TK_LOGICALOREQ: // fall through |
| case Token::Kind::TK_LOGICALANDEQ: // fall through |
| case Token::Kind::TK_LOGICALXOREQ: |
| *outLeftType = context.fBool_Type.get(); |
| *outRightType = context.fBool_Type.get(); |
| *outResultType = context.fBool_Type.get(); |
| return left.canCoerceTo(*context.fBool_Type) && |
| right.canCoerceTo(*context.fBool_Type); |
| case Token::Kind::TK_STAREQ: |
| if (left.kind() == Type::kScalar_Kind) { |
| *outLeftType = &left; |
| *outRightType = &left; |
| *outResultType = &left; |
| return right.canCoerceTo(left); |
| } |
| [[fallthrough]]; |
| case Token::Kind::TK_STAR: |
| if (is_matrix_multiply(left, right)) { |
| // determine final component type |
| if (determine_binary_type(context, Token::Kind::TK_STAR, left.componentType(), |
| right.componentType(), outLeftType, outRightType, |
| outResultType, false)) { |
| *outLeftType = &(*outResultType)->toCompound(context, left.columns(), |
| left.rows()); |
| *outRightType = &(*outResultType)->toCompound(context, right.columns(), |
| right.rows()); |
| int leftColumns = left.columns(); |
| int leftRows = left.rows(); |
| int rightColumns; |
| int rightRows; |
| if (right.kind() == Type::kVector_Kind) { |
| // matrix * vector treats the vector as a column vector, so we need to |
| // transpose it |
| rightColumns = right.rows(); |
| rightRows = right.columns(); |
| SkASSERT(rightColumns == 1); |
| } else { |
| rightColumns = right.columns(); |
| rightRows = right.rows(); |
| } |
| if (rightColumns > 1) { |
| *outResultType = &(*outResultType)->toCompound(context, rightColumns, |
| leftRows); |
| } else { |
| // result was a column vector, transpose it back to a row |
| *outResultType = &(*outResultType)->toCompound(context, leftRows, |
| rightColumns); |
| } |
| return leftColumns == rightRows; |
| } else { |
| return false; |
| } |
| } |
| isLogical = false; |
| validMatrixOrVectorOp = true; |
| break; |
| case Token::Kind::TK_PLUSEQ: |
| case Token::Kind::TK_MINUSEQ: |
| case Token::Kind::TK_SLASHEQ: |
| case Token::Kind::TK_PERCENTEQ: |
| case Token::Kind::TK_SHLEQ: |
| case Token::Kind::TK_SHREQ: |
| if (left.kind() == Type::kScalar_Kind) { |
| *outLeftType = &left; |
| *outRightType = &left; |
| *outResultType = &left; |
| return right.canCoerceTo(left); |
| } |
| [[fallthrough]]; |
| case Token::Kind::TK_PLUS: // fall through |
| case Token::Kind::TK_MINUS: // fall through |
| case Token::Kind::TK_SLASH: // fall through |
| isLogical = false; |
| validMatrixOrVectorOp = true; |
| break; |
| case Token::Kind::TK_COMMA: |
| *outLeftType = &left; |
| *outRightType = &right; |
| *outResultType = &right; |
| return true; |
| default: |
| isLogical = false; |
| validMatrixOrVectorOp = false; |
| } |
| bool isVectorOrMatrix = left.kind() == Type::kVector_Kind || left.kind() == Type::kMatrix_Kind; |
| if (left.kind() == Type::kScalar_Kind && right.kind() == Type::kScalar_Kind && |
| right.canCoerceTo(left)) { |
| if (left.priority() > right.priority()) { |
| *outLeftType = &left; |
| *outRightType = &left; |
| } else { |
| *outLeftType = &right; |
| *outRightType = &right; |
| } |
| if (isLogical) { |
| *outResultType = context.fBool_Type.get(); |
| } else { |
| *outResultType = &left; |
| } |
| return true; |
| } |
| if (right.canCoerceTo(left) && isVectorOrMatrix && validMatrixOrVectorOp) { |
| *outLeftType = &left; |
| *outRightType = &left; |
| if (isLogical) { |
| *outResultType = context.fBool_Type.get(); |
| } else { |
| *outResultType = &left; |
| } |
| return true; |
| } |
| if ((left.kind() == Type::kVector_Kind || left.kind() == Type::kMatrix_Kind) && |
| (right.kind() == Type::kScalar_Kind)) { |
| if (determine_binary_type(context, op, left.componentType(), right, outLeftType, |
| outRightType, outResultType, false)) { |
| *outLeftType = &(*outLeftType)->toCompound(context, left.columns(), left.rows()); |
| if (!isLogical) { |
| *outResultType = &(*outResultType)->toCompound(context, left.columns(), |
| left.rows()); |
| } |
| return true; |
| } |
| return false; |
| } |
| if (tryFlipped) { |
| return determine_binary_type(context, op, right, left, outRightType, outLeftType, |
| outResultType, false); |
| } |
| return false; |
| } |
| |
| static std::unique_ptr<Expression> short_circuit_boolean(const Context& context, |
| const Expression& left, |
| Token::Kind op, |
| const Expression& right) { |
| SkASSERT(left.fKind == Expression::kBoolLiteral_Kind); |
| bool leftVal = left.as<BoolLiteral>().fValue; |
| if (op == Token::Kind::TK_LOGICALAND) { |
| // (true && expr) -> (expr) and (false && expr) -> (false) |
| return leftVal ? right.clone() |
| : std::unique_ptr<Expression>(new BoolLiteral(context, left.fOffset, false)); |
| } else if (op == Token::Kind::TK_LOGICALOR) { |
| // (true || expr) -> (true) and (false || expr) -> (expr) |
| return leftVal ? std::unique_ptr<Expression>(new BoolLiteral(context, left.fOffset, true)) |
| : right.clone(); |
| } else if (op == Token::Kind::TK_LOGICALXOR) { |
| // (true ^^ expr) -> !(expr) and (false ^^ expr) -> (expr) |
| return leftVal ? std::unique_ptr<Expression>(new PrefixExpression( |
| Token::Kind::TK_LOGICALNOT, |
| right.clone())) |
| : right.clone(); |
| } else { |
| return nullptr; |
| } |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::constantFold(const Expression& left, |
| Token::Kind op, |
| const Expression& right) const { |
| // If the left side is a constant boolean literal, the right side does not need to be constant |
| // for short circuit optimizations to allow the constant to be folded. |
| if (left.fKind == Expression::kBoolLiteral_Kind && !right.isCompileTimeConstant()) { |
| return short_circuit_boolean(fContext, left, op, right); |
| } else if (right.fKind == Expression::kBoolLiteral_Kind && !left.isCompileTimeConstant()) { |
| // There aren't side effects in SKSL within expressions, so (left OP right) is equivalent to |
| // (right OP left) for short-circuit optimizations |
| return short_circuit_boolean(fContext, right, op, left); |
| } |
| |
| // Other than the short-circuit cases above, constant folding requires both sides to be constant |
| if (!left.isCompileTimeConstant() || !right.isCompileTimeConstant()) { |
| return nullptr; |
| } |
| // Note that we expressly do not worry about precision and overflow here -- we use the maximum |
| // precision to calculate the results and hope the result makes sense. The plan is to move the |
| // Skia caps into SkSL, so we have access to all of them including the precisions of the various |
| // types, which will let us be more intelligent about this. |
| if (left.fKind == Expression::kBoolLiteral_Kind && |
| right.fKind == Expression::kBoolLiteral_Kind) { |
| bool leftVal = left.as<BoolLiteral>().fValue; |
| bool rightVal = right.as<BoolLiteral>().fValue; |
| bool result; |
| switch (op) { |
| case Token::Kind::TK_LOGICALAND: result = leftVal && rightVal; break; |
| case Token::Kind::TK_LOGICALOR: result = leftVal || rightVal; break; |
| case Token::Kind::TK_LOGICALXOR: result = leftVal ^ rightVal; break; |
| default: return nullptr; |
| } |
| return std::unique_ptr<Expression>(new BoolLiteral(fContext, left.fOffset, result)); |
| } |
| #define RESULT(t, op) std::make_unique<t ## Literal>(fContext, left.fOffset, \ |
| leftVal op rightVal) |
| #define URESULT(t, op) std::make_unique<t ## Literal>(fContext, left.fOffset, \ |
| (uint32_t) leftVal op \ |
| (uint32_t) rightVal) |
| if (left.fKind == Expression::kIntLiteral_Kind && right.fKind == Expression::kIntLiteral_Kind) { |
| int64_t leftVal = left.as<IntLiteral>().fValue; |
| int64_t rightVal = right.as<IntLiteral>().fValue; |
| switch (op) { |
| case Token::Kind::TK_PLUS: return URESULT(Int, +); |
| case Token::Kind::TK_MINUS: return URESULT(Int, -); |
| case Token::Kind::TK_STAR: return URESULT(Int, *); |
| case Token::Kind::TK_SLASH: |
| if (leftVal == std::numeric_limits<int64_t>::min() && rightVal == -1) { |
| fErrors.error(right.fOffset, "arithmetic overflow"); |
| return nullptr; |
| } |
| if (!rightVal) { |
| fErrors.error(right.fOffset, "division by zero"); |
| return nullptr; |
| } |
| return RESULT(Int, /); |
| case Token::Kind::TK_PERCENT: |
| if (leftVal == std::numeric_limits<int64_t>::min() && rightVal == -1) { |
| fErrors.error(right.fOffset, "arithmetic overflow"); |
| return nullptr; |
| } |
| if (!rightVal) { |
| fErrors.error(right.fOffset, "division by zero"); |
| return nullptr; |
| } |
| return RESULT(Int, %); |
| case Token::Kind::TK_BITWISEAND: return RESULT(Int, &); |
| case Token::Kind::TK_BITWISEOR: return RESULT(Int, |); |
| case Token::Kind::TK_BITWISEXOR: return RESULT(Int, ^); |
