blob: b13067937e0a430cc11d6e7f5130228d2cc0cfd3 [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/sksl/SkSLIRGenerator.h"
#include "limits.h"
#include <memory>
#include <unordered_set>
#include "src/sksl/SkSLAnalysis.h"
#include "src/sksl/SkSLCompiler.h"
#include "src/sksl/SkSLParser.h"
#include "src/sksl/SkSLUtil.h"
#include "src/sksl/ir/SkSLBinaryExpression.h"
#include "src/sksl/ir/SkSLBoolLiteral.h"
#include "src/sksl/ir/SkSLBreakStatement.h"
#include "src/sksl/ir/SkSLConstructor.h"
#include "src/sksl/ir/SkSLContinueStatement.h"
#include "src/sksl/ir/SkSLDiscardStatement.h"
#include "src/sksl/ir/SkSLDoStatement.h"
#include "src/sksl/ir/SkSLEnum.h"
#include "src/sksl/ir/SkSLExpressionStatement.h"
#include "src/sksl/ir/SkSLExternalFunctionCall.h"
#include "src/sksl/ir/SkSLExternalValueReference.h"
#include "src/sksl/ir/SkSLField.h"
#include "src/sksl/ir/SkSLFieldAccess.h"
#include "src/sksl/ir/SkSLFloatLiteral.h"
#include "src/sksl/ir/SkSLForStatement.h"
#include "src/sksl/ir/SkSLFunctionCall.h"
#include "src/sksl/ir/SkSLFunctionDeclaration.h"
#include "src/sksl/ir/SkSLFunctionDefinition.h"
#include "src/sksl/ir/SkSLFunctionReference.h"
#include "src/sksl/ir/SkSLIfStatement.h"
#include "src/sksl/ir/SkSLIndexExpression.h"
#include "src/sksl/ir/SkSLIntLiteral.h"
#include "src/sksl/ir/SkSLInterfaceBlock.h"
#include "src/sksl/ir/SkSLLayout.h"
#include "src/sksl/ir/SkSLNop.h"
#include "src/sksl/ir/SkSLNullLiteral.h"
#include "src/sksl/ir/SkSLPostfixExpression.h"
#include "src/sksl/ir/SkSLPrefixExpression.h"
#include "src/sksl/ir/SkSLReturnStatement.h"
#include "src/sksl/ir/SkSLSetting.h"
#include "src/sksl/ir/SkSLSwitchCase.h"
#include "src/sksl/ir/SkSLSwitchStatement.h"
#include "src/sksl/ir/SkSLSwizzle.h"
#include "src/sksl/ir/SkSLTernaryExpression.h"
#include "src/sksl/ir/SkSLUnresolvedFunction.h"
#include "src/sksl/ir/SkSLVarDeclarations.h"
#include "src/sksl/ir/SkSLVarDeclarationsStatement.h"
#include "src/sksl/ir/SkSLVariable.h"
#include "src/sksl/ir/SkSLVariableReference.h"
#include "src/sksl/ir/SkSLWhileStatement.h"
namespace SkSL {
class AutoSymbolTable {
public:
AutoSymbolTable(IRGenerator* ir)
: fIR(ir)
, fPrevious(fIR->fSymbolTable) {
fIR->pushSymbolTable();
}
~AutoSymbolTable() {
fIR->popSymbolTable();
SkASSERT(fPrevious == fIR->fSymbolTable);
}
IRGenerator* fIR;
std::shared_ptr<SymbolTable> fPrevious;
};
class AutoLoopLevel {
public:
AutoLoopLevel(IRGenerator* ir)
: fIR(ir) {
fIR->fLoopLevel++;
}
~AutoLoopLevel() {
fIR->fLoopLevel--;
}
IRGenerator* fIR;
};
class AutoSwitchLevel {
public:
AutoSwitchLevel(IRGenerator* ir)
: fIR(ir) {
fIR->fSwitchLevel++;
}
~AutoSwitchLevel() {
fIR->fSwitchLevel--;
}
IRGenerator* fIR;
};
class AutoDisableInline {
public:
AutoDisableInline(IRGenerator* ir, bool canInline = false)
: fIR(ir) {
fOldCanInline = ir->fCanInline;
fIR->fCanInline &= canInline;
}
~AutoDisableInline() {
fIR->fCanInline = fOldCanInline;
}
IRGenerator* fIR;
bool fOldCanInline;
};
IRGenerator::IRGenerator(const Context* context, std::shared_ptr<SymbolTable> symbolTable,
ErrorReporter& errorReporter)
: fContext(*context)
, fCurrentFunction(nullptr)
, fRootSymbolTable(symbolTable)
, fSymbolTable(symbolTable)
, fLoopLevel(0)
, fSwitchLevel(0)
, fErrors(errorReporter) {}
void IRGenerator::pushSymbolTable() {
fSymbolTable.reset(new SymbolTable(std::move(fSymbolTable)));
}
void IRGenerator::popSymbolTable() {
fSymbolTable = fSymbolTable->fParent;
}
static void fill_caps(const SKSL_CAPS_CLASS& caps,
std::unordered_map<String, Program::Settings::Value>* capsMap) {
#define CAP(name) \
capsMap->insert(std::make_pair(String(#name), Program::Settings::Value(caps.name())))
CAP(fbFetchSupport);
CAP(fbFetchNeedsCustomOutput);
CAP(flatInterpolationSupport);
CAP(noperspectiveInterpolationSupport);
CAP(externalTextureSupport);
CAP(mustEnableAdvBlendEqs);
CAP(mustEnableSpecificAdvBlendEqs);
CAP(mustDeclareFragmentShaderOutput);
CAP(mustDoOpBetweenFloorAndAbs);
CAP(mustGuardDivisionEvenAfterExplicitZeroCheck);
CAP(inBlendModesFailRandomlyForAllZeroVec);
CAP(atan2ImplementedAsAtanYOverX);
CAP(canUseAnyFunctionInShader);
CAP(floatIs32Bits);
CAP(integerSupport);
#undef CAP
}
void IRGenerator::start(const Program::Settings* settings,
std::vector<std::unique_ptr<ProgramElement>>* inherited,
bool isBuiltinCode) {
fSettings = settings;
fInherited = inherited;
fIsBuiltinCode = isBuiltinCode;
fCapsMap.clear();
if (settings->fCaps) {
fill_caps(*settings->fCaps, &fCapsMap);
} else {
fCapsMap.insert(std::make_pair(String("integerSupport"),
Program::Settings::Value(true)));
}
this->pushSymbolTable();
fInvocations = -1;
fInputs.reset();
fSkPerVertex = nullptr;
fRTAdjust = nullptr;
fRTAdjustInterfaceBlock = nullptr;
fInlineVarCounter = 0;
if (inherited) {
for (const auto& e : *inherited) {
if (e->fKind == ProgramElement::kInterfaceBlock_Kind) {
InterfaceBlock& intf = e->as<InterfaceBlock>();
if (intf.fVariable.fName == Compiler::PERVERTEX_NAME) {
SkASSERT(!fSkPerVertex);
fSkPerVertex = &intf.fVariable;
}
}
}
}
SkASSERT(fIntrinsics);
for (auto& pair : *fIntrinsics) {
pair.second.fAlreadyIncluded = false;
}
}
std::unique_ptr<Extension> IRGenerator::convertExtension(int offset, StringFragment name) {
return std::make_unique<Extension>(offset, name);
}
void IRGenerator::finish() {
this->popSymbolTable();
fSettings = nullptr;
}
std::unique_ptr<Statement> IRGenerator::convertSingleStatement(const ASTNode& statement) {
switch (statement.fKind) {
case ASTNode::Kind::kBlock:
return this->convertBlock(statement);
case ASTNode::Kind::kVarDeclarations:
return this->convertVarDeclarationStatement(statement);
case ASTNode::Kind::kIf:
return this->convertIf(statement);
case ASTNode::Kind::kFor:
return this->convertFor(statement);
case ASTNode::Kind::kWhile:
return this->convertWhile(statement);
case ASTNode::Kind::kDo:
return this->convertDo(statement);
case ASTNode::Kind::kSwitch:
return this->convertSwitch(statement);
case ASTNode::Kind::kReturn:
return this->convertReturn(statement);
case ASTNode::Kind::kBreak:
return this->convertBreak(statement);
case ASTNode::Kind::kContinue:
return this->convertContinue(statement);
case ASTNode::Kind::kDiscard:
return this->convertDiscard(statement);
default:
// it's an expression
std::unique_ptr<Statement> result = this->convertExpressionStatement(statement);
if (fRTAdjust && Program::kGeometry_Kind == fKind) {
SkASSERT(result->fKind == Statement::kExpression_Kind);
Expression& expr = *result->as<ExpressionStatement>().fExpression;
if (expr.fKind == Expression::kFunctionCall_Kind) {
FunctionCall& fc = expr.as<FunctionCall>();
if (fc.fFunction.fBuiltin && fc.fFunction.fName == "EmitVertex") {
std::vector<std::unique_ptr<Statement>> statements;
statements.push_back(getNormalizeSkPositionCode());
statements.push_back(std::move(result));
return std::make_unique<Block>(statement.fOffset, std::move(statements),
fSymbolTable);
}
}
}
return result;
}
}
std::unique_ptr<Statement> IRGenerator::convertStatement(const ASTNode& statement) {
std::vector<std::unique_ptr<Statement>> oldExtraStatements = std::move(fExtraStatements);
std::unique_ptr<Statement> result = this->convertSingleStatement(statement);
if (!result) {
fExtraStatements = std::move(oldExtraStatements);
return nullptr;
}
if (fExtraStatements.size()) {
fExtraStatements.push_back(std::move(result));
std::unique_ptr<Statement> block(new Block(-1, std::move(fExtraStatements), nullptr,
false));
fExtraStatements = std::move(oldExtraStatements);
return block;
}
fExtraStatements = std::move(oldExtraStatements);
return result;
}
std::unique_ptr<Block> IRGenerator::convertBlock(const ASTNode& block) {
SkASSERT(block.fKind == ASTNode::Kind::kBlock);
AutoSymbolTable table(this);
std::vector<std::unique_ptr<Statement>> statements;
for (const auto& child : block) {
std::unique_ptr<Statement> statement = this->convertStatement(child);
if (!statement) {
return nullptr;
}
statements.push_back(std::move(statement));
}
return std::make_unique<Block>(block.fOffset, std::move(statements), fSymbolTable);
}
std::unique_ptr<Statement> IRGenerator::convertVarDeclarationStatement(const ASTNode& s) {
SkASSERT(s.fKind == ASTNode::Kind::kVarDeclarations);
auto decl = this->convertVarDeclarations(s, Variable::kLocal_Storage);
if (!decl) {
return nullptr;
}
return std::unique_ptr<Statement>(new VarDeclarationsStatement(std::move(decl)));
}
std::unique_ptr<VarDeclarations> IRGenerator::convertVarDeclarations(const ASTNode& decls,
Variable::Storage storage) {
SkASSERT(decls.fKind == ASTNode::Kind::kVarDeclarations);
auto declarationsIter = decls.begin();
const Modifiers& modifiers = declarationsIter++->getModifiers();
const ASTNode& rawType = *(declarationsIter++);
std::vector<std::unique_ptr<VarDeclaration>> variables;
const Type* baseType = this->convertType(rawType);
if (!baseType) {
return nullptr;
}
if (baseType->nonnullable() == *fContext.fFragmentProcessor_Type &&
storage != Variable::kGlobal_Storage) {
fErrors.error(decls.fOffset,
"variables of type '" + baseType->displayName() + "' must be global");
}
if (fKind != Program::kFragmentProcessor_Kind) {
if ((modifiers.fFlags & Modifiers::kIn_Flag) &&
baseType->kind() == Type::Kind::kMatrix_Kind) {
fErrors.error(decls.fOffset, "'in' variables may not have matrix type");
}
if ((modifiers.fFlags & Modifiers::kIn_Flag) &&
(modifiers.fFlags & Modifiers::kUniform_Flag)) {
fErrors.error(decls.fOffset,
"'in uniform' variables only permitted within fragment processors");
}
if (modifiers.fLayout.fWhen.fLength) {
fErrors.error(decls.fOffset, "'when' is only permitted within fragment processors");
}
if (modifiers.fLayout.fFlags & Layout::kTracked_Flag) {
fErrors.error(decls.fOffset, "'tracked' is only permitted within fragment processors");
}
if (modifiers.fLayout.fCType != Layout::CType::kDefault) {
fErrors.error(decls.fOffset, "'ctype' is only permitted within fragment processors");
}
if (modifiers.fLayout.fKey) {
fErrors.error(decls.fOffset, "'key' is only permitted within fragment processors");
}
}
if (fKind == Program::kPipelineStage_Kind) {
if ((modifiers.fFlags & Modifiers::kIn_Flag) &&
baseType->nonnullable() != *fContext.fFragmentProcessor_Type) {
fErrors.error(decls.fOffset, "'in' variables not permitted in runtime effects");
}
}
if (modifiers.fLayout.fKey && (modifiers.fFlags & Modifiers::kUniform_Flag)) {
fErrors.error(decls.fOffset, "'key' is not permitted on 'uniform' variables");
}
if (modifiers.fLayout.fMarker.fLength) {
if (fKind != Program::kPipelineStage_Kind) {
fErrors.error(decls.fOffset, "'marker' is only permitted in runtime effects");
}
if (!(modifiers.fFlags & Modifiers::kUniform_Flag)) {
fErrors.error(decls.fOffset, "'marker' is only permitted on 'uniform' variables");
}
if (*baseType != *fContext.fFloat4x4_Type) {
fErrors.error(decls.fOffset, "'marker' is only permitted on float4x4 variables");
}
}
if (modifiers.fLayout.fFlags & Layout::kSRGBUnpremul_Flag) {
if (fKind != Program::kPipelineStage_Kind) {
fErrors.error(decls.fOffset, "'srgb_unpremul' is only permitted in runtime effects");
}
if (!(modifiers.fFlags & Modifiers::kUniform_Flag)) {
fErrors.error(decls.fOffset,
"'srgb_unpremul' is only permitted on 'uniform' variables");
}
auto validColorXformType = [](const Type& t) {
return t.kind() == Type::kVector_Kind && t.componentType().isFloat() &&
(t.columns() == 3 || t.columns() == 4);
};
if (!validColorXformType(*baseType) && !(baseType->kind() == Type::kArray_Kind &&
validColorXformType(baseType->componentType()))) {
fErrors.error(decls.fOffset,
"'srgb_unpremul' is only permitted on half3, half4, float3, or float4 "
"variables");
}
}
if (modifiers.fFlags & Modifiers::kVarying_Flag) {
if (fKind != Program::kPipelineStage_Kind) {
fErrors.error(decls.fOffset, "'varying' is only permitted in runtime effects");
}
if (!baseType->isFloat() &&
!(baseType->kind() == Type::kVector_Kind && baseType->componentType().isFloat())) {
fErrors.error(decls.fOffset, "'varying' must be float scalar or vector");
}
}
int permitted = Modifiers::kConst_Flag;
if (storage == Variable::kGlobal_Storage) {
permitted |= Modifiers::kIn_Flag | Modifiers::kOut_Flag | Modifiers::kUniform_Flag |
Modifiers::kFlat_Flag | Modifiers::kVarying_Flag |
Modifiers::kNoPerspective_Flag | Modifiers::kPLS_Flag |
Modifiers::kPLSIn_Flag | Modifiers::kPLSOut_Flag |
Modifiers::kRestrict_Flag | Modifiers::kVolatile_Flag |
Modifiers::kReadOnly_Flag | Modifiers::kWriteOnly_Flag |
Modifiers::kCoherent_Flag | Modifiers::kBuffer_Flag;
}
this->checkModifiers(decls.fOffset, modifiers, permitted);
for (; declarationsIter != decls.end(); ++declarationsIter) {
const ASTNode& varDecl = *declarationsIter;
if (modifiers.fLayout.fLocation == 0 && modifiers.fLayout.fIndex == 0 &&
(modifiers.fFlags & Modifiers::kOut_Flag) && fKind == Program::kFragment_Kind &&
varDecl.getVarData().fName != "sk_FragColor") {
fErrors.error(varDecl.fOffset,
"out location=0, index=0 is reserved for sk_FragColor");
}
const ASTNode::VarData& varData = varDecl.getVarData();
const Type* type = baseType;
std::vector<std::unique_ptr<Expression>> sizes;
auto iter = varDecl.begin();
for (size_t i = 0; i < varData.fSizeCount; ++i, ++iter) {
const ASTNode& rawSize = *iter;
if (rawSize) {
auto size = this->coerce(this->convertExpression(rawSize), *fContext.fInt_Type);
if (!size) {
return nullptr;
}
String name(type->fName);
int64_t count;
if (size->fKind == Expression::kIntLiteral_Kind) {
count = size->as<IntLiteral>().fValue;
if (count <= 0) {
fErrors.error(size->fOffset, "array size must be positive");
return nullptr;
}
name += "[" + to_string(count) + "]";
} else {
fErrors.error(size->fOffset, "array size must be specified");
return nullptr;
}
type = fSymbolTable->takeOwnershipOfSymbol(
std::make_unique<Type>(name, Type::kArray_Kind, *type, (int)count));
sizes.push_back(std::move(size));
} else {
type = fSymbolTable->takeOwnershipOfSymbol(std::make_unique<Type>(
type->name() + "[]", Type::kArray_Kind, *type, /*columns=*/-1));
sizes.push_back(nullptr);
}
}
auto var = std::make_unique<Variable>(varDecl.fOffset, modifiers, varData.fName, *type,
storage);
if (var->fName == Compiler::RTADJUST_NAME) {
SkASSERT(!fRTAdjust);
SkASSERT(var->fType == *fContext.fFloat4_Type);
fRTAdjust = var.get();
}
std::unique_ptr<Expression> value;
if (iter != varDecl.end()) {
value = this->convertExpression(*iter);
if (!value) {
return nullptr;
}
value = this->coerce(std::move(value), *type);
if (!value) {
return nullptr;
}
var->fWriteCount = 1;
var->fInitialValue = value.get();
}
const Symbol* symbol = (*fSymbolTable)[var->fName];
if (symbol && storage == Variable::kGlobal_Storage && var->fName == "sk_FragColor") {
// Already defined, ignore.
} else if (symbol && storage == Variable::kGlobal_Storage &&
symbol->fKind == Symbol::kVariable_Kind &&
symbol->as<Variable>().fModifiers.fLayout.fBuiltin >= 0) {
// Already defined, just update the modifiers.
symbol->as<Variable>().fModifiers = var->fModifiers;
} else {
variables.emplace_back(std::make_unique<VarDeclaration>(var.get(), std::move(sizes),
std::move(value)));
StringFragment name = var->fName;
fSymbolTable->add(name, std::move(var));
}
}
return std::make_unique<VarDeclarations>(decls.fOffset, baseType, std::move(variables));
}
std::unique_ptr<ModifiersDeclaration> IRGenerator::convertModifiersDeclaration(const ASTNode& m) {
SkASSERT(m.fKind == ASTNode::Kind::kModifiers);
Modifiers modifiers = m.getModifiers();
if (modifiers.fLayout.fInvocations != -1) {
if (fKind != Program::kGeometry_Kind) {
fErrors.error(m.fOffset, "'invocations' is only legal in geometry shaders");
return nullptr;
}
fInvocations = modifiers.fLayout.fInvocations;
if (fSettings->fCaps && !fSettings->fCaps->gsInvocationsSupport()) {
modifiers.fLayout.fInvocations = -1;
const Variable& invocationId = (*fSymbolTable)["sk_InvocationID"]->as<Variable>();
invocationId.fModifiers.fFlags = 0;
invocationId.fModifiers.fLayout.fBuiltin = -1;
if (modifiers.fLayout.description() == "") {
return nullptr;
}
}
}
if (modifiers.fLayout.fMaxVertices != -1 && fInvocations > 0 && fSettings->fCaps &&
!fSettings->fCaps->gsInvocationsSupport()) {
modifiers.fLayout.fMaxVertices *= fInvocations;
}
return std::make_unique<ModifiersDeclaration>(modifiers);
}
std::unique_ptr<Statement> IRGenerator::convertIf(const ASTNode& n) {
SkASSERT(n.fKind == ASTNode::Kind::kIf);
auto iter = n.begin();
std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*(iter++)),
*fContext.fBool_Type);
if (!test) {
return nullptr;
}
std::unique_ptr<Statement> ifTrue = this->convertStatement(*(iter++));
if (!ifTrue) {
return nullptr;
}
std::unique_ptr<Statement> ifFalse;
if (iter != n.end()) {
ifFalse = this->convertStatement(*(iter++));
if (!ifFalse) {
return nullptr;
}
}
if (test->fKind == Expression::kBoolLiteral_Kind) {
// static boolean value, fold down to a single branch
if (test->as<BoolLiteral>().fValue) {
return ifTrue;
} else if (ifFalse) {
return ifFalse;
} else {
// False & no else clause. Not an error, so don't return null!
std::vector<std::unique_ptr<Statement>> empty;
return std::unique_ptr<Statement>(new Block(n.fOffset, std::move(empty),
fSymbolTable));
}
}
return std::unique_ptr<Statement>(new IfStatement(n.fOffset, n.getBool(), std::move(test),
std::move(ifTrue), std::move(ifFalse)));
}
std::unique_ptr<Statement> IRGenerator::convertFor(const ASTNode& f) {
SkASSERT(f.fKind == ASTNode::Kind::kFor);
AutoLoopLevel level(this);
AutoSymbolTable table(this);
std::unique_ptr<Statement> initializer;
auto iter = f.begin();
if (*iter) {
initializer = this->convertStatement(*iter);
if (!initializer) {
return nullptr;
}
}
++iter;
std::unique_ptr<Expression> test;
if (*iter) {
AutoDisableInline disableInline(this);
test = this->coerce(this->convertExpression(*iter), *fContext.fBool_Type);
if (!test) {
return nullptr;
}
}
++iter;
std::unique_ptr<Expression> next;
if (*iter) {
AutoDisableInline disableInline(this);
next = this->convertExpression(*iter);
if (!next) {
return nullptr;
}
this->checkValid(*next);
}
++iter;
std::unique_ptr<Statement> statement = this->convertStatement(*iter);
if (!statement) {
return nullptr;
}
return std::make_unique<ForStatement>(f.fOffset, std::move(initializer), std::move(test),
std::move(next), std::move(statement), fSymbolTable);
}
std::unique_ptr<Statement> IRGenerator::convertWhile(const ASTNode& w) {
SkASSERT(w.fKind == ASTNode::Kind::kWhile);
AutoLoopLevel level(this);
std::unique_ptr<Expression> test;
auto iter = w.begin();
{
AutoDisableInline disableInline(this);
test = this->coerce(this->convertExpression(*(iter++)), *fContext.fBool_Type);
}
if (!test) {
return nullptr;
}
std::unique_ptr<Statement> statement = this->convertStatement(*(iter++));
if (!statement) {
return nullptr;
}
return std::make_unique<WhileStatement>(w.fOffset, std::move(test), std::move(statement));
}
std::unique_ptr<Statement> IRGenerator::convertDo(const ASTNode& d) {
SkASSERT(d.fKind == ASTNode::Kind::kDo);
AutoLoopLevel level(this);
auto iter = d.begin();
std::unique_ptr<Statement> statement = this->convertStatement(*(iter++));
if (!statement) {
return nullptr;
}
std::unique_ptr<Expression> test;
{
AutoDisableInline disableInline(this);
test = this->coerce(this->convertExpression(*(iter++)), *fContext.fBool_Type);
}
if (!test) {
return nullptr;
}
return std::make_unique<DoStatement>(d.fOffset, std::move(statement), std::move(test));
}
std::unique_ptr<Statement> IRGenerator::convertSwitch(const ASTNode& s) {
SkASSERT(s.fKind == ASTNode::Kind::kSwitch);
AutoSwitchLevel level(this);
auto iter = s.begin();
std::unique_ptr<Expression> value = this->convertExpression(*(iter++));
if (!value) {
return nullptr;
}
if (value->fType != *fContext.fUInt_Type && value->fType.kind() != Type::kEnum_Kind) {
value = this->coerce(std::move(value), *fContext.fInt_Type);
if (!value) {
return nullptr;
}
}
AutoSymbolTable table(this);
std::unordered_set<int> caseValues;
std::vector<std::unique_ptr<SwitchCase>> cases;
for (; iter != s.end(); ++iter) {
const ASTNode& c = *iter;
SkASSERT(c.fKind == ASTNode::Kind::kSwitchCase);
std::unique_ptr<Expression> caseValue;
auto childIter = c.begin();
if (*childIter) {
caseValue = this->convertExpression(*childIter);
if (!caseValue) {
return nullptr;
}
caseValue = this->coerce(std::move(caseValue), value->fType);
if (!caseValue) {
return nullptr;
}
int64_t v = 0;
if (!this->getConstantInt(*caseValue, &v)) {
fErrors.error(caseValue->fOffset, "case value must be a constant integer");
return nullptr;
}
if (caseValues.find(v) != caseValues.end()) {
fErrors.error(caseValue->fOffset, "duplicate case value");
}
caseValues.insert(v);
}
++childIter;
std::vector<std::unique_ptr<Statement>> statements;
for (; childIter != c.end(); ++childIter) {
std::unique_ptr<Statement> converted = this->convertStatement(*childIter);
if (!converted) {
return nullptr;
}
statements.push_back(std::move(converted));
}
cases.emplace_back(new SwitchCase(c.fOffset, std::move(caseValue),
std::move(statements)));
}
return std::unique_ptr<Statement>(new SwitchStatement(s.fOffset, s.getBool(),
std::move(value), std::move(cases),
fSymbolTable));
}
std::unique_ptr<Statement> IRGenerator::convertExpressionStatement(const ASTNode& s) {
std::unique_ptr<Expression> e = this->convertExpression(s);
if (!e) {
return nullptr;
}
this->checkValid(*e);
return std::unique_ptr<Statement>(new ExpressionStatement(std::move(e)));
}
std::unique_ptr<Statement> IRGenerator::convertReturn(const ASTNode& r) {
SkASSERT(r.fKind == ASTNode::Kind::kReturn);
SkASSERT(fCurrentFunction);
// early returns from a vertex main function will bypass the sk_Position normalization, so
// SkASSERT that we aren't doing that. It is of course possible to fix this by adding a
// normalization before each return, but it will probably never actually be necessary.
SkASSERT(Program::kVertex_Kind != fKind || !fRTAdjust || "main" != fCurrentFunction->fName);
if (r.begin() != r.end()) {
std::unique_ptr<Expression> result = this->convertExpression(*r.begin());
if (!result) {
return nullptr;
}
if (fCurrentFunction->fReturnType == *fContext.fVoid_Type) {
fErrors.error(result->fOffset, "may not return a value from a void function");
} else {
result = this->coerce(std::move(result), fCurrentFunction->fReturnType);
if (!result) {
return nullptr;
}
}
return std::unique_ptr<Statement>(new ReturnStatement(std::move(result)));
} else {
if (fCurrentFunction->fReturnType != *fContext.fVoid_Type) {
fErrors.error(r.fOffset, "expected function to return '" +
fCurrentFunction->fReturnType.displayName() + "'");
}
return std::unique_ptr<Statement>(new ReturnStatement(r.fOffset));
}
}
std::unique_ptr<Statement> IRGenerator::convertBreak(const ASTNode& b) {
SkASSERT(b.fKind == ASTNode::Kind::kBreak);
if (fLoopLevel > 0 || fSwitchLevel > 0) {
return std::unique_ptr<Statement>(new BreakStatement(b.fOffset));
} else {
fErrors.error(b.fOffset, "break statement must be inside a loop or switch");
return nullptr;
}
}
std::unique_ptr<Statement> IRGenerator::convertContinue(const ASTNode& c) {
SkASSERT(c.fKind == ASTNode::Kind::kContinue);
if (fLoopLevel > 0) {
return std::unique_ptr<Statement>(new ContinueStatement(c.fOffset));
} else {
fErrors.error(c.fOffset, "continue statement must be inside a loop");
return nullptr;
}
}
std::unique_ptr<Statement> IRGenerator::convertDiscard(const ASTNode& d) {
SkASSERT(d.fKind == ASTNode::Kind::kDiscard);
return std::unique_ptr<Statement>(new DiscardStatement(d.fOffset));
}
std::unique_ptr<Block> IRGenerator::applyInvocationIDWorkaround(std::unique_ptr<Block> main) {
Layout invokeLayout;
Modifiers invokeModifiers(invokeLayout, Modifiers::kHasSideEffects_Flag);
const FunctionDeclaration* invokeDecl = fSymbolTable->add(
"_invoke", std::make_unique<FunctionDeclaration>(/*offset=*/-1,
invokeModifiers,
"_invoke",
std::vector<const Variable*>(),
*fContext.fVoid_Type,
/*builtin=*/false));
fProgramElements->push_back(std::make_unique<FunctionDefinition>(/*offset=*/-1,
*invokeDecl,
std::move(main)));
std::vector<std::unique_ptr<VarDeclaration>> variables;
const Variable* loopIdx = &(*fSymbolTable)["sk_InvocationID"]->as<Variable>();
std::unique_ptr<Expression> test(new BinaryExpression(-1,
std::unique_ptr<Expression>(new VariableReference(-1, *loopIdx)),
Token::Kind::TK_LT,
std::make_unique<IntLiteral>(fContext, -1, fInvocations),
*fContext.fBool_Type));
std::unique_ptr<Expression> next(new PostfixExpression(
std::unique_ptr<Expression>(
new VariableReference(-1,
*loopIdx,
VariableReference::kReadWrite_RefKind)),
Token::Kind::TK_PLUSPLUS));
ASTNode endPrimitiveID(&fFile->fNodes, -1, ASTNode::Kind::kIdentifier, "EndPrimitive");
std::unique_ptr<Expression> endPrimitive = this->convertExpression(endPrimitiveID);
SkASSERT(endPrimitive);
std::vector<std::unique_ptr<Statement>> loopBody;
std::vector<std::unique_ptr<Expression>> invokeArgs;
loopBody.push_back(std::unique_ptr<Statement>(new ExpressionStatement(
this->call(-1,
*invokeDecl,
std::vector<std::unique_ptr<Expression>>()))));
loopBody.push_back(std::unique_ptr<Statement>(new ExpressionStatement(
this->call(-1,
std::move(endPrimitive),
std::vector<std::unique_ptr<Expression>>()))));
std::unique_ptr<Expression> assignment(new BinaryExpression(-1,
std::unique_ptr<Expression>(new VariableReference(-1, *loopIdx,
VariableReference::kWrite_RefKind)),
Token::Kind::TK_EQ,
std::make_unique<IntLiteral>(fContext, -1, 0),
*fContext.fInt_Type));
std::unique_ptr<Statement> initializer(new ExpressionStatement(std::move(assignment)));
std::unique_ptr<Statement> loop = std::unique_ptr<Statement>(
new ForStatement(-1,
std::move(initializer),
std::move(test),
std::move(next),
std::make_unique<Block>(-1, std::move(loopBody)),
fSymbolTable));
std::vector<std::unique_ptr<Statement>> children;
children.push_back(std::move(loop));
return std::make_unique<Block>(-1, std::move(children));
}
std::unique_ptr<Statement> IRGenerator::getNormalizeSkPositionCode() {
// sk_Position = float4(sk_Position.xy * rtAdjust.xz + sk_Position.ww * rtAdjust.yw,
// 0,
// sk_Position.w);
SkASSERT(fSkPerVertex && fRTAdjust);
#define REF(var) std::unique_ptr<Expression>(\
new VariableReference(-1, *var, VariableReference::kRead_RefKind))
#define WREF(var) std::unique_ptr<Expression>(\
new VariableReference(-1, *var, VariableReference::kWrite_RefKind))
#define FIELD(var, idx) std::unique_ptr<Expression>(\
new FieldAccess(REF(var), idx, FieldAccess::kAnonymousInterfaceBlock_OwnerKind))
#define POS std::unique_ptr<Expression>(new FieldAccess(WREF(fSkPerVertex), 0, \
FieldAccess::kAnonymousInterfaceBlock_OwnerKind))
#define ADJUST (fRTAdjustInterfaceBlock ? \
FIELD(fRTAdjustInterfaceBlock, fRTAdjustFieldIndex) : \
REF(fRTAdjust))
#define SWIZZLE(expr, ...) std::unique_ptr<Expression>(new Swizzle(fContext, expr, \
{ __VA_ARGS__ }))
#define OP(left, op, right) std::unique_ptr<Expression>( \
new BinaryExpression(-1, left, op, right, \
*fContext.fFloat2_Type))
std::vector<std::unique_ptr<Expression>> children;
children.push_back(OP(OP(SWIZZLE(POS, 0, 1), Token::Kind::TK_STAR, SWIZZLE(ADJUST, 0, 2)),
Token::Kind::TK_PLUS,
OP(SWIZZLE(POS, 3, 3), Token::Kind::TK_STAR, SWIZZLE(ADJUST, 1, 3))));
children.push_back(std::unique_ptr<Expression>(new FloatLiteral(fContext, -1, 0.0)));
children.push_back(SWIZZLE(POS, 3));
std::unique_ptr<Expression> result = OP(POS, Token::Kind::TK_EQ,
std::unique_ptr<Expression>(new Constructor(-1,
*fContext.fFloat4_Type,
std::move(children))));
return std::unique_ptr<Statement>(new ExpressionStatement(std::move(result)));
}
template<typename T>