| case Token::Kind::TK_EQEQ: return RESULT(Bool, ==); |
| case Token::Kind::TK_NEQ: return RESULT(Bool, !=); |
| case Token::Kind::TK_GT: return RESULT(Bool, >); |
| case Token::Kind::TK_GTEQ: return RESULT(Bool, >=); |
| case Token::Kind::TK_LT: return RESULT(Bool, <); |
| case Token::Kind::TK_LTEQ: return RESULT(Bool, <=); |
| case Token::Kind::TK_SHL: |
| if (rightVal >= 0 && rightVal <= 31) { |
| return URESULT(Int, <<); |
| } |
| fErrors.error(right.fOffset, "shift value out of range"); |
| return nullptr; |
| case Token::Kind::TK_SHR: |
| if (rightVal >= 0 && rightVal <= 31) { |
| return URESULT(Int, >>); |
| } |
| fErrors.error(right.fOffset, "shift value out of range"); |
| return nullptr; |
| |
| default: |
| return nullptr; |
| } |
| } |
| if (left.fKind == Expression::kFloatLiteral_Kind && |
| right.fKind == Expression::kFloatLiteral_Kind) { |
| double leftVal = left.as<FloatLiteral>().fValue; |
| double rightVal = right.as<FloatLiteral>().fValue; |
| switch (op) { |
| case Token::Kind::TK_PLUS: return RESULT(Float, +); |
| case Token::Kind::TK_MINUS: return RESULT(Float, -); |
| case Token::Kind::TK_STAR: return RESULT(Float, *); |
| case Token::Kind::TK_SLASH: |
| if (rightVal) { |
| return RESULT(Float, /); |
| } |
| fErrors.error(right.fOffset, "division by zero"); |
| return nullptr; |
| case Token::Kind::TK_EQEQ: return RESULT(Bool, ==); |
| case Token::Kind::TK_NEQ: return RESULT(Bool, !=); |
| case Token::Kind::TK_GT: return RESULT(Bool, >); |
| case Token::Kind::TK_GTEQ: return RESULT(Bool, >=); |
| case Token::Kind::TK_LT: return RESULT(Bool, <); |
| case Token::Kind::TK_LTEQ: return RESULT(Bool, <=); |
| default: return nullptr; |
| } |
| } |
| if (left.fType.kind() == Type::kVector_Kind && left.fType.componentType().isFloat() && |
| left.fType == right.fType) { |
| std::vector<std::unique_ptr<Expression>> args; |
| #define RETURN_VEC_COMPONENTWISE_RESULT(op) \ |
| for (int i = 0; i < left.fType.columns(); i++) { \ |
| float value = left.getFVecComponent(i) op \ |
| right.getFVecComponent(i); \ |
| args.emplace_back(new FloatLiteral(fContext, -1, value)); \ |
| } \ |
| return std::unique_ptr<Expression>(new Constructor(-1, left.fType, \ |
| std::move(args))) |
| switch (op) { |
| case Token::Kind::TK_EQEQ: |
| return std::unique_ptr<Expression>(new BoolLiteral(fContext, -1, |
| left.compareConstant(fContext, right))); |
| case Token::Kind::TK_NEQ: |
| return std::unique_ptr<Expression>(new BoolLiteral(fContext, -1, |
| !left.compareConstant(fContext, right))); |
| case Token::Kind::TK_PLUS: RETURN_VEC_COMPONENTWISE_RESULT(+); |
| case Token::Kind::TK_MINUS: RETURN_VEC_COMPONENTWISE_RESULT(-); |
| case Token::Kind::TK_STAR: RETURN_VEC_COMPONENTWISE_RESULT(*); |
| case Token::Kind::TK_SLASH: |
| for (int i = 0; i < left.fType.columns(); i++) { |
| SKSL_FLOAT rvalue = right.getFVecComponent(i); |
| if (rvalue == 0.0) { |
| fErrors.error(right.fOffset, "division by zero"); |
| return nullptr; |
| } |
| float value = left.getFVecComponent(i) / rvalue; |
| args.emplace_back(new FloatLiteral(fContext, -1, value)); |
| } |
| return std::unique_ptr<Expression>(new Constructor(-1, left.fType, |
| std::move(args))); |
| default: return nullptr; |
| } |
| } |
| if (left.fType.kind() == Type::kMatrix_Kind && |
| right.fType.kind() == Type::kMatrix_Kind && |
| left.fKind == right.fKind) { |
| switch (op) { |
| case Token::Kind::TK_EQEQ: |
| return std::unique_ptr<Expression>(new BoolLiteral(fContext, -1, |
| left.compareConstant(fContext, right))); |
| case Token::Kind::TK_NEQ: |
| return std::unique_ptr<Expression>(new BoolLiteral(fContext, -1, |
| !left.compareConstant(fContext, right))); |
| default: |
| return nullptr; |
| } |
| } |
| #undef RESULT |
| return nullptr; |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertBinaryExpression(const ASTNode& expression) { |
| SkASSERT(expression.fKind == ASTNode::Kind::kBinary); |
| auto iter = expression.begin(); |
| std::unique_ptr<Expression> left = this->convertExpression(*(iter++)); |
| if (!left) { |
| return nullptr; |
| } |
| Token::Kind op = expression.getToken().fKind; |
| std::unique_ptr<Expression> right; |
| { |
| // Can't inline the right side of a short-circuiting boolean, because our inlining |
| // approach runs things out of order. |
| AutoDisableInline disableInline(this, /*canInline=*/(op != Token::Kind::TK_LOGICALAND && |
| op != Token::Kind::TK_LOGICALOR)); |
| right = this->convertExpression(*(iter++)); |
| } |
| if (!right) { |
| return nullptr; |
| } |
| const Type* leftType; |
| const Type* rightType; |
| const Type* resultType; |
| const Type* rawLeftType; |
| if (left->fKind == Expression::kIntLiteral_Kind && right->fType.isInteger()) { |
| rawLeftType = &right->fType; |
| } else { |
| rawLeftType = &left->fType; |
| } |
| const Type* rawRightType; |
| if (right->fKind == Expression::kIntLiteral_Kind && left->fType.isInteger()) { |
| rawRightType = &left->fType; |
| } else { |
| rawRightType = &right->fType; |
| } |
| if (!determine_binary_type(fContext, op, *rawLeftType, *rawRightType, &leftType, &rightType, |
| &resultType, !Compiler::IsAssignment(op))) { |
| fErrors.error(expression.fOffset, String("type mismatch: '") + |
| Compiler::OperatorName(expression.getToken().fKind) + |
| "' cannot operate on '" + left->fType.displayName() + |
| "', '" + right->fType.displayName() + "'"); |
| return nullptr; |
| } |
| if (Compiler::IsAssignment(op)) { |
| if (!this->setRefKind(*left, op != Token::Kind::TK_EQ |
| ? VariableReference::kReadWrite_RefKind |
| : VariableReference::kWrite_RefKind)) { |
| return nullptr; |
| } |
| } |
| left = this->coerce(std::move(left), *leftType); |
| right = this->coerce(std::move(right), *rightType); |
| if (!left || !right) { |
| return nullptr; |
| } |
| std::unique_ptr<Expression> result = this->constantFold(*left, op, *right); |
| if (!result) { |
| result = std::make_unique<BinaryExpression>(expression.fOffset, std::move(left), op, |
| std::move(right), *resultType); |
| } |
| return result; |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertTernaryExpression(const ASTNode& node) { |
| SkASSERT(node.fKind == ASTNode::Kind::kTernary); |
| auto iter = node.begin(); |
| std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*(iter++)), |
| *fContext.fBool_Type); |
| if (!test) { |
| return nullptr; |
| } |
| std::unique_ptr<Expression> ifTrue = this->convertExpression(*(iter++)); |
| if (!ifTrue) { |
| return nullptr; |
| } |
| std::unique_ptr<Expression> ifFalse = this->convertExpression(*(iter++)); |
| if (!ifFalse) { |
| return nullptr; |
| } |
| const Type* trueType; |
| const Type* falseType; |
| const Type* resultType; |
| if (!determine_binary_type(fContext, Token::Kind::TK_EQEQ, ifTrue->fType, ifFalse->fType, |
| &trueType, &falseType, &resultType, true) || trueType != falseType) { |
| fErrors.error(node.fOffset, "ternary operator result mismatch: '" + |
| ifTrue->fType.displayName() + "', '" + |
| ifFalse->fType.displayName() + "'"); |
| return nullptr; |
| } |
| if (trueType->nonnullable() == *fContext.fFragmentProcessor_Type) { |
| fErrors.error(node.fOffset, |
| "ternary expression of type '" + trueType->displayName() + "' not allowed"); |
| return nullptr; |
| } |
| ifTrue = this->coerce(std::move(ifTrue), *trueType); |
| if (!ifTrue) { |
| return nullptr; |
| } |
| ifFalse = this->coerce(std::move(ifFalse), *falseType); |
| if (!ifFalse) { |
| return nullptr; |
| } |
| if (test->fKind == Expression::kBoolLiteral_Kind) { |
| // static boolean test, just return one of the branches |
| if (test->as<BoolLiteral>().fValue) { |
| return ifTrue; |
| } else { |
| return ifFalse; |
| } |
| } |
| return std::unique_ptr<Expression>(new TernaryExpression(node.fOffset, |
| std::move(test), |
| std::move(ifTrue), |
| std::move(ifFalse))); |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::inlineExpression( |
| int offset, |
| std::unordered_map<const Variable*, const Variable*>* varMap, |
| const Expression& expression) { |
| auto expr = [&](const std::unique_ptr<Expression>& e) -> std::unique_ptr<Expression> { |
| if (e) { |
| return this->inlineExpression(offset, varMap, *e); |
| } |
| return nullptr; |
| }; |
| switch (expression.fKind) { |
| case Expression::kBinary_Kind: { |
| const BinaryExpression& b = expression.as<BinaryExpression>(); |
| return std::unique_ptr<Expression>(new BinaryExpression(offset, |
| expr(b.fLeft), |
| b.fOperator, |
| expr(b.fRight), |
| b.fType)); |
| } |
| case Expression::kBoolLiteral_Kind: |
| case Expression::kIntLiteral_Kind: |
| case Expression::kFloatLiteral_Kind: |
| case Expression::kNullLiteral_Kind: |
| return expression.clone(); |