class AutoClear {
public:
AutoClear(T* container)
: fContainer(container) {
SkASSERT(container->empty());
}
~AutoClear() {
fContainer->clear();
}
private:
T* fContainer;
};
template <typename T> AutoClear(T* c) -> AutoClear<T>;
void IRGenerator::checkModifiers(int offset, const Modifiers& modifiers, int permitted) {
int flags = modifiers.fFlags;
#define CHECK(flag, name) \
if (!flags) return; \
if (flags & flag) { \
if (!(permitted & flag)) { \
fErrors.error(offset, "'" name "' is not permitted here"); \
} \
flags &= ~flag; \
}
CHECK(Modifiers::kConst_Flag, "const")
CHECK(Modifiers::kIn_Flag, "in")
CHECK(Modifiers::kOut_Flag, "out")
CHECK(Modifiers::kUniform_Flag, "uniform")
CHECK(Modifiers::kFlat_Flag, "flat")
CHECK(Modifiers::kNoPerspective_Flag, "noperspective")
CHECK(Modifiers::kReadOnly_Flag, "readonly")
CHECK(Modifiers::kWriteOnly_Flag, "writeonly")
CHECK(Modifiers::kCoherent_Flag, "coherent")
CHECK(Modifiers::kVolatile_Flag, "volatile")
CHECK(Modifiers::kRestrict_Flag, "restrict")
CHECK(Modifiers::kBuffer_Flag, "buffer")
CHECK(Modifiers::kHasSideEffects_Flag, "sk_has_side_effects")
CHECK(Modifiers::kPLS_Flag, "__pixel_localEXT")
CHECK(Modifiers::kPLSIn_Flag, "__pixel_local_inEXT")
CHECK(Modifiers::kPLSOut_Flag, "__pixel_local_outEXT")
CHECK(Modifiers::kVarying_Flag, "varying")
CHECK(Modifiers::kInline_Flag, "inline")
SkASSERT(flags == 0);
}
void IRGenerator::convertFunction(const ASTNode& f) {
AutoClear clear(&fReferencedIntrinsics);
auto iter = f.begin();
const Type* returnType = this->convertType(*(iter++));
if (returnType == nullptr) {
return;
}
auto type_is_allowed = [&](const Type* t) {
#if defined(SKSL_STANDALONE)
return true;
#else
GrSLType unusedSLType;
return fKind != Program::kPipelineStage_Kind ||
type_to_grsltype(fContext, *t, &unusedSLType);
#endif
};
if (returnType->nonnullable() == *fContext.fFragmentProcessor_Type ||
!type_is_allowed(returnType)) {
fErrors.error(f.fOffset,
"functions may not return type '" + returnType->displayName() + "'");
return;
}
const ASTNode::FunctionData& funcData = f.getFunctionData();
this->checkModifiers(f.fOffset, funcData.fModifiers, Modifiers::kHasSideEffects_Flag |
Modifiers::kInline_Flag);
std::vector<const Variable*> parameters;
for (size_t i = 0; i < funcData.fParameterCount; ++i) {
const ASTNode& param = *(iter++);
SkASSERT(param.fKind == ASTNode::Kind::kParameter);
ASTNode::ParameterData pd = param.getParameterData();
this->checkModifiers(param.fOffset, pd.fModifiers, Modifiers::kIn_Flag |
Modifiers::kOut_Flag);
auto paramIter = param.begin();
const Type* type = this->convertType(*(paramIter++));
if (!type) {
return;
}
for (int j = (int) pd.fSizeCount; j >= 1; j--) {
int size = (param.begin() + j)->getInt();
String name = type->name() + "[" + to_string(size) + "]";
type = fSymbolTable->takeOwnershipOfSymbol(
std::make_unique<Type>(std::move(name), Type::kArray_Kind, *type, size));
}
// Only the (builtin) declarations of 'sample' are allowed to have FP parameters
if ((type->nonnullable() == *fContext.fFragmentProcessor_Type && !fIsBuiltinCode) ||
!type_is_allowed(type)) {
fErrors.error(param.fOffset,
"parameters of type '" + type->displayName() + "' not allowed");
return;
}
StringFragment name = pd.fName;
const Variable* var = fSymbolTable->takeOwnershipOfSymbol(std::make_unique<Variable>(
param.fOffset, pd.fModifiers, name, *type, Variable::kParameter_Storage));
parameters.push_back(var);
}
auto paramIsCoords = [&](int idx) {
return parameters[idx]->fType == *fContext.fFloat2_Type &&
parameters[idx]->fModifiers.fFlags == 0;
};
if (funcData.fName == "main") {
switch (fKind) {
case Program::kPipelineStage_Kind: {
// half4 main() -or- half4 main(float2)
bool valid = (*returnType == *fContext.fHalf4_Type) &&
((parameters.size() == 0) ||
(parameters.size() == 1 && paramIsCoords(0)));
if (!valid) {
fErrors.error(f.fOffset, "pipeline stage 'main' must be declared "
"half4 main() or half4 main(float2)");
return;
}
break;
}
case Program::kFragmentProcessor_Kind: {
bool valid = (parameters.size() == 0) ||
(parameters.size() == 1 && paramIsCoords(0));
if (!valid) {
fErrors.error(f.fOffset, ".fp 'main' must be declared main() or main(float2)");
return;
}
break;
}
case Program::kGeneric_Kind:
break;
default:
if (parameters.size()) {
fErrors.error(f.fOffset, "shader 'main' must have zero parameters");
}
}
}
// find existing declaration
const FunctionDeclaration* decl = nullptr;
const Symbol* entry = (*fSymbolTable)[funcData.fName];
if (entry) {
std::vector<const FunctionDeclaration*> functions;
switch (entry->fKind) {
case Symbol::kUnresolvedFunction_Kind:
functions = entry->as<UnresolvedFunction>().fFunctions;
break;
case Symbol::kFunctionDeclaration_Kind:
functions.push_back(&entry->as<FunctionDeclaration>());
break;
default:
fErrors.error(f.fOffset, "symbol '" + funcData.fName + "' was already defined");
return;
}
for (const FunctionDeclaration* other : functions) {
SkASSERT(other->fName == funcData.fName);
if (parameters.size() == other->fParameters.size()) {
bool match = true;
for (size_t i = 0; i < parameters.size(); i++) {
if (parameters[i]->fType != other->fParameters[i]->fType) {
match = false;
break;
}
}
if (match) {
if (*returnType != other->fReturnType) {
FunctionDeclaration newDecl(f.fOffset, funcData.fModifiers, funcData.fName,
parameters, *returnType, fIsBuiltinCode);
fErrors.error(f.fOffset, "functions '" + newDecl.description() +
"' and '" + other->description() +
"' differ only in return type");
return;
}
decl = other;
for (size_t i = 0; i < parameters.size(); i++) {
if (parameters[i]->fModifiers != other->fParameters[i]->fModifiers) {
fErrors.error(f.fOffset, "modifiers on parameter " +
to_string((uint64_t) i + 1) +
" differ between declaration and definition");
return;
}
}
if (other->fDefinition && !other->fBuiltin) {
fErrors.error(f.fOffset, "duplicate definition of " + other->description());
}
break;
}
}
}
}
if (!decl) {
// Conservatively assume all user-defined functions have side effects.
Modifiers declModifiers = funcData.fModifiers;
if (!fIsBuiltinCode) {
declModifiers.fFlags |= Modifiers::kHasSideEffects_Flag;
}
// Create a new declaration.
decl = fSymbolTable->add(funcData.fName,
std::make_unique<FunctionDeclaration>(f.fOffset,
declModifiers,
funcData.fName,
parameters,
*returnType,
fIsBuiltinCode));
}
if (iter != f.end()) {
// compile body
SkASSERT(!fCurrentFunction);
fCurrentFunction = decl;
std::shared_ptr<SymbolTable> old = fSymbolTable;
AutoSymbolTable table(this);
if (funcData.fName == "main" && (fKind == Program::kPipelineStage_Kind ||
fKind == Program::kFragmentProcessor_Kind)) {
if (parameters.size() == 1) {
SkASSERT(paramIsCoords(0));
parameters[0]->fModifiers.fLayout.fBuiltin = SK_MAIN_COORDS_BUILTIN;
}
}
for (size_t i = 0; i < parameters.size(); i++) {
fSymbolTable->addWithoutOwnership(parameters[i]->fName, decl->fParameters[i]);
}
bool needInvocationIDWorkaround = fInvocations != -1 && funcData.fName == "main" &&
fSettings->fCaps &&
!fSettings->fCaps->gsInvocationsSupport();
std::unique_ptr<Block> body = this->convertBlock(*iter);
fCurrentFunction = nullptr;
if (!body) {
return;
}
if (needInvocationIDWorkaround) {
body = this->applyInvocationIDWorkaround(std::move(body));
}
if (Program::kVertex_Kind == fKind && funcData.fName == "main" && fRTAdjust) {
body->fStatements.insert(body->fStatements.end(), this->getNormalizeSkPositionCode());
}
auto result = std::make_unique<FunctionDefinition>(f.fOffset, *decl, std::move(body),
std::move(fReferencedIntrinsics));
decl->fDefinition = result.get();
result->fSource = &f;
fProgramElements->push_back(std::move(result));
}
}
std::unique_ptr<InterfaceBlock> IRGenerator::convertInterfaceBlock(const ASTNode& intf) {
SkASSERT(intf.fKind == ASTNode::Kind::kInterfaceBlock);
ASTNode::InterfaceBlockData id = intf.getInterfaceBlockData();
std::shared_ptr<SymbolTable> old = fSymbolTable;
this->pushSymbolTable();
std::shared_ptr<SymbolTable> symbols = fSymbolTable;
std::vector<Type::Field> fields;
bool haveRuntimeArray = false;
bool foundRTAdjust = false;
auto iter = intf.begin();
for (size_t i = 0; i < id.fDeclarationCount; ++i) {
std::unique_ptr<VarDeclarations> decl = this->convertVarDeclarations(
*(iter++),
Variable::kInterfaceBlock_Storage);
if (!decl) {
return nullptr;
}
for (const auto& stmt : decl->fVars) {
VarDeclaration& vd = stmt->as<VarDeclaration>();
if (haveRuntimeArray) {
fErrors.error(decl->fOffset,
"only the last entry in an interface block may be a runtime-sized "
"array");
}
if (vd.fVar == fRTAdjust) {
foundRTAdjust = true;
SkASSERT(vd.fVar->fType == *fContext.fFloat4_Type);
fRTAdjustFieldIndex = fields.size();
}
fields.push_back(Type::Field(vd.fVar->fModifiers, vd.fVar->fName,
&vd.fVar->fType));
if (vd.fValue) {
fErrors.error(decl->fOffset,
"initializers are not permitted on interface block fields");
}
if (vd.fVar->fType.kind() == Type::kArray_Kind &&
vd.fVar->fType.columns() == -1) {
haveRuntimeArray = true;
}
}
}
this->popSymbolTable();
const Type* type =
old->takeOwnershipOfSymbol(std::make_unique<Type>(intf.fOffset, id.fTypeName, fields));
std::vector<std::unique_ptr<Expression>> sizes;
for (size_t i = 0; i < id.fSizeCount; ++i) {
const ASTNode& size = *(iter++);
if (size) {
std::unique_ptr<Expression> converted = this->convertExpression(size);
if (!converted) {
return nullptr;
}
String name = type->fName;
int64_t count;
if (converted->fKind == Expression::kIntLiteral_Kind) {
count = converted->as<IntLiteral>().fValue;
if (count <= 0) {
fErrors.error(converted->fOffset, "array size must be positive");
return nullptr;
}
name += "[" + to_string(count) + "]";
} else {
fErrors.error(intf.fOffset, "array size must be specified");
return nullptr;
}
type = symbols->takeOwnershipOfSymbol(
std::make_unique<Type>(name, Type::kArray_Kind, *type, (int)count));
sizes.push_back(std::move(converted));
} else {
fErrors.error(intf.fOffset, "array size must be specified");
return nullptr;
}
}
const Variable* var = old->takeOwnershipOfSymbol(
std::make_unique<Variable>(intf.fOffset,
id.fModifiers,
id.fInstanceName.fLength ? id.fInstanceName : id.fTypeName,
*type,
Variable::kGlobal_Storage));
if (foundRTAdjust) {
fRTAdjustInterfaceBlock = var;
}
if (id.fInstanceName.fLength) {
old->addWithoutOwnership(id.fInstanceName, var);
} else {
for (size_t i = 0; i < fields.size(); i++) {
old->add(fields[i].fName, std::make_unique<Field>(intf.fOffset, *var, (int)i));
}
}
return std::make_unique<InterfaceBlock>(intf.fOffset,
var,
id.fTypeName,
id.fInstanceName,
std::move(sizes),
symbols);
}
bool IRGenerator::getConstantInt(const Expression& value, int64_t* out) {
switch (value.fKind) {
case Expression::kIntLiteral_Kind:
*out = static_cast<const IntLiteral&>(value).fValue;
return true;
case Expression::kVariableReference_Kind: {
const Variable& var = static_cast<const VariableReference&>(value).fVariable;
return (var.fModifiers.fFlags & Modifiers::kConst_Flag) &&
var.fInitialValue &&
this->getConstantInt(*var.fInitialValue, out);
}
default:
return false;
}
}
void IRGenerator::convertEnum(const ASTNode& e) {
SkASSERT(e.fKind == ASTNode::Kind::kEnum);
int64_t currentValue = 0;
Layout layout;
ASTNode enumType(e.fNodes, e.fOffset, ASTNode::Kind::kType,
ASTNode::TypeData(e.getString(), false, false));
const Type* type = this->convertType(enumType);
Modifiers modifiers(layout, Modifiers::kConst_Flag);
AutoSymbolTable table(this);
for (auto iter = e.begin(); iter != e.end(); ++iter) {
const ASTNode& child = *iter;
SkASSERT(child.fKind == ASTNode::Kind::kEnumCase);
std::unique_ptr<Expression> value;
if (child.begin() != child.end()) {
value = this->convertExpression(*child.begin());
if (!value) {
return;
}
if (!this->getConstantInt(*value, &currentValue)) {
fErrors.error(value->fOffset, "enum value must be a constant integer");
return;
}
}
value = std::unique_ptr<Expression>(new IntLiteral(fContext, e.fOffset, currentValue));
++currentValue;
fSymbolTable->add(child.getString(),
std::make_unique<Variable>(e.fOffset, modifiers, child.getString(), *type,
Variable::kGlobal_Storage, value.get()));
fSymbolTable->takeOwnershipOfIRNode(std::move(value));
}
fProgramElements->push_back(std::unique_ptr<ProgramElement>(
new Enum(e.fOffset, e.getString(), fSymbolTable, fIsBuiltinCode)));
}
const Type* IRGenerator::convertType(const ASTNode& type) {
ASTNode::TypeData td = type.getTypeData();
const Symbol* result = (*fSymbolTable)[td.fName];
if (result && result->fKind == Symbol::kType_Kind) {
if (td.fIsNullable) {
if (result->as<Type>() == *fContext.fFragmentProcessor_Type) {
if (type.begin() != type.end()) {
fErrors.error(type.fOffset, "type '" + td.fName + "' may not be used in "
"an array");
}
result = fSymbolTable->takeOwnershipOfSymbol(std::make_unique<Type>(
String(result->fName) + "?", Type::kNullable_Kind, result->as<Type>()));
} else {
fErrors.error(type.fOffset, "type '" + td.fName + "' may not be nullable");
}
}
for (const auto& size : type) {
String name(result->fName);
name += "[";
if (size) {
name += to_string(size.getInt());
}
name += "]";
result = fSymbolTable->takeOwnershipOfSymbol(std::make_unique<Type>(
name, Type::kArray_Kind, result->as<Type>(), size ? size.getInt() : 0));
}
return &result->as<Type>();
}
fErrors.error(type.fOffset, "unknown type '" + td.fName + "'");
return nullptr;
}
std::unique_ptr<Expression> IRGenerator::convertExpression(const ASTNode& expr) {
switch (expr.fKind) {
case ASTNode::Kind::kBinary:
return this->convertBinaryExpression(expr);
case ASTNode::Kind::kBool:
return std::unique_ptr<Expression>(new BoolLiteral(fContext, expr.fOffset,
expr.getBool()));
case ASTNode::Kind::kCall:
return this->convertCallExpression(expr);
case ASTNode::Kind::kField:
return this->convertFieldExpression(expr);
case ASTNode::Kind::kFloat:
return std::unique_ptr<Expression>(new FloatLiteral(fContext, expr.fOffset,
expr.getFloat()));
case ASTNode::Kind::kIdentifier:
return this->convertIdentifier(expr);
case ASTNode::Kind::kIndex:
return this->convertIndexExpression(expr);
case ASTNode::Kind::kInt:
return std::unique_ptr<Expression>(new IntLiteral(fContext, expr.fOffset,
expr.getInt()));
case ASTNode::Kind::kNull:
return std::unique_ptr<Expression>(new NullLiteral(fContext, expr.fOffset));
case ASTNode::Kind::kPostfix:
return this->convertPostfixExpression(expr);
case ASTNode::Kind::kPrefix:
return this->convertPrefixExpression(expr);
case ASTNode::Kind::kTernary:
return this->convertTernaryExpression(expr);
default:
#ifdef SK_DEBUG
ABORT("unsupported expression: %s\n", expr.description().c_str());
#endif
return nullptr;
}
}
std::unique_ptr<Expression> IRGenerator::convertIdentifier(const ASTNode& identifier) {
SkASSERT(identifier.fKind == ASTNode::Kind::kIdentifier);
const Symbol* result = (*fSymbolTable)[identifier.getString()];
if (!result) {
fErrors.error(identifier.fOffset, "unknown identifier '" + identifier.getString() + "'");
return nullptr;
}
switch (result->fKind) {
case Symbol::kFunctionDeclaration_Kind: {
std::vector<const FunctionDeclaration*> f = {
&result->as<FunctionDeclaration>()
};
return std::make_unique<FunctionReference>(fContext, identifier.fOffset, f);
}
case Symbol::kUnresolvedFunction_Kind: {
const UnresolvedFunction* f = &result->as<UnresolvedFunction>();
return std::make_unique<FunctionReference>(fContext, identifier.fOffset, f->fFunctions);
}
case Symbol::kVariable_Kind: {
const Variable* var = &result->as<Variable>();
switch (var->fModifiers.fLayout.fBuiltin) {
case SK_WIDTH_BUILTIN:
fInputs.fRTWidth = true;
break;
case SK_HEIGHT_BUILTIN:
fInputs.fRTHeight = true;
break;
#ifndef SKSL_STANDALONE
case SK_FRAGCOORD_BUILTIN:
fInputs.fFlipY = true;
if (fSettings->fFlipY &&
(!fSettings->fCaps ||
!fSettings->fCaps->fragCoordConventionsExtensionString())) {
fInputs.fRTHeight = true;
}
#endif
}
if (fKind == Program::kFragmentProcessor_Kind &&
(var->fModifiers.fFlags & Modifiers::kIn_Flag) &&
!(var->fModifiers.fFlags & Modifiers::kUniform_Flag) &&
!var->fModifiers.fLayout.fKey &&
var->fModifiers.fLayout.fBuiltin == -1 &&
var->fType.nonnullable() != *fContext.fFragmentProcessor_Type &&
var->fType.kind() != Type::kSampler_Kind) {
bool valid = false;
for (const auto& decl : fFile->root()) {
if (decl.fKind == ASTNode::Kind::kSection) {
ASTNode::SectionData section = decl.getSectionData();
if (section.fName == "setData") {
valid = true;
break;
}
}
}
if (!valid) {
fErrors.error(identifier.fOffset, "'in' variable must be either 'uniform' or "
"'layout(key)', or there must be a custom "
"@setData function");
}
}
// default to kRead_RefKind; this will be corrected later if the variable is written to
return std::make_unique<VariableReference>(identifier.fOffset,
*var,
VariableReference::kRead_RefKind);
}
case Symbol::kField_Kind: {
const Field* field = &result->as<Field>();
VariableReference* base = new VariableReference(identifier.fOffset, field->fOwner,
VariableReference::kRead_RefKind);
return std::unique_ptr<Expression>(new FieldAccess(
std::unique_ptr<Expression>(base),
field->fFieldIndex,
FieldAccess::kAnonymousInterfaceBlock_OwnerKind));
}
case Symbol::kType_Kind: {
const Type* t = &result->as<Type>();
return std::make_unique<TypeReference>(fContext, identifier.fOffset, *t);
}
case Symbol::kExternal_Kind: {
const ExternalValue* r = &result->as<ExternalValue>();
return std::make_unique<ExternalValueReference>(identifier.fOffset, r);
}
default:
ABORT("unsupported symbol type %d\n", result->fKind);
}
}
std::unique_ptr<Section> IRGenerator::convertSection(const ASTNode& s) {
ASTNode::SectionData section = s.getSectionData();
return std::make_unique<Section>(s.fOffset, section.fName, section.fArgument,
section.fText);
}
std::unique_ptr<Expression> IRGenerator::coerce(std::unique_ptr<Expression> expr,
const Type& type) {
if (!expr) {
return nullptr;
}
if (expr->fType == type) {
return expr;
}
this->checkValid(*expr);
if (expr->fType == *fContext.fInvalid_Type) {
return nullptr;
}
if (expr->coercionCost(type) == INT_MAX) {
fErrors.error(expr->fOffset, "expected '" + type.displayName() + "', but found '" +
expr->fType.displayName() + "'");
return nullptr;
}
if (type.kind() == Type::kScalar_Kind) {
std::vector<std::unique_ptr<Expression>> args;
args.push_back(std::move(expr));
std::unique_ptr<Expression> ctor;
if (type == *fContext.fFloatLiteral_Type) {
ctor = this->convertIdentifier(ASTNode(&fFile->fNodes, -1, ASTNode::Kind::kIdentifier,
"float"));
} else if (type == *fContext.fIntLiteral_Type) {
ctor = this->convertIdentifier(ASTNode(&fFile->fNodes, -1, ASTNode::Kind::kIdentifier,
"int"));
} else {
ctor = this->convertIdentifier(ASTNode(&fFile->fNodes, -1, ASTNode::Kind::kIdentifier,
type.fName));
}
if (!ctor) {
printf("error, null identifier: %s\n", String(type.fName).c_str());
}
SkASSERT(ctor);
return this->call(-1, std::move(ctor), std::move(args));
}
if (expr->fKind == Expression::kNullLiteral_Kind) {
SkASSERT(type.kind() == Type::kNullable_Kind);
return std::unique_ptr<Expression>(new NullLiteral(expr->fOffset, type));
}
std::vector<std::unique_ptr<Expression>> args;
args.push_back(std::move(expr));
return std::unique_ptr<Expression>(new Constructor(-1, type, std::move(args)));
}
static bool is_matrix_multiply(const Type& left, const Type& right) {
if (left.kind() == Type::kMatrix_Kind) {
return right.kind() == Type::kMatrix_Kind || right.kind() == Type::kVector_Kind;
}
return left.kind() == Type::kVector_Kind && right.kind() == Type::kMatrix_Kind;
}
/**
* Determines the operand and result types of a binary expression. Returns true if the expression is
* legal, false otherwise. If false, the values of the out parameters are undefined.
*/
static bool determine_binary_type(const Context& context,
Token::Kind op,
const Type& left,
const Type& right,
const Type** outLeftType,
const Type** outRightType,
const Type** outResultType,
bool tryFlipped) {
bool isLogical;
bool validMatrixOrVectorOp;
switch (op) {
case Token::Kind::TK_EQ:
*outLeftType = &left;
*outRightType = &left;
*outResultType = &left;
return right.canCoerceTo(left);
case Token::Kind::TK_EQEQ: // fall through
case Token::Kind::TK_NEQ:
if (right.canCoerceTo(left)) {
*outLeftType = &left;
*outRightType = &left;
*outResultType = context.fBool_Type.get();
return true;
} if (left.canCoerceTo(right)) {
*outLeftType = &right;
*outRightType = &right;
*outResultType = context.fBool_Type.get();
return true;
}
return false;
case Token::Kind::TK_LT: // fall through
case Token::Kind::TK_GT: // fall through
case Token::Kind::TK_LTEQ: // fall through
case Token::Kind::TK_GTEQ:
isLogical = true;
validMatrixOrVectorOp = false;
break;
case Token::Kind::TK_LOGICALOR: // fall through
case Token::Kind::TK_LOGICALAND: // fall through
case Token::Kind::TK_LOGICALXOR: // fall through
case Token::Kind::TK_LOGICALOREQ: // fall through
case Token::Kind::TK_LOGICALANDEQ: // fall through
case Token::Kind::TK_LOGICALXOREQ:
*outLeftType = context.fBool_Type.get();
*outRightType = context.fBool_Type.get();
*outResultType = context.fBool_Type.get();
return left.canCoerceTo(*context.fBool_Type) &&
right.canCoerceTo(*context.fBool_Type);
case Token::Kind::TK_STAREQ:
if (left.kind() == Type::kScalar_Kind) {
*outLeftType = &left;
*outRightType = &left;
*outResultType = &left;
return right.canCoerceTo(left);
}
[[fallthrough]];
case Token::Kind::TK_STAR:
if (is_matrix_multiply(left, right)) {
// determine final component type
if (determine_binary_type(context, Token::Kind::TK_STAR, left.componentType(),
right.componentType(), outLeftType, outRightType,
outResultType, false)) {
*outLeftType = &(*outResultType)->toCompound(context, left.columns(),
left.rows());
*outRightType = &(*outResultType)->toCompound(context, right.columns(),
right.rows());
int leftColumns = left.columns();
int leftRows = left.rows();
int rightColumns;
int rightRows;
if (right.kind() == Type::kVector_Kind) {
// matrix * vector treats the vector as a column vector, so we need to
// transpose it
rightColumns = right.rows();
rightRows = right.columns();
SkASSERT(rightColumns == 1);
} else {
rightColumns = right.columns();
rightRows = right.rows();
}
if (rightColumns > 1) {
*outResultType = &(*outResultType)->toCompound(context, rightColumns,
leftRows);
} else {
// result was a column vector, transpose it back to a row
*outResultType = &(*outResultType)->toCompound(context, leftRows,
rightColumns);
}
return leftColumns == rightRows;
} else {
return false;
}
}
isLogical = false;
validMatrixOrVectorOp = true;
break;
case Token::Kind::TK_PLUSEQ:
case Token::Kind::TK_MINUSEQ:
case Token::Kind::TK_SLASHEQ:
case Token::Kind::TK_PERCENTEQ:
case Token::Kind::TK_SHLEQ:
case Token::Kind::TK_SHREQ:
if (left.kind() == Type::kScalar_Kind) {
*outLeftType = &left;
*outRightType = &left;
*outResultType = &left;
return right.canCoerceTo(left);
}
[[fallthrough]];
case Token::Kind::TK_PLUS: // fall through
case Token::Kind::TK_MINUS: // fall through
case Token::Kind::TK_SLASH: // fall through
isLogical = false;
validMatrixOrVectorOp = true;
break;
case Token::Kind::TK_COMMA:
*outLeftType = &left;
*outRightType = &right;
*outResultType = &right;
return true;
default:
isLogical = false;
validMatrixOrVectorOp = false;
}
bool isVectorOrMatrix = left.kind() == Type::kVector_Kind || left.kind() == Type::kMatrix_Kind;
if (left.kind() == Type::kScalar_Kind && right.kind() == Type::kScalar_Kind &&
right.canCoerceTo(left)) {
if (left.priority() > right.priority()) {
*outLeftType = &left;
*outRightType = &left;
} else {
*outLeftType = &right;
*outRightType = &right;
}
if (isLogical) {
*outResultType = context.fBool_Type.get();
} else {
*outResultType = &left;
}
return true;
}
if (right.canCoerceTo(left) && isVectorOrMatrix && validMatrixOrVectorOp) {
*outLeftType = &left;
*outRightType = &left;
if (isLogical) {
*outResultType = context.fBool_Type.get();
} else {
*outResultType = &left;
}
return true;
}
if ((left.kind() == Type::kVector_Kind || left.kind() == Type::kMatrix_Kind) &&
(right.kind() == Type::kScalar_Kind)) {
if (determine_binary_type(context, op, left.componentType(), right, outLeftType,
outRightType, outResultType, false)) {
*outLeftType = &(*outLeftType)->toCompound(context, left.columns(), left.rows());
if (!isLogical) {
*outResultType = &(*outResultType)->toCompound(context, left.columns(),
left.rows());
}
return true;
}
return false;
}
if (tryFlipped) {
return determine_binary_type(context, op, right, left, outRightType, outLeftType,
outResultType, false);
}
return false;
}
static std::unique_ptr<Expression> short_circuit_boolean(const Context& context,
const Expression& left,
Token::Kind op,
const Expression& right) {
SkASSERT(left.fKind == Expression::kBoolLiteral_Kind);
bool leftVal = left.as<BoolLiteral>().fValue;
if (op == Token::Kind::TK_LOGICALAND) {
// (true && expr) -> (expr) and (false && expr) -> (false)
return leftVal ? right.clone()
: std::unique_ptr<Expression>(new BoolLiteral(context, left.fOffset, false));
} else if (op == Token::Kind::TK_LOGICALOR) {
// (true || expr) -> (true) and (false || expr) -> (expr)
return leftVal ? std::unique_ptr<Expression>(new BoolLiteral(context, left.fOffset, true))
: right.clone();
} else if (op == Token::Kind::TK_LOGICALXOR) {
// (true ^^ expr) -> !(expr) and (false ^^ expr) -> (expr)
return leftVal ? std::unique_ptr<Expression>(new PrefixExpression(
Token::Kind::TK_LOGICALNOT,
right.clone()))
: right.clone();
} else {
return nullptr;
}
}
std::unique_ptr<Expression> IRGenerator::constantFold(const Expression& left,
Token::Kind op,
const Expression& right) const {
// If the left side is a constant boolean literal, the right side does not need to be constant
// for short circuit optimizations to allow the constant to be folded.