| case Expression::kConstructor_Kind: { |
| const Constructor& c = expression.as<Constructor>(); |
| std::vector<std::unique_ptr<Expression>> args; |
| for (const auto& arg : c.fArguments) { |
| args.push_back(expr(arg)); |
| } |
| return std::unique_ptr<Expression>(new Constructor(offset, c.fType, std::move(args))); |
| } |
| case Expression::kExternalFunctionCall_Kind: { |
| const ExternalFunctionCall& e = expression.as<ExternalFunctionCall>(); |
| std::vector<std::unique_ptr<Expression>> args; |
| for (const auto& arg : e.fArguments) { |
| args.push_back(expr(arg)); |
| } |
| return std::unique_ptr<Expression>(new ExternalFunctionCall(offset, e.fType, |
| e.fFunction, |
| std::move(args))); |
| } |
| case Expression::kExternalValue_Kind: |
| return expression.clone(); |
| case Expression::kFieldAccess_Kind: { |
| const FieldAccess& f = expression.as<FieldAccess>(); |
| return std::unique_ptr<Expression>(new FieldAccess(expr(f.fBase), f.fFieldIndex, |
| f.fOwnerKind)); |
| } |
| case Expression::kFunctionCall_Kind: { |
| const FunctionCall& c = expression.as<FunctionCall>(); |
| std::vector<std::unique_ptr<Expression>> args; |
| for (const auto& arg : c.fArguments) { |
| args.push_back(expr(arg)); |
| } |
| return std::unique_ptr<Expression>(new FunctionCall(offset, c.fType, c.fFunction, |
| std::move(args))); |
| } |
| case Expression::kIndex_Kind: { |
| const IndexExpression& idx = expression.as<IndexExpression>(); |
| return std::unique_ptr<Expression>(new IndexExpression(fContext, expr(idx.fBase), |
| expr(idx.fIndex))); |
| } |
| case Expression::kPrefix_Kind: { |
| const PrefixExpression& p = expression.as<PrefixExpression>(); |
| return std::unique_ptr<Expression>(new PrefixExpression(p.fOperator, expr(p.fOperand))); |
| } |
| case Expression::kPostfix_Kind: { |
| const PostfixExpression& p = expression.as<PostfixExpression>(); |
| return std::unique_ptr<Expression>(new PostfixExpression(expr(p.fOperand), |
| p.fOperator)); |
| } |
| case Expression::kSetting_Kind: |
| return expression.clone(); |
| case Expression::kSwizzle_Kind: { |
| const Swizzle& s = expression.as<Swizzle>(); |
| return std::unique_ptr<Expression>(new Swizzle(fContext, expr(s.fBase), s.fComponents)); |
| } |
| case Expression::kTernary_Kind: { |
| const TernaryExpression& t = expression.as<TernaryExpression>(); |
| return std::unique_ptr<Expression>(new TernaryExpression(offset, expr(t.fTest), |
| expr(t.fIfTrue), |
| expr(t.fIfFalse))); |
| } |
| case Expression::kVariableReference_Kind: { |
| const VariableReference& v = expression.as<VariableReference>(); |
| auto found = varMap->find(&v.fVariable); |
| if (found != varMap->end()) { |
| return std::unique_ptr<Expression>(new VariableReference(offset, |
| *found->second, |
| v.fRefKind)); |
| } |
| return v.clone(); |
| } |
| default: |
| SkASSERT(false); |
| return nullptr; |
| } |
| } |
| |
| static const Type* copy_if_needed(const Type* src, SymbolTable& symbolTable) { |
| if (src->kind() == Type::kArray_Kind) { |
| return symbolTable.takeOwnershipOfSymbol(std::make_unique<Type>(*src)); |
| } |
| return src; |
| } |
| |
| std::unique_ptr<Statement> IRGenerator::inlineStatement( |
| int offset, |
| std::unordered_map<const Variable*, const Variable*>* varMap, |
| SymbolTable* symbolTableForStatement, |
| const Variable* returnVar, |
| bool haveEarlyReturns, |
| const Statement& statement) { |
| auto stmt = [&](const std::unique_ptr<Statement>& s) -> std::unique_ptr<Statement> { |
| if (s) { |
| return this->inlineStatement(offset, varMap, symbolTableForStatement, returnVar, |
| haveEarlyReturns, *s); |
| } |
| return nullptr; |
| }; |
| auto stmts = [&](const std::vector<std::unique_ptr<Statement>>& ss) { |
| std::vector<std::unique_ptr<Statement>> result; |
| for (const auto& s : ss) { |
| result.push_back(stmt(s)); |
| } |
| return result; |
| }; |
| auto expr = [&](const std::unique_ptr<Expression>& e) -> std::unique_ptr<Expression> { |
| if (e) { |
| return this->inlineExpression(offset, varMap, *e); |
| } |
| return nullptr; |
| }; |
| switch (statement.fKind) { |
| case Statement::kBlock_Kind: { |
| const Block& b = statement.as<Block>(); |
| return std::make_unique<Block>(offset, stmts(b.fStatements), b.fSymbols, b.fIsScope); |
| } |
| |
| case Statement::kBreak_Kind: |
| case Statement::kContinue_Kind: |
| case Statement::kDiscard_Kind: |
| return statement.clone(); |
| |
| case Statement::kDo_Kind: { |
| const DoStatement& d = statement.as<DoStatement>(); |
| return std::make_unique<DoStatement>(offset, stmt(d.fStatement), expr(d.fTest)); |
| } |
| case Statement::kExpression_Kind: { |
| const ExpressionStatement& e = statement.as<ExpressionStatement>(); |
| return std::make_unique<ExpressionStatement>(expr(e.fExpression)); |
| } |
| case Statement::kFor_Kind: { |
| const ForStatement& f = statement.as<ForStatement>(); |
| // need to ensure initializer is evaluated first so that we've already remapped its |
| // declarations by the time we evaluate test & next |
| std::unique_ptr<Statement> initializer = stmt(f.fInitializer); |
| return std::make_unique<ForStatement>(offset, std::move(initializer), expr(f.fTest), |
| expr(f.fNext), stmt(f.fStatement), f.fSymbols); |
| } |
| case Statement::kIf_Kind: { |
| const IfStatement& i = statement.as<IfStatement>(); |
| return std::make_unique<IfStatement>(offset, i.fIsStatic, expr(i.fTest), |
| stmt(i.fIfTrue), stmt(i.fIfFalse)); |
| } |
| case Statement::kNop_Kind: |
| return statement.clone(); |
| case Statement::kReturn_Kind: { |
| const ReturnStatement& r = statement.as<ReturnStatement>(); |
| if (r.fExpression) { |
| auto assignment = std::make_unique<ExpressionStatement>( |
| std::make_unique<BinaryExpression>( |
| offset, |
| std::make_unique<VariableReference>(offset, *returnVar, |
| VariableReference::kWrite_RefKind), |
| Token::Kind::TK_EQ, |
| expr(r.fExpression), |
| returnVar->fType)); |
| if (haveEarlyReturns) { |
| std::vector<std::unique_ptr<Statement>> block; |
| block.push_back(std::move(assignment)); |
| block.emplace_back(new BreakStatement(offset)); |
| return std::make_unique<Block>(offset, std::move(block), /*symbols=*/nullptr, |
| /*isScope=*/true); |
| } else { |
| return std::move(assignment); |
| } |
| } else { |
| if (haveEarlyReturns) { |
| return std::make_unique<BreakStatement>(offset); |
| } else { |
| return std::make_unique<Nop>(); |
| } |
| } |
| } |
| case Statement::kSwitch_Kind: { |
| const SwitchStatement& ss = statement.as<SwitchStatement>(); |
| std::vector<std::unique_ptr<SwitchCase>> cases; |
| for (const auto& sc : ss.fCases) { |
| cases.emplace_back(new SwitchCase(offset, expr(sc->fValue), |
| stmts(sc->fStatements))); |
| } |
| return std::make_unique<SwitchStatement>(offset, ss.fIsStatic, expr(ss.fValue), |
| std::move(cases), ss.fSymbols); |
| } |
| case Statement::kVarDeclaration_Kind: { |
| const VarDeclaration& decl = statement.as<VarDeclaration>(); |
| std::vector<std::unique_ptr<Expression>> sizes; |
| for (const auto& size : decl.fSizes) { |
| sizes.push_back(expr(size)); |
| } |
| std::unique_ptr<Expression> initialValue = expr(decl.fValue); |
| const Variable* old = decl.fVar; |
| // need to copy the var name in case the originating function is discarded and we lose |
| // its symbols |
| std::unique_ptr<String> name(new String(old->fName)); |
| const String* namePtr = symbolTableForStatement->takeOwnershipOfString(std::move(name)); |
| const Type* typePtr = copy_if_needed(&old->fType, *symbolTableForStatement); |
| const Variable* clone = symbolTableForStatement->takeOwnershipOfSymbol( |
| std::make_unique<Variable>(offset, |
| old->fModifiers, |
| namePtr->c_str(), |
| *typePtr, |
| old->fStorage, |
| initialValue.get())); |
| (*varMap)[old] = clone; |
| return std::make_unique<VarDeclaration>(clone, std::move(sizes), |
| std::move(initialValue)); |
| } |
| case Statement::kVarDeclarations_Kind: { |
| const VarDeclarations& decls = *statement.as<VarDeclarationsStatement>().fDeclaration; |
| std::vector<std::unique_ptr<VarDeclaration>> vars; |
| for (const auto& var : decls.fVars) { |
| vars.emplace_back(&stmt(var).release()->as<VarDeclaration>()); |
| } |
| const Type* typePtr = copy_if_needed(&decls.fBaseType, *symbolTableForStatement); |
| return std::unique_ptr<Statement>(new VarDeclarationsStatement( |
| std::make_unique<VarDeclarations>(offset, typePtr, std::move(vars)))); |
| } |
| case Statement::kWhile_Kind: { |
| const WhileStatement& w = statement.as<WhileStatement>(); |
| return std::make_unique<WhileStatement>(offset, expr(w.fTest), stmt(w.fStatement)); |
| } |
| default: |
| SkASSERT(false); |
| return nullptr; |