if (left.fKind == Expression::kBoolLiteral_Kind && !right.isCompileTimeConstant()) {
return short_circuit_boolean(fContext, left, op, right);
} else if (right.fKind == Expression::kBoolLiteral_Kind && !left.isCompileTimeConstant()) {
// There aren't side effects in SKSL within expressions, so (left OP right) is equivalent to
// (right OP left) for short-circuit optimizations
return short_circuit_boolean(fContext, right, op, left);
}
// Other than the short-circuit cases above, constant folding requires both sides to be constant
if (!left.isCompileTimeConstant() || !right.isCompileTimeConstant()) {
return nullptr;
}
// Note that we expressly do not worry about precision and overflow here -- we use the maximum
// precision to calculate the results and hope the result makes sense. The plan is to move the
// Skia caps into SkSL, so we have access to all of them including the precisions of the various
// types, which will let us be more intelligent about this.
if (left.fKind == Expression::kBoolLiteral_Kind &&
right.fKind == Expression::kBoolLiteral_Kind) {
bool leftVal = left.as<BoolLiteral>().fValue;
bool rightVal = right.as<BoolLiteral>().fValue;
bool result;
switch (op) {
case Token::Kind::TK_LOGICALAND: result = leftVal && rightVal; break;
case Token::Kind::TK_LOGICALOR: result = leftVal || rightVal; break;
case Token::Kind::TK_LOGICALXOR: result = leftVal ^ rightVal; break;
default: return nullptr;
}
return std::unique_ptr<Expression>(new BoolLiteral(fContext, left.fOffset, result));
}
#define RESULT(t, op) std::make_unique<t ## Literal>(fContext, left.fOffset, \
leftVal op rightVal)
#define URESULT(t, op) std::make_unique<t ## Literal>(fContext, left.fOffset, \
(uint32_t) leftVal op \
(uint32_t) rightVal)
if (left.fKind == Expression::kIntLiteral_Kind && right.fKind == Expression::kIntLiteral_Kind) {
int64_t leftVal = left.as<IntLiteral>().fValue;
int64_t rightVal = right.as<IntLiteral>().fValue;
switch (op) {
case Token::Kind::TK_PLUS: return URESULT(Int, +);
case Token::Kind::TK_MINUS: return URESULT(Int, -);
case Token::Kind::TK_STAR: return URESULT(Int, *);
case Token::Kind::TK_SLASH:
if (leftVal == std::numeric_limits<int64_t>::min() && rightVal == -1) {
fErrors.error(right.fOffset, "arithmetic overflow");
return nullptr;
}
if (!rightVal) {
fErrors.error(right.fOffset, "division by zero");
return nullptr;
}
return RESULT(Int, /);
case Token::Kind::TK_PERCENT:
if (leftVal == std::numeric_limits<int64_t>::min() && rightVal == -1) {
fErrors.error(right.fOffset, "arithmetic overflow");
return nullptr;
}
if (!rightVal) {
fErrors.error(right.fOffset, "division by zero");
return nullptr;
}
return RESULT(Int, %);
case Token::Kind::TK_BITWISEAND: return RESULT(Int, &);
case Token::Kind::TK_BITWISEOR: return RESULT(Int, |);
case Token::Kind::TK_BITWISEXOR: return RESULT(Int, ^);
case Token::Kind::TK_EQEQ: return RESULT(Bool, ==);
case Token::Kind::TK_NEQ: return RESULT(Bool, !=);
case Token::Kind::TK_GT: return RESULT(Bool, >);
case Token::Kind::TK_GTEQ: return RESULT(Bool, >=);
case Token::Kind::TK_LT: return RESULT(Bool, <);
case Token::Kind::TK_LTEQ: return RESULT(Bool, <=);
case Token::Kind::TK_SHL:
if (rightVal >= 0 && rightVal <= 31) {
return URESULT(Int, <<);
}
fErrors.error(right.fOffset, "shift value out of range");
return nullptr;
case Token::Kind::TK_SHR:
if (rightVal >= 0 && rightVal <= 31) {
return URESULT(Int, >>);
}
fErrors.error(right.fOffset, "shift value out of range");
return nullptr;
default:
return nullptr;
}
}
if (left.fKind == Expression::kFloatLiteral_Kind &&
right.fKind == Expression::kFloatLiteral_Kind) {
double leftVal = left.as<FloatLiteral>().fValue;
double rightVal = right.as<FloatLiteral>().fValue;
switch (op) {
case Token::Kind::TK_PLUS: return RESULT(Float, +);
case Token::Kind::TK_MINUS: return RESULT(Float, -);
case Token::Kind::TK_STAR: return RESULT(Float, *);
case Token::Kind::TK_SLASH:
if (rightVal) {
return RESULT(Float, /);
}
fErrors.error(right.fOffset, "division by zero");
return nullptr;
case Token::Kind::TK_EQEQ: return RESULT(Bool, ==);
case Token::Kind::TK_NEQ: return RESULT(Bool, !=);
case Token::Kind::TK_GT: return RESULT(Bool, >);
case Token::Kind::TK_GTEQ: return RESULT(Bool, >=);
case Token::Kind::TK_LT: return RESULT(Bool, <);
case Token::Kind::TK_LTEQ: return RESULT(Bool, <=);
default: return nullptr;
}
}
if (left.fType.kind() == Type::kVector_Kind && left.fType.componentType().isFloat() &&
left.fType == right.fType) {
std::vector<std::unique_ptr<Expression>> args;
#define RETURN_VEC_COMPONENTWISE_RESULT(op) \
for (int i = 0; i < left.fType.columns(); i++) { \
float value = left.getFVecComponent(i) op \
right.getFVecComponent(i); \
args.emplace_back(new FloatLiteral(fContext, -1, value)); \
} \
return std::unique_ptr<Expression>(new Constructor(-1, left.fType, \
std::move(args)))
switch (op) {
case Token::Kind::TK_EQEQ:
return std::unique_ptr<Expression>(new BoolLiteral(fContext, -1,
left.compareConstant(fContext, right)));
case Token::Kind::TK_NEQ:
return std::unique_ptr<Expression>(new BoolLiteral(fContext, -1,
!left.compareConstant(fContext, right)));
case Token::Kind::TK_PLUS: RETURN_VEC_COMPONENTWISE_RESULT(+);
case Token::Kind::TK_MINUS: RETURN_VEC_COMPONENTWISE_RESULT(-);
case Token::Kind::TK_STAR: RETURN_VEC_COMPONENTWISE_RESULT(*);
case Token::Kind::TK_SLASH:
for (int i = 0; i < left.fType.columns(); i++) {
SKSL_FLOAT rvalue = right.getFVecComponent(i);
if (rvalue == 0.0) {
fErrors.error(right.fOffset, "division by zero");
return nullptr;
}
float value = left.getFVecComponent(i) / rvalue;
args.emplace_back(new FloatLiteral(fContext, -1, value));
}
return std::unique_ptr<Expression>(new Constructor(-1, left.fType,
std::move(args)));
default: return nullptr;
}
}
if (left.fType.kind() == Type::kMatrix_Kind &&
right.fType.kind() == Type::kMatrix_Kind &&
left.fKind == right.fKind) {
switch (op) {
case Token::Kind::TK_EQEQ:
return std::unique_ptr<Expression>(new BoolLiteral(fContext, -1,
left.compareConstant(fContext, right)));
case Token::Kind::TK_NEQ:
return std::unique_ptr<Expression>(new BoolLiteral(fContext, -1,
!left.compareConstant(fContext, right)));
default:
return nullptr;
}
}
#undef RESULT
return nullptr;
}
std::unique_ptr<Expression> IRGenerator::convertBinaryExpression(const ASTNode& expression) {
SkASSERT(expression.fKind == ASTNode::Kind::kBinary);
auto iter = expression.begin();
std::unique_ptr<Expression> left = this->convertExpression(*(iter++));
if (!left) {
return nullptr;
}
Token::Kind op = expression.getToken().fKind;
std::unique_ptr<Expression> right;
{
// Can't inline the right side of a short-circuiting boolean, because our inlining
// approach runs things out of order.
AutoDisableInline disableInline(this, /*canInline=*/(op != Token::Kind::TK_LOGICALAND &&
op != Token::Kind::TK_LOGICALOR));
right = this->convertExpression(*(iter++));
}
if (!right) {
return nullptr;
}
const Type* leftType;
const Type* rightType;
const Type* resultType;
const Type* rawLeftType;
if (left->fKind == Expression::kIntLiteral_Kind && right->fType.isInteger()) {
rawLeftType = &right->fType;
} else {
rawLeftType = &left->fType;
}
const Type* rawRightType;
if (right->fKind == Expression::kIntLiteral_Kind && left->fType.isInteger()) {
rawRightType = &left->fType;
} else {
rawRightType = &right->fType;
}
if (!determine_binary_type(fContext, op, *rawLeftType, *rawRightType, &leftType, &rightType,
&resultType, !Compiler::IsAssignment(op))) {
fErrors.error(expression.fOffset, String("type mismatch: '") +
Compiler::OperatorName(expression.getToken().fKind) +
"' cannot operate on '" + left->fType.displayName() +
"', '" + right->fType.displayName() + "'");
return nullptr;
}
if (Compiler::IsAssignment(op)) {
if (!this->setRefKind(*left, op != Token::Kind::TK_EQ
? VariableReference::kReadWrite_RefKind
: VariableReference::kWrite_RefKind)) {
return nullptr;
}
}
left = this->coerce(std::move(left), *leftType);
right = this->coerce(std::move(right), *rightType);
if (!left || !right) {
return nullptr;
}
std::unique_ptr<Expression> result = this->constantFold(*left, op, *right);
if (!result) {
result = std::make_unique<BinaryExpression>(expression.fOffset, std::move(left), op,
std::move(right), *resultType);
}
return result;
}
std::unique_ptr<Expression> IRGenerator::convertTernaryExpression(const ASTNode& node) {
SkASSERT(node.fKind == ASTNode::Kind::kTernary);
auto iter = node.begin();
std::unique_ptr<Expression> test = this->coerce(this->convertExpression(*(iter++)),
*fContext.fBool_Type);
if (!test) {
return nullptr;
}
std::unique_ptr<Expression> ifTrue = this->convertExpression(*(iter++));
if (!ifTrue) {
return nullptr;
}
std::unique_ptr<Expression> ifFalse = this->convertExpression(*(iter++));
if (!ifFalse) {
return nullptr;
}
const Type* trueType;
const Type* falseType;
const Type* resultType;
if (!determine_binary_type(fContext, Token::Kind::TK_EQEQ, ifTrue->fType, ifFalse->fType,
&trueType, &falseType, &resultType, true) || trueType != falseType) {
fErrors.error(node.fOffset, "ternary operator result mismatch: '" +
ifTrue->fType.displayName() + "', '" +
ifFalse->fType.displayName() + "'");
return nullptr;
}
if (trueType->nonnullable() == *fContext.fFragmentProcessor_Type) {
fErrors.error(node.fOffset,
"ternary expression of type '" + trueType->displayName() + "' not allowed");
return nullptr;
}
ifTrue = this->coerce(std::move(ifTrue), *trueType);
if (!ifTrue) {
return nullptr;
}
ifFalse = this->coerce(std::move(ifFalse), *falseType);
if (!ifFalse) {
return nullptr;
}
if (test->fKind == Expression::kBoolLiteral_Kind) {
// static boolean test, just return one of the branches
if (test->as<BoolLiteral>().fValue) {
return ifTrue;
} else {
return ifFalse;
}
}
return std::unique_ptr<Expression>(new TernaryExpression(node.fOffset,
std::move(test),
std::move(ifTrue),
std::move(ifFalse)));
}
std::unique_ptr<Expression> IRGenerator::inlineExpression(
int offset,
std::unordered_map<const Variable*, const Variable*>* varMap,
const Expression& expression) {
auto expr = [&](const std::unique_ptr<Expression>& e) -> std::unique_ptr<Expression> {
if (e) {
return this->inlineExpression(offset, varMap, *e);
}
return nullptr;
};
switch (expression.fKind) {
case Expression::kBinary_Kind: {
const BinaryExpression& b = expression.as<BinaryExpression>();
return std::unique_ptr<Expression>(new BinaryExpression(offset,
expr(b.fLeft),
b.fOperator,
expr(b.fRight),
b.fType));
}
case Expression::kBoolLiteral_Kind:
case Expression::kIntLiteral_Kind:
case Expression::kFloatLiteral_Kind:
case Expression::kNullLiteral_Kind:
return expression.clone();
case Expression::kConstructor_Kind: {
const Constructor& c = expression.as<Constructor>();
std::vector<std::unique_ptr<Expression>> args;
for (const auto& arg : c.fArguments) {
args.push_back(expr(arg));
}
return std::unique_ptr<Expression>(new Constructor(offset, c.fType, std::move(args)));
}
case Expression::kExternalFunctionCall_Kind: {
const ExternalFunctionCall& e = expression.as<ExternalFunctionCall>();
std::vector<std::unique_ptr<Expression>> args;
for (const auto& arg : e.fArguments) {
args.push_back(expr(arg));
}
return std::unique_ptr<Expression>(new ExternalFunctionCall(offset, e.fType,
e.fFunction,
std::move(args)));
}
case Expression::kExternalValue_Kind:
return expression.clone();
case Expression::kFieldAccess_Kind: {
const FieldAccess& f = expression.as<FieldAccess>();
return std::unique_ptr<Expression>(new FieldAccess(expr(f.fBase), f.fFieldIndex,
f.fOwnerKind));
}
case Expression::kFunctionCall_Kind: {
const FunctionCall& c = expression.as<FunctionCall>();
std::vector<std::unique_ptr<Expression>> args;
for (const auto& arg : c.fArguments) {
args.push_back(expr(arg));
}
return std::unique_ptr<Expression>(new FunctionCall(offset, c.fType, c.fFunction,
std::move(args)));
}
case Expression::kIndex_Kind: {
const IndexExpression& idx = expression.as<IndexExpression>();
return std::unique_ptr<Expression>(new IndexExpression(fContext, expr(idx.fBase),
expr(idx.fIndex)));
}
case Expression::kPrefix_Kind: {
const PrefixExpression& p = expression.as<PrefixExpression>();
return std::unique_ptr<Expression>(new PrefixExpression(p.fOperator, expr(p.fOperand)));
}
case Expression::kPostfix_Kind: {
const PostfixExpression& p = expression.as<PostfixExpression>();
return std::unique_ptr<Expression>(new PostfixExpression(expr(p.fOperand),
p.fOperator));
}
case Expression::kSetting_Kind:
return expression.clone();
case Expression::kSwizzle_Kind: {
const Swizzle& s = expression.as<Swizzle>();
return std::unique_ptr<Expression>(new Swizzle(fContext, expr(s.fBase), s.fComponents));
}
case Expression::kTernary_Kind: {
const TernaryExpression& t = expression.as<TernaryExpression>();
return std::unique_ptr<Expression>(new TernaryExpression(offset, expr(t.fTest),
expr(t.fIfTrue),
expr(t.fIfFalse)));
}
case Expression::kVariableReference_Kind: {
const VariableReference& v = expression.as<VariableReference>();
auto found = varMap->find(&v.fVariable);
if (found != varMap->end()) {
return std::unique_ptr<Expression>(new VariableReference(offset,
*found->second,
v.fRefKind));
}
return v.clone();
}
default:
SkASSERT(false);
return nullptr;
}
}
static const Type* copy_if_needed(const Type* src, SymbolTable& symbolTable) {
if (src->kind() == Type::kArray_Kind) {
return symbolTable.takeOwnershipOfSymbol(std::make_unique<Type>(*src));
}
return src;
}
std::unique_ptr<Statement> IRGenerator::inlineStatement(
int offset,
std::unordered_map<const Variable*, const Variable*>* varMap,
SymbolTable* symbolTableForStatement,
const Variable* returnVar,
bool haveEarlyReturns,
const Statement& statement) {
auto stmt = [&](const std::unique_ptr<Statement>& s) -> std::unique_ptr<Statement> {
if (s) {
return this->inlineStatement(offset, varMap, symbolTableForStatement, returnVar,
haveEarlyReturns, *s);
}
return nullptr;
};
auto stmts = [&](const std::vector<std::unique_ptr<Statement>>& ss) {
std::vector<std::unique_ptr<Statement>> result;
for (const auto& s : ss) {
result.push_back(stmt(s));
}
return result;
};
auto expr = [&](const std::unique_ptr<Expression>& e) -> std::unique_ptr<Expression> {
if (e) {
return this->inlineExpression(offset, varMap, *e);
}
return nullptr;
};
switch (statement.fKind) {
case Statement::kBlock_Kind: {
const Block& b = statement.as<Block>();
return std::make_unique<Block>(offset, stmts(b.fStatements), b.fSymbols, b.fIsScope);
}
case Statement::kBreak_Kind:
case Statement::kContinue_Kind:
case Statement::kDiscard_Kind:
return statement.clone();
case Statement::kDo_Kind: {
const DoStatement& d = statement.as<DoStatement>();
return std::make_unique<DoStatement>(offset, stmt(d.fStatement), expr(d.fTest));
}
case Statement::kExpression_Kind: {
const ExpressionStatement& e = statement.as<ExpressionStatement>();
return std::make_unique<ExpressionStatement>(expr(e.fExpression));
}
case Statement::kFor_Kind: {
const ForStatement& f = statement.as<ForStatement>();
// need to ensure initializer is evaluated first so that we've already remapped its
// declarations by the time we evaluate test & next
std::unique_ptr<Statement> initializer = stmt(f.fInitializer);
return std::make_unique<ForStatement>(offset, std::move(initializer), expr(f.fTest),
expr(f.fNext), stmt(f.fStatement), f.fSymbols);
}
case Statement::kIf_Kind: {
const IfStatement& i = statement.as<IfStatement>();
return std::make_unique<IfStatement>(offset, i.fIsStatic, expr(i.fTest),
stmt(i.fIfTrue), stmt(i.fIfFalse));
}
case Statement::kNop_Kind:
return statement.clone();
case Statement::kReturn_Kind: {
const ReturnStatement& r = statement.as<ReturnStatement>();
if (r.fExpression) {
auto assignment = std::make_unique<ExpressionStatement>(
std::make_unique<BinaryExpression>(
offset,
std::make_unique<VariableReference>(offset, *returnVar,
VariableReference::kWrite_RefKind),
Token::Kind::TK_EQ,
expr(r.fExpression),
returnVar->fType));
if (haveEarlyReturns) {
std::vector<std::unique_ptr<Statement>> block;
block.push_back(std::move(assignment));
block.emplace_back(new BreakStatement(offset));
return std::make_unique<Block>(offset, std::move(block), /*symbols=*/nullptr,
/*isScope=*/true);
} else {
return std::move(assignment);
}
} else {
if (haveEarlyReturns) {
return std::make_unique<BreakStatement>(offset);
} else {
return std::make_unique<Nop>();
}
}
}
case Statement::kSwitch_Kind: {
const SwitchStatement& ss = statement.as<SwitchStatement>();
std::vector<std::unique_ptr<SwitchCase>> cases;
for (const auto& sc : ss.fCases) {
cases.emplace_back(new SwitchCase(offset, expr(sc->fValue),
stmts(sc->fStatements)));
}
return std::make_unique<SwitchStatement>(offset, ss.fIsStatic, expr(ss.fValue),
std::move(cases), ss.fSymbols);
}
case Statement::kVarDeclaration_Kind: {
const VarDeclaration& decl = statement.as<VarDeclaration>();
std::vector<std::unique_ptr<Expression>> sizes;
for (const auto& size : decl.fSizes) {
sizes.push_back(expr(size));
}
std::unique_ptr<Expression> initialValue = expr(decl.fValue);
const Variable* old = decl.fVar;
// need to copy the var name in case the originating function is discarded and we lose
// its symbols
std::unique_ptr<String> name(new String(old->fName));
const String* namePtr = symbolTableForStatement->takeOwnershipOfString(std::move(name));
const Type* typePtr = copy_if_needed(&old->fType, *symbolTableForStatement);
const Variable* clone = symbolTableForStatement->takeOwnershipOfSymbol(
std::make_unique<Variable>(offset,
old->fModifiers,
namePtr->c_str(),
*typePtr,
old->fStorage,
initialValue.get()));
(*varMap)[old] = clone;
return std::make_unique<VarDeclaration>(clone, std::move(sizes),
std::move(initialValue));
}
case Statement::kVarDeclarations_Kind: {
const VarDeclarations& decls = *statement.as<VarDeclarationsStatement>().fDeclaration;
std::vector<std::unique_ptr<VarDeclaration>> vars;
for (const auto& var : decls.fVars) {
vars.emplace_back(&stmt(var).release()->as<VarDeclaration>());
}
const Type* typePtr = copy_if_needed(&decls.fBaseType, *symbolTableForStatement);
return std::unique_ptr<Statement>(new VarDeclarationsStatement(
std::make_unique<VarDeclarations>(offset, typePtr, std::move(vars))));
}
case Statement::kWhile_Kind: {
const WhileStatement& w = statement.as<WhileStatement>();
return std::make_unique<WhileStatement>(offset, expr(w.fTest), stmt(w.fStatement));
}
default:
SkASSERT(false);
return nullptr;
}
}
static int count_all_returns(const FunctionDefinition& funcDef) {
class CountAllReturns : public ProgramVisitor {
public:
CountAllReturns(const FunctionDefinition& funcDef) {
this->visitProgramElement(funcDef);
}
bool visitStatement(const Statement& stmt) override {
switch (stmt.fKind) {
case Statement::kReturn_Kind:
++fNumReturns;
[[fallthrough]];
default:
return this->INHERITED::visitStatement(stmt);
}
}
int fNumReturns = 0;
using INHERITED = ProgramVisitor;
};
return CountAllReturns{funcDef}.fNumReturns;
}
static int count_returns_at_end_of_control_flow(const FunctionDefinition& funcDef) {
class CountReturnsAtEndOfControlFlow : public ProgramVisitor {
public:
CountReturnsAtEndOfControlFlow(const FunctionDefinition& funcDef) {
this->visitProgramElement(funcDef);
}
bool visitStatement(const Statement& stmt) override {
switch (stmt.fKind) {
case Statement::kBlock_Kind: {
// Check only the last statement of a block.
const auto& blockStmts = stmt.as<Block>().fStatements;
return (blockStmts.size() > 0) ? this->visitStatement(*blockStmts.back())
: false;
}
case Statement::kSwitch_Kind:
case Statement::kWhile_Kind:
case Statement::kDo_Kind:
case Statement::kFor_Kind:
// Don't introspect switches or loop structures at all.
return false;
case Statement::kReturn_Kind:
++fNumReturns;
[[fallthrough]];
default:
return this->INHERITED::visitStatement(stmt);
}
}
int fNumReturns = 0;
using INHERITED = ProgramVisitor;
};
return CountReturnsAtEndOfControlFlow{funcDef}.fNumReturns;
}
static int count_returns_in_breakable_constructs(const FunctionDefinition& funcDef) {
class CountReturnsInBreakableConstructs : public ProgramVisitor {
public:
CountReturnsInBreakableConstructs(const FunctionDefinition& funcDef) {
this->visitProgramElement(funcDef);
}
bool visitStatement(const Statement& stmt) override {
switch (stmt.fKind) {
case Statement::kSwitch_Kind:
case Statement::kWhile_Kind:
case Statement::kDo_Kind:
case Statement::kFor_Kind: {
++fInsideBreakableConstruct;
bool result = this->INHERITED::visitStatement(stmt);
--fInsideBreakableConstruct;
return result;
}
case Statement::kReturn_Kind:
fNumReturns += (fInsideBreakableConstruct > 0) ? 1 : 0;
[[fallthrough]];
default:
return this->INHERITED::visitStatement(stmt);
}
}
int fNumReturns = 0;
int fInsideBreakableConstruct = 0;
using INHERITED = ProgramVisitor;
};
return CountReturnsInBreakableConstructs{funcDef}.fNumReturns;
}
static bool has_early_return(const FunctionDefinition& funcDef) {
int returnCount = count_all_returns(funcDef);
if (returnCount == 0) {
return false;
}
int returnsAtEndOfControlFlow = count_returns_at_end_of_control_flow(funcDef);
return returnCount > returnsAtEndOfControlFlow;
}
std::unique_ptr<Expression> IRGenerator::inlineCall(std::unique_ptr<FunctionCall> call,
SymbolTable* symbolTableForCall) {
// Inlining is more complicated here than in a typical compiler, because we have to have a
// high-level IR and can't just drop statements into the middle of an expression or even use
// gotos.
//
// Since we can't insert statements into an expression, we run the inline function as extra
// statements before the statement we're currently processing, relying on a lack of execution
// order guarantees. Since we can't use gotos (which are normally used to replace return
// statements), we wrap the whole function in a loop and use break statements to jump to the
// end.
SkASSERT(call);
SkASSERT(this->isSafeToInline(*call, /*inlineThreshold=*/INT_MAX));
int offset = call->fOffset;
std::vector<std::unique_ptr<Expression>>& arguments = call->fArguments;
const FunctionDefinition& function = *call->fFunction.fDefinition;
// Use unique variable names based on the function signature. Otherwise there are situations in
// which an inlined function is later inlined into another function, and we end up with
// duplicate names like 'inlineResult0' because the counter was reset. (skbug.com/10526)
String raw = function.fDeclaration.description();
String inlineSalt;
for (size_t i = 0; i < raw.length(); ++i) {
char c = raw[i];
if ((c >= 'A' && c <= 'Z') || (c >= 'a' && c <= 'z') || (c >= '0' && c <= '9') ||
c == '_') {
inlineSalt += c;
}
}
auto makeInlineVar = [&](const String& name, const Type& type, Modifiers modifiers,
std::unique_ptr<Expression>* initialValue) -> const Variable* {
// Add our new variable's name to the symbol table.
const String* namePtr =
symbolTableForCall->takeOwnershipOfString(std::make_unique<String>(name));
StringFragment nameFrag{namePtr->c_str(), namePtr->length()};
// Add our new variable to the symbol table.
auto newVar = std::make_unique<Variable>(/*offset=*/-1, Modifiers(), nameFrag, type,
Variable::kLocal_Storage, initialValue->get());
const Variable* variableSymbol = symbolTableForCall->add(nameFrag, std::move(newVar));
// Prepare the variable declaration (taking extra care with `out` params to not clobber any
// initial value).
std::vector<std::unique_ptr<VarDeclaration>> variables;
if (initialValue && (modifiers.fFlags & Modifiers::kOut_Flag)) {
variables.push_back(std::make_unique<VarDeclaration>(
variableSymbol, /*sizes=*/std::vector<std::unique_ptr<Expression>>{},
(*initialValue)->clone()));
} else {
variables.push_back(std::make_unique<VarDeclaration>(
variableSymbol, /*sizes=*/std::vector<std::unique_ptr<Expression>>{},
std::move(*initialValue)));
}
// Add the new variable-declaration statement to our block of extra statements.
fExtraStatements.push_back(std::make_unique<VarDeclarationsStatement>(
std::make_unique<VarDeclarations>(offset, &type, std::move(variables))));
return variableSymbol;
};
// Create a variable to hold the result in the extra statements (excepting void).
const Variable* resultVar = nullptr;
if (function.fDeclaration.fReturnType != *fContext.fVoid_Type) {
int varIndex = fInlineVarCounter++;
std::unique_ptr<Expression> noInitialValue;
resultVar = makeInlineVar(String::printf("_inlineResult%s%d", inlineSalt.c_str(), varIndex),
function.fDeclaration.fReturnType, Modifiers{}, &noInitialValue);
}
// Create variables in the extra statements to hold the arguments, and assign the arguments to
// them.
std::unordered_map<const Variable*, const Variable*> varMap;
int argIndex = fInlineVarCounter++;
for (int i = 0; i < (int) arguments.size(); ++i) {
const Variable* param = function.fDeclaration.fParameters[i];
if (arguments[i]->fKind == Expression::kVariableReference_Kind) {
// The argument is just a variable, so we only need to copy it if it's an out parameter
// or it's written to within the function.
if ((param->fModifiers.fFlags & Modifiers::kOut_Flag) ||
!Analysis::StatementWritesToVariable(*function.fBody, *param)) {
varMap[param] = &arguments[i]->as<VariableReference>().fVariable;
continue;
}
}
varMap[param] = makeInlineVar(
String::printf("_inlineArg%s%d_%d", inlineSalt.c_str(), argIndex, i),
arguments[i]->fType, param->fModifiers, &arguments[i]);
}
const Block& body = function.fBody->as<Block>();
bool hasEarlyReturn = has_early_return(function);
auto inlineBlock = std::make_unique<Block>(offset, std::vector<std::unique_ptr<Statement>>{});
inlineBlock->fStatements.reserve(body.fStatements.size());
for (const std::unique_ptr<Statement>& stmt : body.fStatements) {
inlineBlock->fStatements.push_back(this->inlineStatement(
offset, &varMap, symbolTableForCall, resultVar, hasEarlyReturn, *stmt));
}
if (hasEarlyReturn) {
// Since we output to backends that don't have a goto statement (which would normally be
// used to perform an early return), we fake it by wrapping the function in a
// do { } while (false); and then use break statements to jump to the end in order to
// emulate a goto.
fExtraStatements.push_back(std::make_unique<DoStatement>(
/*offset=*/-1,
std::move(inlineBlock),
std::make_unique<BoolLiteral>(fContext, offset, /*value=*/false)));
} else {
// No early returns, so we can just dump the code in. We need to use a block so we don't get
// name conflicts with locals.
fExtraStatements.push_back(std::move(inlineBlock));
}
// Copy the values of `out` parameters into their destinations.
for (size_t i = 0; i < arguments.size(); ++i) {
const Variable* p = function.fDeclaration.fParameters[i];
if (p->fModifiers.fFlags & Modifiers::kOut_Flag) {
SkASSERT(varMap.find(p) != varMap.end());
if (arguments[i]->fKind == Expression::kVariableReference_Kind &&
&arguments[i]->as<VariableReference>().fVariable == varMap[p]) {
// we didn't create a temporary for this parameter, so there's nothing to copy back
// out
continue;
}
auto varRef = std::make_unique<VariableReference>(offset, *varMap[p]);
fExtraStatements.push_back(std::make_unique<ExpressionStatement>(
std::make_unique<BinaryExpression>(offset,
arguments[i]->clone(),
Token::Kind::TK_EQ,
std::move(varRef),
arguments[i]->fType)));
}
}
if (function.fDeclaration.fReturnType != *fContext.fVoid_Type) {
// Return a reference to the result variable as our replacement expression.
return std::make_unique<VariableReference>(offset, *resultVar);
} else {
// It's a void function, so it doesn't actually result in anything, but we have to return
// something non-null as a standin.
return std::make_unique<BoolLiteral>(fContext, /*offset=*/-1, /*value=*/false);
}
}
void IRGenerator::copyIntrinsicIfNeeded(const FunctionDeclaration& function) {
auto found = fIntrinsics->find(function.description());
if (found != fIntrinsics->end() && !found->second.fAlreadyIncluded) {
found->second.fAlreadyIncluded = true;
FunctionDefinition& original = found->second.fIntrinsic->as<FunctionDefinition>();
for (const FunctionDeclaration* f : original.fReferencedIntrinsics) {
this->copyIntrinsicIfNeeded(*f);
}
fProgramElements->push_back(original.clone());
}
}
bool IRGenerator::isSafeToInline(const FunctionCall& functionCall, int inlineThreshold) {
if (!fCanInline) {
// Inlining has been explicitly disabled by the IR generator.
return false;
}
if (functionCall.fFunction.fDefinition == nullptr) {
// Can't inline something if we don't actually have its definition.
return false;
}
const FunctionDefinition& functionDef = *functionCall.fFunction.fDefinition;
if (inlineThreshold < INT_MAX) {
if (!(functionDef.fDeclaration.fModifiers.fFlags & Modifiers::kInline_Flag) &&
Analysis::NodeCount(functionDef) >= inlineThreshold) {
// The function exceeds our maximum inline size and is not flagged 'inline'.
return false;
}
}
if (!fSettings->fCaps || !fSettings->fCaps->canUseDoLoops()) {
// We don't have do-while loops. We use do-while loops to simulate early returns, so we
// can't inline functions that have an early return.
bool hasEarlyReturn = has_early_return(functionDef);
// If we didn't detect an early return, there shouldn't be any returns in breakable
// constructs either.