| } |
| } |
| |
| static int count_all_returns(const FunctionDefinition& funcDef) { |
| class CountAllReturns : public ProgramVisitor { |
| public: |
| CountAllReturns(const FunctionDefinition& funcDef) { |
| this->visitProgramElement(funcDef); |
| } |
| |
| bool visitStatement(const Statement& stmt) override { |
| switch (stmt.fKind) { |
| case Statement::kReturn_Kind: |
| ++fNumReturns; |
| [[fallthrough]]; |
| |
| default: |
| return this->INHERITED::visitStatement(stmt); |
| } |
| } |
| |
| int fNumReturns = 0; |
| using INHERITED = ProgramVisitor; |
| }; |
| |
| return CountAllReturns{funcDef}.fNumReturns; |
| } |
| |
| static int count_returns_at_end_of_control_flow(const FunctionDefinition& funcDef) { |
| class CountReturnsAtEndOfControlFlow : public ProgramVisitor { |
| public: |
| CountReturnsAtEndOfControlFlow(const FunctionDefinition& funcDef) { |
| this->visitProgramElement(funcDef); |
| } |
| |
| bool visitStatement(const Statement& stmt) override { |
| switch (stmt.fKind) { |
| case Statement::kBlock_Kind: { |
| // Check only the last statement of a block. |
| const auto& blockStmts = stmt.as<Block>().fStatements; |
| return (blockStmts.size() > 0) ? this->visitStatement(*blockStmts.back()) |
| : false; |
| } |
| case Statement::kSwitch_Kind: |
| case Statement::kWhile_Kind: |
| case Statement::kDo_Kind: |
| case Statement::kFor_Kind: |
| // Don't introspect switches or loop structures at all. |
| return false; |
| |
| case Statement::kReturn_Kind: |
| ++fNumReturns; |
| [[fallthrough]]; |
| |
| default: |
| return this->INHERITED::visitStatement(stmt); |
| } |
| } |
| |
| int fNumReturns = 0; |
| using INHERITED = ProgramVisitor; |
| }; |
| |
| return CountReturnsAtEndOfControlFlow{funcDef}.fNumReturns; |
| } |
| |
| static int count_returns_in_breakable_constructs(const FunctionDefinition& funcDef) { |
| class CountReturnsInBreakableConstructs : public ProgramVisitor { |
| public: |
| CountReturnsInBreakableConstructs(const FunctionDefinition& funcDef) { |
| this->visitProgramElement(funcDef); |
| } |
| |
| bool visitStatement(const Statement& stmt) override { |
| switch (stmt.fKind) { |
| case Statement::kSwitch_Kind: |
| case Statement::kWhile_Kind: |
| case Statement::kDo_Kind: |
| case Statement::kFor_Kind: { |
| ++fInsideBreakableConstruct; |
| bool result = this->INHERITED::visitStatement(stmt); |
| --fInsideBreakableConstruct; |
| return result; |
| } |
| |
| case Statement::kReturn_Kind: |
| fNumReturns += (fInsideBreakableConstruct > 0) ? 1 : 0; |
| [[fallthrough]]; |
| |
| default: |
| return this->INHERITED::visitStatement(stmt); |
| } |
| } |
| |
| int fNumReturns = 0; |
| int fInsideBreakableConstruct = 0; |
| using INHERITED = ProgramVisitor; |
| }; |
| |
| return CountReturnsInBreakableConstructs{funcDef}.fNumReturns; |
| } |
| |
| static bool has_early_return(const FunctionDefinition& funcDef) { |
| int returnCount = count_all_returns(funcDef); |
| if (returnCount == 0) { |
| return false; |
| } |
| |
| int returnsAtEndOfControlFlow = count_returns_at_end_of_control_flow(funcDef); |
| return returnCount > returnsAtEndOfControlFlow; |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::inlineCall(std::unique_ptr<FunctionCall> call, |
| SymbolTable* symbolTableForCall) { |
| // Inlining is more complicated here than in a typical compiler, because we have to have a |
| // high-level IR and can't just drop statements into the middle of an expression or even use |
| // gotos. |
| // |
| // Since we can't insert statements into an expression, we run the inline function as extra |
| // statements before the statement we're currently processing, relying on a lack of execution |
| // order guarantees. Since we can't use gotos (which are normally used to replace return |
| // statements), we wrap the whole function in a loop and use break statements to jump to the |
| // end. |
| SkASSERT(call); |
| SkASSERT(this->isSafeToInline(*call, /*inlineThreshold=*/INT_MAX)); |
| |
| int offset = call->fOffset; |
| std::vector<std::unique_ptr<Expression>>& arguments = call->fArguments; |
| const FunctionDefinition& function = *call->fFunction.fDefinition; |
| |
| // Use unique variable names based on the function signature. Otherwise there are situations in |
| // which an inlined function is later inlined into another function, and we end up with |
| // duplicate names like 'inlineResult0' because the counter was reset. (skbug.com/10526) |
| String raw = function.fDeclaration.description(); |
| String inlineSalt; |
| for (size_t i = 0; i < raw.length(); ++i) { |
| char c = raw[i]; |
| if ((c >= 'A' && c <= 'Z') || (c >= 'a' && c <= 'z') || (c >= '0' && c <= '9') || |
| c == '_') { |
| inlineSalt += c; |
| } |
| } |
| |
| auto makeInlineVar = [&](const String& name, const Type& type, Modifiers modifiers, |
| std::unique_ptr<Expression>* initialValue) -> const Variable* { |
| // Add our new variable's name to the symbol table. |
| const String* namePtr = |
| symbolTableForCall->takeOwnershipOfString(std::make_unique<String>(name)); |
| StringFragment nameFrag{namePtr->c_str(), namePtr->length()}; |
| |
| // Add our new variable to the symbol table. |
| auto newVar = std::make_unique<Variable>(/*offset=*/-1, Modifiers(), nameFrag, type, |
| Variable::kLocal_Storage, initialValue->get()); |
| const Variable* variableSymbol = symbolTableForCall->add(nameFrag, std::move(newVar)); |
| |
| // Prepare the variable declaration (taking extra care with `out` params to not clobber any |
| // initial value). |
| std::vector<std::unique_ptr<VarDeclaration>> variables; |
| if (initialValue && (modifiers.fFlags & Modifiers::kOut_Flag)) { |
| variables.push_back(std::make_unique<VarDeclaration>( |
| variableSymbol, /*sizes=*/std::vector<std::unique_ptr<Expression>>{}, |
| (*initialValue)->clone())); |
| } else { |
| variables.push_back(std::make_unique<VarDeclaration>( |
| variableSymbol, /*sizes=*/std::vector<std::unique_ptr<Expression>>{}, |
| std::move(*initialValue))); |
| } |
| |
| // Add the new variable-declaration statement to our block of extra statements. |
| fExtraStatements.push_back(std::make_unique<VarDeclarationsStatement>( |
| std::make_unique<VarDeclarations>(offset, &type, std::move(variables)))); |
| |
| return variableSymbol; |
| }; |
| |
| // Create a variable to hold the result in the extra statements (excepting void). |
| const Variable* resultVar = nullptr; |
| if (function.fDeclaration.fReturnType != *fContext.fVoid_Type) { |
| int varIndex = fInlineVarCounter++; |
| |
| std::unique_ptr<Expression> noInitialValue; |
| resultVar = makeInlineVar(String::printf("_inlineResult%s%d", inlineSalt.c_str(), varIndex), |
| function.fDeclaration.fReturnType, Modifiers{}, &noInitialValue); |
| } |
| |
| // Create variables in the extra statements to hold the arguments, and assign the arguments to |
| // them. |
| std::unordered_map<const Variable*, const Variable*> varMap; |
| int argIndex = fInlineVarCounter++; |
| for (int i = 0; i < (int) arguments.size(); ++i) { |
| const Variable* param = function.fDeclaration.fParameters[i]; |
| |
| if (arguments[i]->fKind == Expression::kVariableReference_Kind) { |
| // The argument is just a variable, so we only need to copy it if it's an out parameter |
| // or it's written to within the function. |
| if ((param->fModifiers.fFlags & Modifiers::kOut_Flag) || |
| !Analysis::StatementWritesToVariable(*function.fBody, *param)) { |
| varMap[param] = &arguments[i]->as<VariableReference>().fVariable; |
| continue; |
| } |
| } |
| |
| varMap[param] = makeInlineVar( |
| String::printf("_inlineArg%s%d_%d", inlineSalt.c_str(), argIndex, i), |
| arguments[i]->fType, param->fModifiers, &arguments[i]); |
| } |
| |
| const Block& body = function.fBody->as<Block>(); |
| bool hasEarlyReturn = has_early_return(function); |
| auto inlineBlock = std::make_unique<Block>(offset, std::vector<std::unique_ptr<Statement>>{}); |
| inlineBlock->fStatements.reserve(body.fStatements.size()); |
| for (const std::unique_ptr<Statement>& stmt : body.fStatements) { |
| inlineBlock->fStatements.push_back(this->inlineStatement( |
| offset, &varMap, symbolTableForCall, resultVar, hasEarlyReturn, *stmt)); |
| } |
| if (hasEarlyReturn) { |
| // Since we output to backends that don't have a goto statement (which would normally be |
| // used to perform an early return), we fake it by wrapping the function in a |
| // do { } while (false); and then use break statements to jump to the end in order to |
| // emulate a goto. |
| fExtraStatements.push_back(std::make_unique<DoStatement>( |
| /*offset=*/-1, |
| std::move(inlineBlock), |
| std::make_unique<BoolLiteral>(fContext, offset, /*value=*/false))); |