SkASSERT(hasEarlyReturn || count_returns_in_breakable_constructs(functionDef) == 0);
return !hasEarlyReturn;
}
// We have do-while loops, but we don't have any mechanism to simulate early returns within a
// breakable construct (switch/for/do/while), so we can't inline if there's a return inside one.
bool hasReturnInBreakableConstruct = (count_returns_in_breakable_constructs(functionDef) > 0);
// If we detected returns in breakable constructs, we should also detect an early return.
SkASSERT(!hasReturnInBreakableConstruct || has_early_return(functionDef));
return !hasReturnInBreakableConstruct;
}
std::unique_ptr<Expression> IRGenerator::call(int offset,
const FunctionDeclaration& function,
std::vector<std::unique_ptr<Expression>> arguments) {
if (function.fBuiltin) {
if (function.fDefinition) {
fReferencedIntrinsics.insert(&function);
}
if (!fIsBuiltinCode) {
this->copyIntrinsicIfNeeded(function);
}
}
if (function.fParameters.size() != arguments.size()) {
String msg = "call to '" + function.fName + "' expected " +
to_string((uint64_t) function.fParameters.size()) +
" argument";
if (function.fParameters.size() != 1) {
msg += "s";
}
msg += ", but found " + to_string((uint64_t) arguments.size());
fErrors.error(offset, msg);
return nullptr;
}
if (fKind == Program::kPipelineStage_Kind && !function.fDefinition && !function.fBuiltin) {
String msg = "call to undefined function '" + function.fName + "'";
fErrors.error(offset, msg);
return nullptr;
}
std::vector<const Type*> types;
const Type* returnType;
if (!function.determineFinalTypes(arguments, &types, &returnType)) {
String msg = "no match for " + function.fName + "(";
String separator;
for (size_t i = 0; i < arguments.size(); i++) {
msg += separator;
separator = ", ";
msg += arguments[i]->fType.displayName();
}
msg += ")";
fErrors.error(offset, msg);
return nullptr;
}
for (size_t i = 0; i < arguments.size(); i++) {
arguments[i] = this->coerce(std::move(arguments[i]), *types[i]);
if (!arguments[i]) {
return nullptr;
}
if (arguments[i] && (function.fParameters[i]->fModifiers.fFlags & Modifiers::kOut_Flag)) {
this->setRefKind(*arguments[i],
function.fParameters[i]->fModifiers.fFlags & Modifiers::kIn_Flag ?
VariableReference::kReadWrite_RefKind :
VariableReference::kPointer_RefKind);
}
}
auto funcCall = std::make_unique<FunctionCall>(offset, *returnType, function,
std::move(arguments));
if (this->isSafeToInline(*funcCall, fSettings->fInlineThreshold)) {
return this->inlineCall(std::move(funcCall), fSymbolTable.get());
}
return std::move(funcCall);
}
/**
* Determines the cost of coercing the arguments of a function to the required types. Cost has no
* particular meaning other than "lower costs are preferred". Returns INT_MAX if the call is not
* valid.
*/
int IRGenerator::callCost(const FunctionDeclaration& function,
const std::vector<std::unique_ptr<Expression>>& arguments) {
if (function.fParameters.size() != arguments.size()) {
return INT_MAX;
}
int total = 0;
std::vector<const Type*> types;
const Type* ignored;
if (!function.determineFinalTypes(arguments, &types, &ignored)) {
return INT_MAX;
}
for (size_t i = 0; i < arguments.size(); i++) {
int cost = arguments[i]->coercionCost(*types[i]);
if (cost != INT_MAX) {
total += cost;
} else {
return INT_MAX;
}
}
return total;
}
std::unique_ptr<Expression> IRGenerator::call(int offset,
std::unique_ptr<Expression> functionValue,
std::vector<std::unique_ptr<Expression>> arguments) {
switch (functionValue->fKind) {
case Expression::kTypeReference_Kind:
return this->convertConstructor(offset,
functionValue->as<TypeReference>().fValue,
std::move(arguments));
case Expression::kExternalValue_Kind: {
const ExternalValue* v = functionValue->as<ExternalValueReference>().fValue;
if (!v->canCall()) {
fErrors.error(offset, "this external value is not a function");
return nullptr;
}
int count = v->callParameterCount();
if (count != (int) arguments.size()) {
fErrors.error(offset, "external function expected " + to_string(count) +
" arguments, but found " + to_string((int) arguments.size()));
return nullptr;
}
static constexpr int PARAMETER_MAX = 16;
SkASSERT(count < PARAMETER_MAX);
const Type* types[PARAMETER_MAX];
v->getCallParameterTypes(types);
for (int i = 0; i < count; ++i) {
arguments[i] = this->coerce(std::move(arguments[i]), *types[i]);
if (!arguments[i]) {
return nullptr;
}
}
return std::unique_ptr<Expression>(new ExternalFunctionCall(offset, v->callReturnType(),
v, std::move(arguments)));
}
case Expression::kFunctionReference_Kind: {
const FunctionReference& ref = functionValue->as<FunctionReference>();
int bestCost = INT_MAX;
const FunctionDeclaration* best = nullptr;
if (ref.fFunctions.size() > 1) {
for (const auto& f : ref.fFunctions) {
int cost = this->callCost(*f, arguments);
if (cost < bestCost) {
bestCost = cost;
best = f;
}
}
if (best) {
return this->call(offset, *best, std::move(arguments));
}
String msg = "no match for " + ref.fFunctions[0]->fName + "(";
String separator;
for (size_t i = 0; i < arguments.size(); i++) {
msg += separator;
separator = ", ";
msg += arguments[i]->fType.displayName();
}
msg += ")";
fErrors.error(offset, msg);
return nullptr;
}
return this->call(offset, *ref.fFunctions[0], std::move(arguments));
}
default:
fErrors.error(offset, "not a function");
return nullptr;
}
}
std::unique_ptr<Expression> IRGenerator::convertNumberConstructor(
int offset,
const Type& type,
std::vector<std::unique_ptr<Expression>> args) {
SkASSERT(type.isNumber());
if (args.size() != 1) {
fErrors.error(offset, "invalid arguments to '" + type.displayName() +
"' constructor, (expected exactly 1 argument, but found " +
to_string((uint64_t) args.size()) + ")");
return nullptr;
}
if (type == args[0]->fType) {
return std::move(args[0]);
}
if (type.isFloat() && args.size() == 1 && args[0]->fKind == Expression::kFloatLiteral_Kind) {
double value = args[0]->as<FloatLiteral>().fValue;
return std::unique_ptr<Expression>(new FloatLiteral(offset, value, &type));
}
if (type.isFloat() && args.size() == 1 && args[0]->fKind == Expression::kIntLiteral_Kind) {
int64_t value = args[0]->as<IntLiteral>().fValue;
return std::unique_ptr<Expression>(new FloatLiteral(offset, (double) value, &type));
}
if (args[0]->fKind == Expression::kIntLiteral_Kind && (type == *fContext.fInt_Type ||
type == *fContext.fUInt_Type)) {
return std::unique_ptr<Expression>(new IntLiteral(offset,
args[0]->as<IntLiteral>().fValue,
&type));
}
if (args[0]->fType == *fContext.fBool_Type) {
std::unique_ptr<IntLiteral> zero(new IntLiteral(fContext, offset, 0));
std::unique_ptr<IntLiteral> one(new IntLiteral(fContext, offset, 1));
return std::unique_ptr<Expression>(
new TernaryExpression(offset, std::move(args[0]),
this->coerce(std::move(one), type),
this->coerce(std::move(zero),
type)));
}
if (!args[0]->fType.isNumber()) {
fErrors.error(offset, "invalid argument to '" + type.displayName() +
"' constructor (expected a number or bool, but found '" +
args[0]->fType.displayName() + "')");
return nullptr;
}
return std::unique_ptr<Expression>(new Constructor(offset, type, std::move(args)));
}
static int component_count(const Type& type) {
switch (type.kind()) {
case Type::kVector_Kind:
return type.columns();
case Type::kMatrix_Kind:
return type.columns() * type.rows();
default:
return 1;
}
}
std::unique_ptr<Expression> IRGenerator::convertCompoundConstructor(
int offset,
const Type& type,
std::vector<std::unique_ptr<Expression>> args) {
SkASSERT(type.kind() == Type::kVector_Kind || type.kind() == Type::kMatrix_Kind);
if (type.kind() == Type::kMatrix_Kind && args.size() == 1 &&
args[0]->fType.kind() == Type::kMatrix_Kind) {
// matrix from matrix is always legal
return std::unique_ptr<Expression>(new Constructor(offset, type, std::move(args)));
}
int actual = 0;
int expected = type.rows() * type.columns();
if (args.size() != 1 || expected != component_count(args[0]->fType) ||
type.componentType().isNumber() != args[0]->fType.componentType().isNumber()) {
for (size_t i = 0; i < args.size(); i++) {
if (args[i]->fType.kind() == Type::kVector_Kind) {
if (type.componentType().isNumber() !=
args[i]->fType.componentType().isNumber()) {
fErrors.error(offset, "'" + args[i]->fType.displayName() + "' is not a valid "
"parameter to '" + type.displayName() +
"' constructor");
return nullptr;
}
actual += args[i]->fType.columns();
} else if (args[i]->fType.kind() == Type::kScalar_Kind) {
actual += 1;
if (type.kind() != Type::kScalar_Kind) {
args[i] = this->coerce(std::move(args[i]), type.componentType());
if (!args[i]) {
return nullptr;
}
}
} else {
fErrors.error(offset, "'" + args[i]->fType.displayName() + "' is not a valid "
"parameter to '" + type.displayName() + "' constructor");
return nullptr;
}
}
if (actual != 1 && actual != expected) {
fErrors.error(offset, "invalid arguments to '" + type.displayName() +
"' constructor (expected " + to_string(expected) +
" scalars, but found " + to_string(actual) + ")");
return nullptr;
}
}
return std::unique_ptr<Expression>(new Constructor(offset, type, std::move(args)));
}
std::unique_ptr<Expression> IRGenerator::convertConstructor(
int offset,
const Type& type,
std::vector<std::unique_ptr<Expression>> args) {
// FIXME: add support for structs
if (args.size() == 1 && args[0]->fType == type &&
type.nonnullable() != *fContext.fFragmentProcessor_Type) {
// argument is already the right type, just return it
return std::move(args[0]);
}
Type::Kind kind = type.kind();
if (type.isNumber()) {
return this->convertNumberConstructor(offset, type, std::move(args));
} else if (kind == Type::kArray_Kind) {
const Type& base = type.componentType();
for (size_t i = 0; i < args.size(); i++) {
args[i] = this->coerce(std::move(args[i]), base);
if (!args[i]) {
return nullptr;
}
}
return std::unique_ptr<Expression>(new Constructor(offset, type, std::move(args)));
} else if (kind == Type::kVector_Kind || kind == Type::kMatrix_Kind) {
return this->convertCompoundConstructor(offset, type, std::move(args));
} else {
fErrors.error(offset, "cannot construct '" + type.displayName() + "'");
return nullptr;
}
}
std::unique_ptr<Expression> IRGenerator::convertPrefixExpression(const ASTNode& expression) {
SkASSERT(expression.fKind == ASTNode::Kind::kPrefix);
std::unique_ptr<Expression> base = this->convertExpression(*expression.begin());
if (!base) {
return nullptr;
}
switch (expression.getToken().fKind) {
case Token::Kind::TK_PLUS:
if (!base->fType.isNumber() && base->fType.kind() != Type::kVector_Kind &&
base->fType != *fContext.fFloatLiteral_Type) {
fErrors.error(expression.fOffset,
"'+' cannot operate on '" + base->fType.displayName() + "'");
return nullptr;
}
return base;
case Token::Kind::TK_MINUS:
if (base->fKind == Expression::kIntLiteral_Kind) {
return std::unique_ptr<Expression>(new IntLiteral(fContext, base->fOffset,
-base->as<IntLiteral>().fValue));
}
if (base->fKind == Expression::kFloatLiteral_Kind) {
double value = -base->as<FloatLiteral>().fValue;
return std::unique_ptr<Expression>(new FloatLiteral(fContext, base->fOffset,
value));
}
if (!base->fType.isNumber() && base->fType.kind() != Type::kVector_Kind) {
fErrors.error(expression.fOffset,
"'-' cannot operate on '" + base->fType.displayName() + "'");
return nullptr;
}
return std::unique_ptr<Expression>(new PrefixExpression(Token::Kind::TK_MINUS,
std::move(base)));
case Token::Kind::TK_PLUSPLUS:
if (!base->fType.isNumber()) {
fErrors.error(expression.fOffset,
String("'") + Compiler::OperatorName(expression.getToken().fKind) +
"' cannot operate on '" + base->fType.displayName() + "'");
return nullptr;
}
this->setRefKind(*base, VariableReference::kReadWrite_RefKind);
break;
case Token::Kind::TK_MINUSMINUS:
if (!base->fType.isNumber()) {
fErrors.error(expression.fOffset,
String("'") + Compiler::OperatorName(expression.getToken().fKind) +
"' cannot operate on '" + base->fType.displayName() + "'");
return nullptr;
}
this->setRefKind(*base, VariableReference::kReadWrite_RefKind);
break;
case Token::Kind::TK_LOGICALNOT:
if (base->fType != *fContext.fBool_Type) {
fErrors.error(expression.fOffset,
String("'") + Compiler::OperatorName(expression.getToken().fKind) +
"' cannot operate on '" + base->fType.displayName() + "'");
return nullptr;
}
if (base->fKind == Expression::kBoolLiteral_Kind) {
return std::unique_ptr<Expression>(
new BoolLiteral(fContext, base->fOffset, !base->as<BoolLiteral>().fValue));
}
break;
case Token::Kind::TK_BITWISENOT:
if (base->fType != *fContext.fInt_Type && base->fType != *fContext.fUInt_Type) {
fErrors.error(expression.fOffset,
String("'") + Compiler::OperatorName(expression.getToken().fKind) +
"' cannot operate on '" + base->fType.displayName() + "'");
return nullptr;
}
break;
default:
ABORT("unsupported prefix operator\n");
}
return std::unique_ptr<Expression>(new PrefixExpression(expression.getToken().fKind,
std::move(base)));
}
std::unique_ptr<Expression> IRGenerator::convertIndex(std::unique_ptr<Expression> base,
const ASTNode& index) {
if (base->fKind == Expression::kTypeReference_Kind) {
if (index.fKind == ASTNode::Kind::kInt) {
const Type& oldType = base->as<TypeReference>().fValue;
SKSL_INT size = index.getInt();
const Type* newType = fSymbolTable->takeOwnershipOfSymbol(
std::make_unique<Type>(oldType.name() + "[" + to_string(size) + "]",
Type::kArray_Kind, oldType, size));
return std::make_unique<TypeReference>(fContext, base->fOffset, *newType);
} else {
fErrors.error(base->fOffset, "array size must be a constant");
return nullptr;
}
}
if (base->fType.kind() != Type::kArray_Kind && base->fType.kind() != Type::kMatrix_Kind &&
base->fType.kind() != Type::kVector_Kind) {
fErrors.error(base->fOffset, "expected array, but found '" + base->fType.displayName() +
"'");
return nullptr;
}
std::unique_ptr<Expression> converted = this->convertExpression(index);
if (!converted) {
return nullptr;
}
if (converted->fType != *fContext.fUInt_Type) {
converted = this->coerce(std::move(converted), *fContext.fInt_Type);
if (!converted) {
return nullptr;
}
}
return std::unique_ptr<Expression>(new IndexExpression(fContext, std::move(base),
std::move(converted)));
}
std::unique_ptr<Expression> IRGenerator::convertField(std::unique_ptr<Expression> base,
StringFragment field) {
if (base->fKind == Expression::kExternalValue_Kind) {
const ExternalValue& ev = *base->as<ExternalValueReference>().fValue;
ExternalValue* result = ev.getChild(String(field).c_str());
if (!result) {
fErrors.error(base->fOffset, "external value does not have a child named '" + field +
"'");
return nullptr;
}
return std::unique_ptr<Expression>(new ExternalValueReference(base->fOffset, result));
}
auto fields = base->fType.fields();
for (size_t i = 0; i < fields.size(); i++) {
if (fields[i].fName == field) {
return std::unique_ptr<Expression>(new FieldAccess(std::move(base), (int) i));
}
}
fErrors.error(base->fOffset, "type '" + base->fType.displayName() + "' does not have a "
"field named '" + field + "");
return nullptr;
}
// counts the number of chunks of contiguous 'x's in a swizzle, e.g. xxx1 has one and x0xx has two
static int count_contiguous_swizzle_chunks(const std::vector<int>& components) {
int chunkCount = 0;
for (size_t i = 0; i < components.size(); ++i) {
SkASSERT(components[i] <= 0);
if (components[i] == 0) {
++chunkCount;
while (i + 1 < components.size() && components[i + 1] == 0) {
++i;
}
}
}
return chunkCount;
}
std::unique_ptr<Expression> IRGenerator::convertSwizzle(std::unique_ptr<Expression> base,
StringFragment fields) {
if (base->fType.kind() != Type::kVector_Kind && !base->fType.isNumber()) {
fErrors.error(base->fOffset, "cannot swizzle value of type '" + base->fType.displayName() +
"'");
return nullptr;
}
std::vector<int> swizzleComponents;
size_t numLiteralFields = 0;
for (size_t i = 0; i < fields.fLength; i++) {
switch (fields[i]) {
case '0':
swizzleComponents.push_back(SKSL_SWIZZLE_0);
numLiteralFields++;
break;
case '1':
swizzleComponents.push_back(SKSL_SWIZZLE_1);
numLiteralFields++;
break;
case 'x':
case 'r':
case 's':
case 'L':
swizzleComponents.push_back(0);
break;
case 'y':
case 'g':
case 't':
case 'T':
if (base->fType.columns() >= 2) {
swizzleComponents.push_back(1);
break;
}
[[fallthrough]];
case 'z':
case 'b':
case 'p':
case 'R':
if (base->fType.columns() >= 3) {
swizzleComponents.push_back(2);
break;
}
[[fallthrough]];
case 'w':
case 'a':
case 'q':
case 'B':
if (base->fType.columns() >= 4) {
swizzleComponents.push_back(3);
break;
}
[[fallthrough]];
default:
fErrors.error(base->fOffset, String::printf("invalid swizzle component '%c'",
fields[i]));
return nullptr;
}
}
SkASSERT(swizzleComponents.size() > 0);
if (swizzleComponents.size() > 4) {
fErrors.error(base->fOffset, "too many components in swizzle mask '" + fields + "'");
return nullptr;
}
if (numLiteralFields == swizzleComponents.size()) {
fErrors.error(base->fOffset, "swizzle must refer to base expression");
return nullptr;
}
if (base->fType.isNumber()) {
// Swizzling a single scalar. Something like foo.x0x1 is equivalent to float4(foo, 0, foo,
// 1)
int offset = base->fOffset;
std::unique_ptr<Expression> expr;
switch (base->fKind) {
case Expression::kVariableReference_Kind:
case Expression::kFloatLiteral_Kind:
case Expression::kIntLiteral_Kind:
// the value being swizzled is just a constant or variable reference, so we can
// safely re-use copies of it without reevaluation concerns
expr = std::move(base);
break;
default:
// It's a value we can't safely re-use multiple times. If it's all in one contiguous
// chunk it's easy (e.g. foo.xxx0 can be turned into half4(half3(x), 0)), but
// for multiple discontiguous chunks we'll need to copy it into a temporary value.
int chunkCount = count_contiguous_swizzle_chunks(swizzleComponents);
if (chunkCount <= 1) {
// no copying needed, so we can just use the value directly
expr = std::move(base);
} else {
// store the value in a temporary variable so we can re-use it
int varIndex = fInlineVarCounter++;
auto name = std::make_unique<String>();
name->appendf("_tmpSwizzle%d", varIndex);
const String* namePtr = fSymbolTable->takeOwnershipOfString(std::move(name));
const Variable* var = fSymbolTable->takeOwnershipOfSymbol(
std::make_unique<Variable>(offset,
Modifiers(),
namePtr->c_str(),
base->fType,
Variable::kLocal_Storage,
base.get()));
expr = std::make_unique<VariableReference>(offset, *var);
std::vector<std::unique_ptr<VarDeclaration>> variables;
variables.emplace_back(new VarDeclaration(var, {}, std::move(base)));
fExtraStatements.emplace_back(new VarDeclarationsStatement(
std::make_unique<VarDeclarations>(offset, &expr->fType,
std::move(variables))));
}
}
std::vector<std::unique_ptr<Expression>> args;
for (size_t i = 0; i < swizzleComponents.size(); ++i) {
switch (swizzleComponents[i]) {
case 0: {
args.push_back(expr->clone());
int count = 1;
while (i + 1 < swizzleComponents.size() && swizzleComponents[i + 1] == 0) {
++i;
++count;
}
if (count > 1) {
std::vector<std::unique_ptr<Expression>> constructorArgs;
constructorArgs.push_back(std::move(args.back()));
args.pop_back();
args.emplace_back(new Constructor(offset, expr->fType.toCompound(fContext,
count,
1),
std::move(constructorArgs)));
}
break;
}
case SKSL_SWIZZLE_0:
args.emplace_back(new IntLiteral(fContext, offset, 0));
break;
case SKSL_SWIZZLE_1:
args.emplace_back(new IntLiteral(fContext, offset, 1));
break;
}
}
return std::unique_ptr<Expression>(new Constructor(offset,
expr->fType.toCompound(
fContext,
swizzleComponents.size(),
1),
std::move(args)));
}
return std::unique_ptr<Expression>(new Swizzle(fContext, std::move(base), swizzleComponents));
}
std::unique_ptr<Expression> IRGenerator::getCap(int offset, String name) {
auto found = fCapsMap.find(name);
if (found == fCapsMap.end()) {
fErrors.error(offset, "unknown capability flag '" + name + "'");
return nullptr;
}
String fullName = "sk_Caps." + name;
return std::unique_ptr<Expression>(new Setting(offset, fullName,
found->second.literal(fContext, offset)));
}
std::unique_ptr<Expression> IRGenerator::findEnumRef(
int offset,
const Type& type,
StringFragment field,
std::vector<std::unique_ptr<ProgramElement>>& elements) {
for (const auto& e : elements) {
if (e->fKind == ProgramElement::kEnum_Kind && type.name() == e->as<Enum>().fTypeName) {
std::shared_ptr<SymbolTable> old = fSymbolTable;
fSymbolTable = e->as<Enum>().fSymbols;
std::unique_ptr<Expression> result = convertIdentifier(ASTNode(&fFile->fNodes, offset,
ASTNode::Kind::kIdentifier,
field));
if (result) {
const Variable& v = result->as<VariableReference>().fVariable;
SkASSERT(v.fInitialValue);
result = std::make_unique<IntLiteral>(
offset, v.fInitialValue->as<IntLiteral>().fValue, &type);
}
fSymbolTable = old;
return result;
}
}
return nullptr;
}
std::unique_ptr<Expression> IRGenerator::convertTypeField(int offset, const Type& type,
StringFragment field) {
std::unique_ptr<Expression> result = this->findEnumRef(offset, type, field, *fProgramElements);
if (fInherited && !result) {
result = this->findEnumRef(offset, type, field, *fInherited);
}
if (!result) {
auto found = fIntrinsics->find(type.fName);
if (found != fIntrinsics->end()) {
SkASSERT(!found->second.fAlreadyIncluded);
found->second.fAlreadyIncluded = true;
fProgramElements->push_back(found->second.fIntrinsic->clone());
return this->convertTypeField(offset, type, field);
}
fErrors.error(offset, "type '" + type.fName + "' does not have a field named '" + field +
"'");
}
return result;
}
std::unique_ptr<Expression> IRGenerator::convertIndexExpression(const ASTNode& index) {
SkASSERT(index.fKind == ASTNode::Kind::kIndex);
auto iter = index.begin();
std::unique_ptr<Expression> base = this->convertExpression(*(iter++));
if (!base) {
return nullptr;
}
if (iter != index.end()) {
return this->convertIndex(std::move(base), *(iter++));
} else if (base->fKind == Expression::kTypeReference_Kind) {
const Type& oldType = base->as<TypeReference>().fValue;
const Type* newType = fSymbolTable->takeOwnershipOfSymbol(std::make_unique<Type>(
oldType.name() + "[]", Type::kArray_Kind, oldType, /*columns=*/-1));
return std::unique_ptr<Expression>(new TypeReference(fContext, base->fOffset,
*newType));
}
fErrors.error(index.fOffset, "'[]' must follow a type name");
return nullptr;
}
std::unique_ptr<Expression> IRGenerator::convertCallExpression(const ASTNode& callNode) {
SkASSERT(callNode.fKind == ASTNode::Kind::kCall);
auto iter = callNode.begin();
std::unique_ptr<Expression> base = this->convertExpression(*(iter++));
if (!base) {
return nullptr;
}
std::vector<std::unique_ptr<Expression>> arguments;
for (; iter != callNode.end(); ++iter) {
std::unique_ptr<Expression> converted = this->convertExpression(*iter);
if (!converted) {
return nullptr;
}
arguments.push_back(std::move(converted));
}
return this->call(callNode.fOffset, std::move(base), std::move(arguments));
}
std::unique_ptr<Expression> IRGenerator::convertFieldExpression(const ASTNode& fieldNode) {
std::unique_ptr<Expression> base = this->convertExpression(*fieldNode.begin());
if (!base) {
return nullptr;
}
StringFragment field = fieldNode.getString();
if (base->fType == *fContext.fSkCaps_Type) {
return this->getCap(fieldNode.fOffset, field);
}
if (base->fKind == Expression::kTypeReference_Kind) {
return this->convertTypeField(base->fOffset, base->as<TypeReference>().fValue,
field);
}
if (base->fKind == Expression::kExternalValue_Kind) {
return this->convertField(std::move(base), field);
}
switch (base->fType.kind()) {
case Type::kOther_Kind:
case Type::kStruct_Kind:
return this->convertField(std::move(base), field);
default:
return this->convertSwizzle(std::move(base), field);
}
}
std::unique_ptr<Expression> IRGenerator::convertPostfixExpression(const ASTNode& expression) {
std::unique_ptr<Expression> base = this->convertExpression(*expression.begin());
if (!base) {
return nullptr;
}
if (!base->fType.isNumber()) {
fErrors.error(expression.fOffset,
"'" + String(Compiler::OperatorName(expression.getToken().fKind)) +
"' cannot operate on '" + base->fType.displayName() + "'");
return nullptr;
}
this->setRefKind(*base, VariableReference::kReadWrite_RefKind);
return std::unique_ptr<Expression>(new PostfixExpression(std::move(base),
expression.getToken().fKind));
}
void IRGenerator::checkValid(const Expression& expr) {
switch (expr.fKind) {
case Expression::kFunctionReference_Kind:
fErrors.error(expr.fOffset, "expected '(' to begin function call");
break;
case Expression::kTypeReference_Kind:
fErrors.error(expr.fOffset, "expected '(' to begin constructor invocation");
break;
default:
if (expr.fType == *fContext.fInvalid_Type) {
fErrors.error(expr.fOffset, "invalid expression");
}
}
}
bool IRGenerator::checkSwizzleWrite(const Swizzle& swizzle) {
int bits = 0;
for (int idx : swizzle.fComponents) {
if (idx < 0) {
fErrors.error(swizzle.fOffset, "cannot write to a swizzle mask containing a constant");
return false;
}
SkASSERT(idx <= 3);
int bit = 1 << idx;
if (bits & bit) {
fErrors.error(swizzle.fOffset,
"cannot write to the same swizzle field more than once");
return false;
}
bits |= bit;
}
return true;
}
bool IRGenerator::setRefKind(Expression& expr, VariableReference::RefKind kind) {
switch (expr.fKind) {
case Expression::kVariableReference_Kind: {
const Variable& var = expr.as<VariableReference>().fVariable;
if (var.fModifiers.fFlags &
(Modifiers::kConst_Flag | Modifiers::kUniform_Flag | Modifiers::kVarying_Flag)) {
fErrors.error(expr.fOffset, "cannot modify immutable variable '" + var.fName + "'");
return false;
}
expr.as<VariableReference>().setRefKind(kind);
return true;
}
case Expression::kFieldAccess_Kind:
return this->setRefKind(*expr.as<FieldAccess>().fBase, kind);
case Expression::kSwizzle_Kind: {
const Swizzle& swizzle = expr.as<Swizzle>();
return this->checkSwizzleWrite(swizzle) && this->setRefKind(*swizzle.fBase, kind);
}
case Expression::kIndex_Kind:
return this->setRefKind(*expr.as<IndexExpression>().fBase, kind);
case Expression::kTernary_Kind: {
const TernaryExpression& t = expr.as<TernaryExpression>();
return this->setRefKind(*t.fIfTrue, kind) && this->setRefKind(*t.fIfFalse, kind);
}
case Expression::kExternalValue_Kind: {
const ExternalValue& v = *expr.as<ExternalValueReference>().fValue;
if (!v.canWrite()) {
fErrors.error(expr.fOffset,
"cannot modify immutable external value '" + v.fName + "'");
return false;
}
return true;
}
default:
fErrors.error(expr.fOffset, "cannot assign to this expression");
return false;
}
}
void IRGenerator::convertProgram(Program::Kind kind,
const char* text,
size_t length,
std::vector<std::unique_ptr<ProgramElement>>* out) {
fKind = kind;
fProgramElements = out;
Parser parser(text, length, *fSymbolTable, fErrors);
fFile = parser.file();
if (fErrors.errorCount()) {
return;
}
this->pushSymbolTable(); // this is popped by Compiler upon completion
SkASSERT(fFile);
for (const auto& decl : fFile->root()) {
switch (decl.fKind) {
case ASTNode::Kind::kVarDeclarations: {
std::unique_ptr<VarDeclarations> s = this->convertVarDeclarations(
decl,
Variable::kGlobal_Storage);
if (s) {
fProgramElements->push_back(std::move(s));
}
break;
}
case ASTNode::Kind::kEnum: {
this->convertEnum(decl);
break;
}
case ASTNode::Kind::kFunction: {
this->convertFunction(decl);
break;
}
case ASTNode::Kind::kModifiers: {
std::unique_ptr<ModifiersDeclaration> f = this->convertModifiersDeclaration(decl);
if (f) {
fProgramElements->push_back(std::move(f));
}
break;
}
case ASTNode::Kind::kInterfaceBlock: {
std::unique_ptr<InterfaceBlock> i = this->convertInterfaceBlock(decl);
if (i) {
fProgramElements->push_back(std::move(i));
}
break;
}
case ASTNode::Kind::kExtension: {
std::unique_ptr<Extension> e = this->convertExtension(decl.fOffset,
decl.getString());
if (e) {
fProgramElements->push_back(std::move(e));
}
break;
}
case ASTNode::Kind::kSection: {
std::unique_ptr<Section> s = this->convertSection(decl);
if (s) {
fProgramElements->push_back(std::move(s));
}
break;
}
default:
#ifdef SK_DEBUG
ABORT("unsupported declaration: %s\n", decl.description().c_str());
#endif
break;
}
}
}
} // namespace SkSL