| } else { |
| // No early returns, so we can just dump the code in. We need to use a block so we don't get |
| // name conflicts with locals. |
| fExtraStatements.push_back(std::move(inlineBlock)); |
| } |
| |
| // Copy the values of `out` parameters into their destinations. |
| for (size_t i = 0; i < arguments.size(); ++i) { |
| const Variable* p = function.fDeclaration.fParameters[i]; |
| if (p->fModifiers.fFlags & Modifiers::kOut_Flag) { |
| SkASSERT(varMap.find(p) != varMap.end()); |
| if (arguments[i]->fKind == Expression::kVariableReference_Kind && |
| &arguments[i]->as<VariableReference>().fVariable == varMap[p]) { |
| // we didn't create a temporary for this parameter, so there's nothing to copy back |
| // out |
| continue; |
| } |
| auto varRef = std::make_unique<VariableReference>(offset, *varMap[p]); |
| fExtraStatements.push_back(std::make_unique<ExpressionStatement>( |
| std::make_unique<BinaryExpression>(offset, |
| arguments[i]->clone(), |
| Token::Kind::TK_EQ, |
| std::move(varRef), |
| arguments[i]->fType))); |
| } |
| } |
| |
| if (function.fDeclaration.fReturnType != *fContext.fVoid_Type) { |
| // Return a reference to the result variable as our replacement expression. |
| return std::make_unique<VariableReference>(offset, *resultVar); |
| } else { |
| // It's a void function, so it doesn't actually result in anything, but we have to return |
| // something non-null as a standin. |
| return std::make_unique<BoolLiteral>(fContext, /*offset=*/-1, /*value=*/false); |
| } |
| } |
| |
| void IRGenerator::copyIntrinsicIfNeeded(const FunctionDeclaration& function) { |
| auto found = fIntrinsics->find(function.description()); |
| if (found != fIntrinsics->end() && !found->second.fAlreadyIncluded) { |
| found->second.fAlreadyIncluded = true; |
| FunctionDefinition& original = found->second.fIntrinsic->as<FunctionDefinition>(); |
| for (const FunctionDeclaration* f : original.fReferencedIntrinsics) { |
| this->copyIntrinsicIfNeeded(*f); |
| } |
| fProgramElements->push_back(original.clone()); |
| } |
| } |
| |
| bool IRGenerator::isSafeToInline(const FunctionCall& functionCall, int inlineThreshold) { |
| if (!fCanInline) { |
| // Inlining has been explicitly disabled by the IR generator. |
| return false; |
| } |
| if (functionCall.fFunction.fDefinition == nullptr) { |
| // Can't inline something if we don't actually have its definition. |
| return false; |
| } |
| const FunctionDefinition& functionDef = *functionCall.fFunction.fDefinition; |
| if (inlineThreshold < INT_MAX) { |
| if (!(functionDef.fDeclaration.fModifiers.fFlags & Modifiers::kInline_Flag) && |
| Analysis::NodeCount(functionDef) >= inlineThreshold) { |
| // The function exceeds our maximum inline size and is not flagged 'inline'. |
| return false; |
| } |
| } |
| if (!fSettings->fCaps || !fSettings->fCaps->canUseDoLoops()) { |
| // We don't have do-while loops. We use do-while loops to simulate early returns, so we |
| // can't inline functions that have an early return. |
| bool hasEarlyReturn = has_early_return(functionDef); |
| |
| // If we didn't detect an early return, there shouldn't be any returns in breakable |
| // constructs either. |
| SkASSERT(hasEarlyReturn || count_returns_in_breakable_constructs(functionDef) == 0); |
| return !hasEarlyReturn; |
| } |
| // We have do-while loops, but we don't have any mechanism to simulate early returns within a |
| // breakable construct (switch/for/do/while), so we can't inline if there's a return inside one. |
| bool hasReturnInBreakableConstruct = (count_returns_in_breakable_constructs(functionDef) > 0); |
| |
| // If we detected returns in breakable constructs, we should also detect an early return. |
| SkASSERT(!hasReturnInBreakableConstruct || has_early_return(functionDef)); |
| return !hasReturnInBreakableConstruct; |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::call(int offset, |
| const FunctionDeclaration& function, |
| std::vector<std::unique_ptr<Expression>> arguments) { |
| if (function.fBuiltin) { |
| if (function.fDefinition) { |
| fReferencedIntrinsics.insert(&function); |
| } |
| if (!fIsBuiltinCode) { |
| this->copyIntrinsicIfNeeded(function); |
| } |
| } |
| if (function.fParameters.size() != arguments.size()) { |
| String msg = "call to '" + function.fName + "' expected " + |
| to_string((uint64_t) function.fParameters.size()) + |
| " argument"; |
| if (function.fParameters.size() != 1) { |
| msg += "s"; |
| } |
| msg += ", but found " + to_string((uint64_t) arguments.size()); |
| fErrors.error(offset, msg); |
| return nullptr; |
| } |
| if (fKind == Program::kPipelineStage_Kind && !function.fDefinition && !function.fBuiltin) { |
| String msg = "call to undefined function '" + function.fName + "'"; |
| fErrors.error(offset, msg); |
| return nullptr; |
| } |
| std::vector<const Type*> types; |
| const Type* returnType; |
| if (!function.determineFinalTypes(arguments, &types, &returnType)) { |
| String msg = "no match for " + function.fName + "("; |
| String separator; |
| for (size_t i = 0; i < arguments.size(); i++) { |
| msg += separator; |
| separator = ", "; |
| msg += arguments[i]->fType.displayName(); |
| } |
| msg += ")"; |
| fErrors.error(offset, msg); |
| return nullptr; |
| } |
| for (size_t i = 0; i < arguments.size(); i++) { |
| arguments[i] = this->coerce(std::move(arguments[i]), *types[i]); |
| if (!arguments[i]) { |
| return nullptr; |
| } |
| if (arguments[i] && (function.fParameters[i]->fModifiers.fFlags & Modifiers::kOut_Flag)) { |
| this->setRefKind(*arguments[i], |
| function.fParameters[i]->fModifiers.fFlags & Modifiers::kIn_Flag ? |
| VariableReference::kReadWrite_RefKind : |
| VariableReference::kPointer_RefKind); |
| } |
| } |
| |
| auto funcCall = std::make_unique<FunctionCall>(offset, *returnType, function, |
| std::move(arguments)); |
| if (this->isSafeToInline(*funcCall, fSettings->fInlineThreshold)) { |
| return this->inlineCall(std::move(funcCall), fSymbolTable.get()); |
| } |
| |
| return std::move(funcCall); |
| } |
| |
| /** |
| * Determines the cost of coercing the arguments of a function to the required types. Cost has no |
| * particular meaning other than "lower costs are preferred". Returns INT_MAX if the call is not |
| * valid. |
| */ |
| int IRGenerator::callCost(const FunctionDeclaration& function, |
| const std::vector<std::unique_ptr<Expression>>& arguments) { |
| if (function.fParameters.size() != arguments.size()) { |
| return INT_MAX; |
| } |
| int total = 0; |
| std::vector<const Type*> types; |
| const Type* ignored; |
| if (!function.determineFinalTypes(arguments, &types, &ignored)) { |
| return INT_MAX; |
| } |
| for (size_t i = 0; i < arguments.size(); i++) { |
| int cost = arguments[i]->coercionCost(*types[i]); |
| if (cost != INT_MAX) { |
| total += cost; |
| } else { |
| return INT_MAX; |
| } |
| } |
| return total; |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::call(int offset, |
| std::unique_ptr<Expression> functionValue, |
| std::vector<std::unique_ptr<Expression>> arguments) { |
| switch (functionValue->fKind) { |
| case Expression::kTypeReference_Kind: |
| return this->convertConstructor(offset, |
| functionValue->as<TypeReference>().fValue, |
| std::move(arguments)); |
| case Expression::kExternalValue_Kind: { |
| const ExternalValue* v = functionValue->as<ExternalValueReference>().fValue; |
| if (!v->canCall()) { |
| fErrors.error(offset, "this external value is not a function"); |
| return nullptr; |
| } |
| int count = v->callParameterCount(); |
| if (count != (int) arguments.size()) { |
| fErrors.error(offset, "external function expected " + to_string(count) + |
| " arguments, but found " + to_string((int) arguments.size())); |
| return nullptr; |
| } |
| static constexpr int PARAMETER_MAX = 16; |
| SkASSERT(count < PARAMETER_MAX); |
| const Type* types[PARAMETER_MAX]; |
| v->getCallParameterTypes(types); |
| for (int i = 0; i < count; ++i) { |
| arguments[i] = this->coerce(std::move(arguments[i]), *types[i]); |
| if (!arguments[i]) { |
| return nullptr; |
| } |
| } |
| return std::unique_ptr<Expression>(new ExternalFunctionCall(offset, v->callReturnType(), |
| v, std::move(arguments))); |
| } |
| case Expression::kFunctionReference_Kind: { |
| const FunctionReference& ref = functionValue->as<FunctionReference>(); |
| int bestCost = INT_MAX; |
| const FunctionDeclaration* best = nullptr; |
| if (ref.fFunctions.size() > 1) { |
| for (const auto& f : ref.fFunctions) { |
| int cost = this->callCost(*f, arguments); |
| if (cost < bestCost) { |
| bestCost = cost; |
| best = f; |
| } |
| } |
| if (best) { |
| return this->call(offset, *best, std::move(arguments)); |
| } |
| String msg = "no match for " + ref.fFunctions[0]->fName + "("; |
| String separator; |
| for (size_t i = 0; i < arguments.size(); i++) { |
| msg += separator; |
| separator = ", "; |
| msg += arguments[i]->fType.displayName(); |
| } |
| msg += ")"; |
| fErrors.error(offset, msg); |
| return nullptr; |
| } |
| return this->call(offset, *ref.fFunctions[0], std::move(arguments)); |
| } |
| default: |
| fErrors.error(offset, "not a function"); |
| return nullptr; |
| } |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertNumberConstructor( |
| int offset, |
| const Type& type, |
| std::vector<std::unique_ptr<Expression>> args) { |
| SkASSERT(type.isNumber()); |
| if (args.size() != 1) { |
| fErrors.error(offset, "invalid arguments to '" + type.displayName() + |
| "' constructor, (expected exactly 1 argument, but found " + |
| to_string((uint64_t) args.size()) + ")"); |
| return nullptr; |
| } |
| if (type == args[0]->fType) { |
| return std::move(args[0]); |
| } |
| if (type.isFloat() && args.size() == 1 && args[0]->fKind == Expression::kFloatLiteral_Kind) { |
| double value = args[0]->as<FloatLiteral>().fValue; |
| return std::unique_ptr<Expression>(new FloatLiteral(offset, value, &type)); |
| } |
| if (type.isFloat() && args.size() == 1 && args[0]->fKind == Expression::kIntLiteral_Kind) { |
| int64_t value = args[0]->as<IntLiteral>().fValue; |
| return std::unique_ptr<Expression>(new FloatLiteral(offset, (double) value, &type)); |
| } |
| if (args[0]->fKind == Expression::kIntLiteral_Kind && (type == *fContext.fInt_Type || |
| type == *fContext.fUInt_Type)) { |
| return std::unique_ptr<Expression>(new IntLiteral(offset, |
| args[0]->as<IntLiteral>().fValue, |
| &type)); |
| } |
| if (args[0]->fType == *fContext.fBool_Type) { |
| std::unique_ptr<IntLiteral> zero(new IntLiteral(fContext, offset, 0)); |
| std::unique_ptr<IntLiteral> one(new IntLiteral(fContext, offset, 1)); |
| return std::unique_ptr<Expression>( |
| new TernaryExpression(offset, std::move(args[0]), |
| this->coerce(std::move(one), type), |
| this->coerce(std::move(zero), |
| type))); |
| } |
| if (!args[0]->fType.isNumber()) { |
| fErrors.error(offset, "invalid argument to '" + type.displayName() + |
| "' constructor (expected a number or bool, but found '" + |
| args[0]->fType.displayName() + "')"); |
| return nullptr; |
| } |
| return std::unique_ptr<Expression>(new Constructor(offset, type, std::move(args))); |
| } |
| |
| static int component_count(const Type& type) { |
| switch (type.kind()) { |
| case Type::kVector_Kind: |
| return type.columns(); |
| case Type::kMatrix_Kind: |
| return type.columns() * type.rows(); |
| default: |
| return 1; |
| } |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertCompoundConstructor( |
| int offset, |
| const Type& type, |
| std::vector<std::unique_ptr<Expression>> args) { |
| SkASSERT(type.kind() == Type::kVector_Kind || type.kind() == Type::kMatrix_Kind); |
| if (type.kind() == Type::kMatrix_Kind && args.size() == 1 && |
| args[0]->fType.kind() == Type::kMatrix_Kind) { |
| // matrix from matrix is always legal |
| return std::unique_ptr<Expression>(new Constructor(offset, type, std::move(args))); |
| } |
| int actual = 0; |
| int expected = type.rows() * type.columns(); |
| if (args.size() != 1 || expected != component_count(args[0]->fType) || |
| type.componentType().isNumber() != args[0]->fType.componentType().isNumber()) { |
| for (size_t i = 0; i < args.size(); i++) { |
| if (args[i]->fType.kind() == Type::kVector_Kind) { |
| if (type.componentType().isNumber() != |
| args[i]->fType.componentType().isNumber()) { |
| fErrors.error(offset, "'" + args[i]->fType.displayName() + "' is not a valid " |
| "parameter to '" + type.displayName() + |
| "' constructor"); |
| return nullptr; |
| } |
| actual += args[i]->fType.columns(); |
| } else if (args[i]->fType.kind() == Type::kScalar_Kind) { |
| actual += 1; |
| if (type.kind() != Type::kScalar_Kind) { |
| args[i] = this->coerce(std::move(args[i]), type.componentType()); |
| if (!args[i]) { |
| return nullptr; |
| } |
| } |
| } else { |
| fErrors.error(offset, "'" + args[i]->fType.displayName() + "' is not a valid " |
| "parameter to '" + type.displayName() + "' constructor"); |
| return nullptr; |
| } |
| } |
| if (actual != 1 && actual != expected) { |
| fErrors.error(offset, "invalid arguments to '" + type.displayName() + |
| "' constructor (expected " + to_string(expected) + |
| " scalars, but found " + to_string(actual) + ")"); |
| return nullptr; |
| } |
| } |
| return std::unique_ptr<Expression>(new Constructor(offset, type, std::move(args))); |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertConstructor( |
| int offset, |
| const Type& type, |
| std::vector<std::unique_ptr<Expression>> args) { |
| // FIXME: add support for structs |
| if (args.size() == 1 && args[0]->fType == type && |
| type.nonnullable() != *fContext.fFragmentProcessor_Type) { |
| // argument is already the right type, just return it |
| return std::move(args[0]); |
| } |
| Type::Kind kind = type.kind(); |
| if (type.isNumber()) { |
| return this->convertNumberConstructor(offset, type, std::move(args)); |
| } else if (kind == Type::kArray_Kind) { |
| const Type& base = type.componentType(); |
| for (size_t i = 0; i < args.size(); i++) { |
| args[i] = this->coerce(std::move(args[i]), base); |
| if (!args[i]) { |
| return nullptr; |
| } |
| } |
| return std::unique_ptr<Expression>(new Constructor(offset, type, std::move(args))); |
| } else if (kind == Type::kVector_Kind || kind == Type::kMatrix_Kind) { |
| return this->convertCompoundConstructor(offset, type, std::move(args)); |
| } else { |
| fErrors.error(offset, "cannot construct '" + type.displayName() + "'"); |
| return nullptr; |
| } |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertPrefixExpression(const ASTNode& expression) { |
| SkASSERT(expression.fKind == ASTNode::Kind::kPrefix); |
| std::unique_ptr<Expression> base = this->convertExpression(*expression.begin()); |
| if (!base) { |
| return nullptr; |
| } |
| switch (expression.getToken().fKind) { |
| case Token::Kind::TK_PLUS: |
| if (!base->fType.isNumber() && base->fType.kind() != Type::kVector_Kind && |
| base->fType != *fContext.fFloatLiteral_Type) { |
| fErrors.error(expression.fOffset, |
| "'+' cannot operate on '" + base->fType.displayName() + "'"); |
| return nullptr; |
| } |
| return base; |
| case Token::Kind::TK_MINUS: |
| if (base->fKind == Expression::kIntLiteral_Kind) { |
| return std::unique_ptr<Expression>(new IntLiteral(fContext, base->fOffset, |
| -base->as<IntLiteral>().fValue)); |
| } |
| if (base->fKind == Expression::kFloatLiteral_Kind) { |
| double value = -base->as<FloatLiteral>().fValue; |
| return std::unique_ptr<Expression>(new FloatLiteral(fContext, base->fOffset, |
| value)); |
| } |
| if (!base->fType.isNumber() && base->fType.kind() != Type::kVector_Kind) { |
| fErrors.error(expression.fOffset, |
| "'-' cannot operate on '" + base->fType.displayName() + "'"); |
| return nullptr; |
| } |
| return std::unique_ptr<Expression>(new PrefixExpression(Token::Kind::TK_MINUS, |
| std::move(base))); |
| case Token::Kind::TK_PLUSPLUS: |
| if (!base->fType.isNumber()) { |
| fErrors.error(expression.fOffset, |
| String("'") + Compiler::OperatorName(expression.getToken().fKind) + |
| "' cannot operate on '" + base->fType.displayName() + "'"); |
| return nullptr; |
| } |
| this->setRefKind(*base, VariableReference::kReadWrite_RefKind); |
| break; |
| case Token::Kind::TK_MINUSMINUS: |
| if (!base->fType.isNumber()) { |
| fErrors.error(expression.fOffset, |
| String("'") + Compiler::OperatorName(expression.getToken().fKind) + |
| "' cannot operate on '" + base->fType.displayName() + "'"); |
| return nullptr; |
| } |
| this->setRefKind(*base, VariableReference::kReadWrite_RefKind); |
| break; |
| case Token::Kind::TK_LOGICALNOT: |
| if (base->fType != *fContext.fBool_Type) { |
| fErrors.error(expression.fOffset, |
| String("'") + Compiler::OperatorName(expression.getToken().fKind) + |
| "' cannot operate on '" + base->fType.displayName() + "'"); |
| return nullptr; |
| } |
| if (base->fKind == Expression::kBoolLiteral_Kind) { |
| return std::unique_ptr<Expression>( |
| new BoolLiteral(fContext, base->fOffset, !base->as<BoolLiteral>().fValue)); |
| } |
| break; |
| case Token::Kind::TK_BITWISENOT: |
| if (base->fType != *fContext.fInt_Type && base->fType != *fContext.fUInt_Type) { |
| fErrors.error(expression.fOffset, |
| String("'") + Compiler::OperatorName(expression.getToken().fKind) + |
| "' cannot operate on '" + base->fType.displayName() + "'"); |
| return nullptr; |
| } |
| break; |
| default: |
| ABORT("unsupported prefix operator\n"); |
| } |
| return std::unique_ptr<Expression>(new PrefixExpression(expression.getToken().fKind, |
| std::move(base))); |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertIndex(std::unique_ptr<Expression> base, |
| const ASTNode& index) { |
| if (base->fKind == Expression::kTypeReference_Kind) { |
| if (index.fKind == ASTNode::Kind::kInt) { |
| const Type& oldType = base->as<TypeReference>().fValue; |
| SKSL_INT size = index.getInt(); |
| const Type* newType = fSymbolTable->takeOwnershipOfSymbol( |
| std::make_unique<Type>(oldType.name() + "[" + to_string(size) + "]", |
| Type::kArray_Kind, oldType, size)); |
| return std::make_unique<TypeReference>(fContext, base->fOffset, *newType); |
| |
| } else { |
| fErrors.error(base->fOffset, "array size must be a constant"); |
| return nullptr; |
| } |
| } |
| if (base->fType.kind() != Type::kArray_Kind && base->fType.kind() != Type::kMatrix_Kind && |
| base->fType.kind() != Type::kVector_Kind) { |
| fErrors.error(base->fOffset, "expected array, but found '" + base->fType.displayName() + |
| "'"); |
| return nullptr; |
| } |
| std::unique_ptr<Expression> converted = this->convertExpression(index); |
| if (!converted) { |
| return nullptr; |
| } |
| if (converted->fType != *fContext.fUInt_Type) { |
| converted = this->coerce(std::move(converted), *fContext.fInt_Type); |
| if (!converted) { |
| return nullptr; |
| } |
| } |
| return std::unique_ptr<Expression>(new IndexExpression(fContext, std::move(base), |
| std::move(converted))); |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertField(std::unique_ptr<Expression> base, |
| StringFragment field) { |
| if (base->fKind == Expression::kExternalValue_Kind) { |
| const ExternalValue& ev = *base->as<ExternalValueReference>().fValue; |
| ExternalValue* result = ev.getChild(String(field).c_str()); |
| if (!result) { |
| fErrors.error(base->fOffset, "external value does not have a child named '" + field + |
| "'"); |
| return nullptr; |
| } |
| return std::unique_ptr<Expression>(new ExternalValueReference(base->fOffset, result)); |
| } |
| auto fields = base->fType.fields(); |
| for (size_t i = 0; i < fields.size(); i++) { |
| if (fields[i].fName == field) { |
| return std::unique_ptr<Expression>(new FieldAccess(std::move(base), (int) i)); |
| } |
| } |
| fErrors.error(base->fOffset, "type '" + base->fType.displayName() + "' does not have a " |
| "field named '" + field + ""); |
| return nullptr; |
| } |
| |
| // counts the number of chunks of contiguous 'x's in a swizzle, e.g. xxx1 has one and x0xx has two |
| static int count_contiguous_swizzle_chunks(const std::vector<int>& components) { |
| int chunkCount = 0; |
| for (size_t i = 0; i < components.size(); ++i) { |
| SkASSERT(components[i] <= 0); |
| if (components[i] == 0) { |
| ++chunkCount; |
| while (i + 1 < components.size() && components[i + 1] == 0) { |
| ++i; |
| } |
| } |
| } |
| return chunkCount; |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertSwizzle(std::unique_ptr<Expression> base, |
| StringFragment fields) { |
| if (base->fType.kind() != Type::kVector_Kind && !base->fType.isNumber()) { |
| fErrors.error(base->fOffset, "cannot swizzle value of type '" + base->fType.displayName() + |
| "'"); |
| return nullptr; |
| } |
| std::vector<int> swizzleComponents; |
| size_t numLiteralFields = 0; |
| for (size_t i = 0; i < fields.fLength; i++) { |
| switch (fields[i]) { |
| case '0': |
| swizzleComponents.push_back(SKSL_SWIZZLE_0); |
| numLiteralFields++; |
| break; |
| case '1': |
| swizzleComponents.push_back(SKSL_SWIZZLE_1); |
| numLiteralFields++; |
| break; |
| case 'x': |
| case 'r': |
| case 's': |
| case 'L': |
| swizzleComponents.push_back(0); |
| break; |
| case 'y': |
| case 'g': |
| case 't': |
| case 'T': |
| if (base->fType.columns() >= 2) { |
| swizzleComponents.push_back(1); |
| break; |
| } |
| [[fallthrough]]; |
| case 'z': |
| case 'b': |
| case 'p': |
| case 'R': |
| if (base->fType.columns() >= 3) { |
| swizzleComponents.push_back(2); |
| break; |
| } |
| [[fallthrough]]; |
| case 'w': |
| case 'a': |
| case 'q': |
| case 'B': |
| if (base->fType.columns() >= 4) { |
| swizzleComponents.push_back(3); |
| break; |
| } |
| [[fallthrough]]; |
| default: |
| fErrors.error(base->fOffset, String::printf("invalid swizzle component '%c'", |
| fields[i])); |
| return nullptr; |
| } |
| } |
| SkASSERT(swizzleComponents.size() > 0); |
| if (swizzleComponents.size() > 4) { |
| fErrors.error(base->fOffset, "too many components in swizzle mask '" + fields + "'"); |
| return nullptr; |
| } |
| if (numLiteralFields == swizzleComponents.size()) { |
| fErrors.error(base->fOffset, "swizzle must refer to base expression"); |
| return nullptr; |
| } |
| if (base->fType.isNumber()) { |
| // Swizzling a single scalar. Something like foo.x0x1 is equivalent to float4(foo, 0, foo, |
| // 1) |
| int offset = base->fOffset; |
| std::unique_ptr<Expression> expr; |
| switch (base->fKind) { |
| case Expression::kVariableReference_Kind: |
| case Expression::kFloatLiteral_Kind: |
| case Expression::kIntLiteral_Kind: |
| // the value being swizzled is just a constant or variable reference, so we can |
| // safely re-use copies of it without reevaluation concerns |
| expr = std::move(base); |
| break; |
| default: |
| // It's a value we can't safely re-use multiple times. If it's all in one contiguous |
| // chunk it's easy (e.g. foo.xxx0 can be turned into half4(half3(x), 0)), but |
| // for multiple discontiguous chunks we'll need to copy it into a temporary value. |
| int chunkCount = count_contiguous_swizzle_chunks(swizzleComponents); |
| if (chunkCount <= 1) { |
| // no copying needed, so we can just use the value directly |
| expr = std::move(base); |
| } else { |
| // store the value in a temporary variable so we can re-use it |
| int varIndex = fInlineVarCounter++; |
| auto name = std::make_unique<String>(); |
| name->appendf("_tmpSwizzle%d", varIndex); |
| const String* namePtr = fSymbolTable->takeOwnershipOfString(std::move(name)); |
| const Variable* var = fSymbolTable->takeOwnershipOfSymbol( |
| std::make_unique<Variable>(offset, |
| Modifiers(), |
| namePtr->c_str(), |
| base->fType, |
| Variable::kLocal_Storage, |
| base.get())); |
| expr = std::make_unique<VariableReference>(offset, *var); |
| std::vector<std::unique_ptr<VarDeclaration>> variables; |
| variables.emplace_back(new VarDeclaration(var, {}, std::move(base))); |
| fExtraStatements.emplace_back(new VarDeclarationsStatement( |
| std::make_unique<VarDeclarations>(offset, &expr->fType, |
| std::move(variables)))); |
| } |
| } |
| std::vector<std::unique_ptr<Expression>> args; |
| for (size_t i = 0; i < swizzleComponents.size(); ++i) { |
| switch (swizzleComponents[i]) { |
| case 0: { |
| args.push_back(expr->clone()); |
| int count = 1; |
| while (i + 1 < swizzleComponents.size() && swizzleComponents[i + 1] == 0) { |
| ++i; |
| ++count; |
| } |
| if (count > 1) { |
| std::vector<std::unique_ptr<Expression>> constructorArgs; |
| constructorArgs.push_back(std::move(args.back())); |
| args.pop_back(); |
| args.emplace_back(new Constructor(offset, expr->fType.toCompound(fContext, |
| count, |
| 1), |
| std::move(constructorArgs))); |
| } |
| break; |
| } |
| case SKSL_SWIZZLE_0: |
| args.emplace_back(new IntLiteral(fContext, offset, 0)); |
| break; |
| case SKSL_SWIZZLE_1: |
| args.emplace_back(new IntLiteral(fContext, offset, 1)); |
| break; |
| } |
| } |
| return std::unique_ptr<Expression>(new Constructor(offset, |
| expr->fType.toCompound( |
| fContext, |
| swizzleComponents.size(), |
| 1), |
| std::move(args))); |
| } |
| return std::unique_ptr<Expression>(new Swizzle(fContext, std::move(base), swizzleComponents)); |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::getCap(int offset, String name) { |
| auto found = fCapsMap.find(name); |
| if (found == fCapsMap.end()) { |
| fErrors.error(offset, "unknown capability flag '" + name + "'"); |
| return nullptr; |
| } |
| String fullName = "sk_Caps." + name; |
| return std::unique_ptr<Expression>(new Setting(offset, fullName, |
| found->second.literal(fContext, offset))); |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::findEnumRef( |
| int offset, |
| const Type& type, |
| StringFragment field, |
| std::vector<std::unique_ptr<ProgramElement>>& elements) { |
| for (const auto& e : elements) { |
| if (e->fKind == ProgramElement::kEnum_Kind && type.name() == e->as<Enum>().fTypeName) { |
| std::shared_ptr<SymbolTable> old = fSymbolTable; |
| fSymbolTable = e->as<Enum>().fSymbols; |
| std::unique_ptr<Expression> result = convertIdentifier(ASTNode(&fFile->fNodes, offset, |
| ASTNode::Kind::kIdentifier, |
| field)); |
| if (result) { |
| const Variable& v = result->as<VariableReference>().fVariable; |
| SkASSERT(v.fInitialValue); |
| result = std::make_unique<IntLiteral>( |
| offset, v.fInitialValue->as<IntLiteral>().fValue, &type); |
| } |
| fSymbolTable = old; |
| return result; |
| } |
| } |
| return nullptr; |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertTypeField(int offset, const Type& type, |
| StringFragment field) { |
| std::unique_ptr<Expression> result = this->findEnumRef(offset, type, field, *fProgramElements); |
| if (fInherited && !result) { |
| result = this->findEnumRef(offset, type, field, *fInherited); |
| } |
| if (!result) { |
| auto found = fIntrinsics->find(type.fName); |
| if (found != fIntrinsics->end()) { |
| SkASSERT(!found->second.fAlreadyIncluded); |
| found->second.fAlreadyIncluded = true; |
| fProgramElements->push_back(found->second.fIntrinsic->clone()); |
| return this->convertTypeField(offset, type, field); |
| } |
| fErrors.error(offset, "type '" + type.fName + "' does not have a field named '" + field + |
| "'"); |
| } |
| return result; |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertIndexExpression(const ASTNode& index) { |
| SkASSERT(index.fKind == ASTNode::Kind::kIndex); |
| auto iter = index.begin(); |
| std::unique_ptr<Expression> base = this->convertExpression(*(iter++)); |
| if (!base) { |
| return nullptr; |
| } |
| if (iter != index.end()) { |
| return this->convertIndex(std::move(base), *(iter++)); |
| } else if (base->fKind == Expression::kTypeReference_Kind) { |
| const Type& oldType = base->as<TypeReference>().fValue; |
| const Type* newType = fSymbolTable->takeOwnershipOfSymbol(std::make_unique<Type>( |
| oldType.name() + "[]", Type::kArray_Kind, oldType, /*columns=*/-1)); |
| return std::unique_ptr<Expression>(new TypeReference(fContext, base->fOffset, |
| *newType)); |
| } |
| fErrors.error(index.fOffset, "'[]' must follow a type name"); |
| return nullptr; |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertCallExpression(const ASTNode& callNode) { |
| SkASSERT(callNode.fKind == ASTNode::Kind::kCall); |
| auto iter = callNode.begin(); |
| std::unique_ptr<Expression> base = this->convertExpression(*(iter++)); |
| if (!base) { |
| return nullptr; |
| } |
| std::vector<std::unique_ptr<Expression>> arguments; |
| for (; iter != callNode.end(); ++iter) { |
| std::unique_ptr<Expression> converted = this->convertExpression(*iter); |
| if (!converted) { |
| return nullptr; |
| } |
| arguments.push_back(std::move(converted)); |
| } |
| return this->call(callNode.fOffset, std::move(base), std::move(arguments)); |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertFieldExpression(const ASTNode& fieldNode) { |
| std::unique_ptr<Expression> base = this->convertExpression(*fieldNode.begin()); |
| if (!base) { |
| return nullptr; |
| } |
| StringFragment field = fieldNode.getString(); |
| if (base->fType == *fContext.fSkCaps_Type) { |
| return this->getCap(fieldNode.fOffset, field); |
| } |
| if (base->fKind == Expression::kTypeReference_Kind) { |
| return this->convertTypeField(base->fOffset, base->as<TypeReference>().fValue, |
| field); |
| } |
| if (base->fKind == Expression::kExternalValue_Kind) { |
| return this->convertField(std::move(base), field); |
| } |
| switch (base->fType.kind()) { |
| case Type::kOther_Kind: |
| case Type::kStruct_Kind: |
| return this->convertField(std::move(base), field); |
| default: |
| return this->convertSwizzle(std::move(base), field); |
| } |
| } |
| |
| std::unique_ptr<Expression> IRGenerator::convertPostfixExpression(const ASTNode& expression) { |
| std::unique_ptr<Expression> base = this->convertExpression(*expression.begin()); |
| if (!base) { |
| return nullptr; |
| } |
| if (!base->fType.isNumber()) { |
| fErrors.error(expression.fOffset, |
| "'" + String(Compiler::OperatorName(expression.getToken().fKind)) + |
| "' cannot operate on '" + base->fType.displayName() + "'"); |
| return nullptr; |
| } |
| this->setRefKind(*base, VariableReference::kReadWrite_RefKind); |
| return std::unique_ptr<Expression>(new PostfixExpression(std::move(base), |
| expression.getToken().fKind)); |
| } |
| |
| void IRGenerator::checkValid(const Expression& expr) { |
| switch (expr.fKind) { |
| case Expression::kFunctionReference_Kind: |
| fErrors.error(expr.fOffset, "expected '(' to begin function call"); |
| break; |
| case Expression::kTypeReference_Kind: |
| fErrors.error(expr.fOffset, "expected '(' to begin constructor invocation"); |
| break; |
| default: |
| if (expr.fType == *fContext.fInvalid_Type) { |
| fErrors.error(expr.fOffset, "invalid expression"); |
| } |
| } |
| } |
| |
| bool IRGenerator::checkSwizzleWrite(const Swizzle& swizzle) { |
| int bits = 0; |
| for (int idx : swizzle.fComponents) { |
| if (idx < 0) { |
| fErrors.error(swizzle.fOffset, "cannot write to a swizzle mask containing a constant"); |
| return false; |
| } |
| SkASSERT(idx <= 3); |
| int bit = 1 << idx; |
| if (bits & bit) { |
| fErrors.error(swizzle.fOffset, |
| "cannot write to the same swizzle field more than once"); |
| return false; |
| } |
| bits |= bit; |
| } |
| return true; |
| } |
| |
| bool IRGenerator::setRefKind(Expression& expr, VariableReference::RefKind kind) { |
| switch (expr.fKind) { |
| case Expression::kVariableReference_Kind: { |
| const Variable& var = expr.as<VariableReference>().fVariable; |
| if (var.fModifiers.fFlags & |
| (Modifiers::kConst_Flag | Modifiers::kUniform_Flag | Modifiers::kVarying_Flag)) { |
| fErrors.error(expr.fOffset, "cannot modify immutable variable '" + var.fName + "'"); |
| return false; |
| } |
| expr.as<VariableReference>().setRefKind(kind); |
| return true; |
| } |
| case Expression::kFieldAccess_Kind: |
| return this->setRefKind(*expr.as<FieldAccess>().fBase, kind); |
| case Expression::kSwizzle_Kind: { |
| const Swizzle& swizzle = expr.as<Swizzle>(); |
| return this->checkSwizzleWrite(swizzle) && this->setRefKind(*swizzle.fBase, kind); |
| } |
| case Expression::kIndex_Kind: |
| return this->setRefKind(*expr.as<IndexExpression>().fBase, kind); |
| case Expression::kTernary_Kind: { |
| const TernaryExpression& t = expr.as<TernaryExpression>(); |
| return this->setRefKind(*t.fIfTrue, kind) && this->setRefKind(*t.fIfFalse, kind); |
| } |
| case Expression::kExternalValue_Kind: { |
| const ExternalValue& v = *expr.as<ExternalValueReference>().fValue; |
| if (!v.canWrite()) { |
| fErrors.error(expr.fOffset, |
| "cannot modify immutable external value '" + v.fName + "'"); |
| return false; |
| } |
| return true; |
| } |
| default: |
| fErrors.error(expr.fOffset, "cannot assign to this expression"); |
| return false; |
| } |
| } |
| |
| void IRGenerator::convertProgram(Program::Kind kind, |
| const char* text, |
| size_t length, |
| std::vector<std::unique_ptr<ProgramElement>>* out) { |
| fKind = kind; |
| fProgramElements = out; |
| Parser parser(text, length, *fSymbolTable, fErrors); |
| fFile = parser.file(); |
| if (fErrors.errorCount()) { |
| return; |
| } |
| this->pushSymbolTable(); // this is popped by Compiler upon completion |
| SkASSERT(fFile); |
| for (const auto& decl : fFile->root()) { |
| switch (decl.fKind) { |
| case ASTNode::Kind::kVarDeclarations: { |
| std::unique_ptr<VarDeclarations> s = this->convertVarDeclarations( |
| decl, |
| Variable::kGlobal_Storage); |
| if (s) { |
| fProgramElements->push_back(std::move(s)); |
| } |
| break; |
| } |
| case ASTNode::Kind::kEnum: { |
| this->convertEnum(decl); |
| break; |
| } |
| case ASTNode::Kind::kFunction: { |
| this->convertFunction(decl); |
| break; |
| } |
| case ASTNode::Kind::kModifiers: { |
| std::unique_ptr<ModifiersDeclaration> f = this->convertModifiersDeclaration(decl); |
| if (f) { |
| fProgramElements->push_back(std::move(f)); |
| } |
| break; |
| } |
| case ASTNode::Kind::kInterfaceBlock: { |
| std::unique_ptr<InterfaceBlock> i = this->convertInterfaceBlock(decl); |
| if (i) { |
| fProgramElements->push_back(std::move(i)); |
| } |
| break; |
| } |
| case ASTNode::Kind::kExtension: { |
| std::unique_ptr<Extension> e = this->convertExtension(decl.fOffset, |
| decl.getString()); |
| if (e) { |
| fProgramElements->push_back(std::move(e)); |
| } |
| break; |
| } |
| case ASTNode::Kind::kSection: { |
| std::unique_ptr<Section> s = this->convertSection(decl); |
| if (s) { |
| fProgramElements->push_back(std::move(s)); |
| } |
| break; |
| } |
| default: |
| #ifdef SK_DEBUG |
| ABORT("unsupported declaration: %s\n", decl.description().c_str()); |
| #endif |
| break; |
| } |
| } |
| } |
| |
| |
| } // namespace SkSL |