| /* |
| * Copyright 2012 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "GrGaussianConvolutionFragmentProcessor.h" |
| #include "GrProxyMove.h" |
| #include "GrTextureProxy.h" |
| #include "../private/GrGLSL.h" |
| #include "glsl/GrGLSLFragmentProcessor.h" |
| #include "glsl/GrGLSLFragmentShaderBuilder.h" |
| #include "glsl/GrGLSLProgramDataManager.h" |
| #include "glsl/GrGLSLUniformHandler.h" |
| |
| // For brevity |
| typedef GrGLSLProgramDataManager::UniformHandle UniformHandle; |
| |
| class GrGLConvolutionEffect : public GrGLSLFragmentProcessor { |
| public: |
| void emitCode(EmitArgs&) override; |
| |
| static inline void GenKey(const GrProcessor&, const GrShaderCaps&, GrProcessorKeyBuilder*); |
| |
| protected: |
| void onSetData(const GrGLSLProgramDataManager& pdman, const GrProcessor&) override; |
| |
| private: |
| UniformHandle fKernelUni; |
| UniformHandle fImageIncrementUni; |
| UniformHandle fBoundsUni; |
| |
| typedef GrGLSLFragmentProcessor INHERITED; |
| }; |
| |
| void GrGLConvolutionEffect::emitCode(EmitArgs& args) { |
| const GrGaussianConvolutionFragmentProcessor& ce = |
| args.fFp.cast<GrGaussianConvolutionFragmentProcessor>(); |
| |
| GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; |
| fImageIncrementUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kVec2f_GrSLType, |
| kDefault_GrSLPrecision, "ImageIncrement"); |
| if (ce.useBounds()) { |
| fBoundsUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kVec2f_GrSLType, |
| kDefault_GrSLPrecision, "Bounds"); |
| } |
| |
| int width = Gr1DKernelEffect::WidthFromRadius(ce.radius()); |
| |
| int arrayCount = (width + 3) / 4; |
| SkASSERT(4 * arrayCount >= width); |
| |
| fKernelUni = uniformHandler->addUniformArray(kFragment_GrShaderFlag, kVec4f_GrSLType, |
| kDefault_GrSLPrecision, "Kernel", arrayCount); |
| |
| GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| SkString coords2D = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]); |
| |
| fragBuilder->codeAppendf("%s = vec4(0, 0, 0, 0);", args.fOutputColor); |
| |
| const GrShaderVar& kernel = uniformHandler->getUniformVariable(fKernelUni); |
| const char* imgInc = uniformHandler->getUniformCStr(fImageIncrementUni); |
| |
| fragBuilder->codeAppendf("vec2 coord = %s - %d.0 * %s;", coords2D.c_str(), ce.radius(), imgInc); |
| |
| // Manually unroll loop because some drivers don't; yields 20-30% speedup. |
| const char* kVecSuffix[4] = {".x", ".y", ".z", ".w"}; |
| for (int i = 0; i < width; i++) { |
| SkString index; |
| SkString kernelIndex; |
| index.appendS32(i / 4); |
| kernel.appendArrayAccess(index.c_str(), &kernelIndex); |
| kernelIndex.append(kVecSuffix[i & 0x3]); |
| |
| if (ce.useBounds()) { |
| // We used to compute a bool indicating whether we're in bounds or not, cast it to a |
| // float, and then mul weight*texture_sample by the float. However, the Adreno 430 seems |
| // to have a bug that caused corruption. |
| const char* bounds = uniformHandler->getUniformCStr(fBoundsUni); |
| const char* component = ce.direction() == Gr1DKernelEffect::kY_Direction ? "y" : "x"; |
| fragBuilder->codeAppendf("if (coord.%s >= %s.x && coord.%s <= %s.y) {", component, |
| bounds, component, bounds); |
| } |
| fragBuilder->codeAppendf("%s += ", args.fOutputColor); |
| fragBuilder->appendTextureLookup(args.fTexSamplers[0], "coord"); |
| fragBuilder->codeAppendf(" * %s;\n", kernelIndex.c_str()); |
| if (ce.useBounds()) { |
| fragBuilder->codeAppend("}"); |
| } |
| fragBuilder->codeAppendf("coord += %s;\n", imgInc); |
| } |
| |
| SkString modulate; |
| GrGLSLMulVarBy4f(&modulate, args.fOutputColor, args.fInputColor); |
| fragBuilder->codeAppend(modulate.c_str()); |
| } |
| |
| void GrGLConvolutionEffect::onSetData(const GrGLSLProgramDataManager& pdman, |
| const GrProcessor& processor) { |
| const GrGaussianConvolutionFragmentProcessor& conv = |
| processor.cast<GrGaussianConvolutionFragmentProcessor>(); |
| GrTexture& texture = *conv.textureSampler(0).texture(); |
| |
| float imageIncrement[2] = {0}; |
| float ySign = texture.origin() != kTopLeft_GrSurfaceOrigin ? 1.0f : -1.0f; |
| switch (conv.direction()) { |
| case Gr1DKernelEffect::kX_Direction: |
| imageIncrement[0] = 1.0f / texture.width(); |
| break; |
| case Gr1DKernelEffect::kY_Direction: |
| imageIncrement[1] = ySign / texture.height(); |
| break; |
| default: |
| SkFAIL("Unknown filter direction."); |
| } |
| pdman.set2fv(fImageIncrementUni, 1, imageIncrement); |
| if (conv.useBounds()) { |
| const int* bounds = conv.bounds(); |
| if (Gr1DKernelEffect::kX_Direction == conv.direction()) { |
| SkScalar inv = SkScalarInvert(SkIntToScalar(texture.width())); |
| pdman.set2f(fBoundsUni, inv * bounds[0], inv * bounds[1]); |
| } else { |
| SkScalar inv = SkScalarInvert(SkIntToScalar(texture.height())); |
| if (texture.origin() != kTopLeft_GrSurfaceOrigin) { |
| pdman.set2f(fBoundsUni, 1.0f - (inv * bounds[1]), 1.0f - (inv * bounds[0])); |
| } else { |
| pdman.set2f(fBoundsUni, inv * bounds[1], inv * bounds[0]); |
| } |
| } |
| } |
| int width = Gr1DKernelEffect::WidthFromRadius(conv.radius()); |
| |
| int arrayCount = (width + 3) / 4; |
| SkASSERT(4 * arrayCount >= width); |
| pdman.set4fv(fKernelUni, arrayCount, conv.kernel()); |
| } |
| |
| void GrGLConvolutionEffect::GenKey(const GrProcessor& processor, const GrShaderCaps&, |
| GrProcessorKeyBuilder* b) { |
| const GrGaussianConvolutionFragmentProcessor& conv = |
| processor.cast<GrGaussianConvolutionFragmentProcessor>(); |
| uint32_t key = conv.radius(); |
| key <<= 2; |
| if (conv.useBounds()) { |
| key |= 0x2; |
| key |= GrGaussianConvolutionFragmentProcessor::kY_Direction == conv.direction() ? 0x1 : 0x0; |
| } |
| b->add32(key); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| static void fill_in_1D_guassian_kernel(float* kernel, int width, float gaussianSigma, int radius) { |
| const float denom = 1.0f / (2.0f * gaussianSigma * gaussianSigma); |
| |
| float sum = 0.0f; |
| for (int i = 0; i < width; ++i) { |
| float x = static_cast<float>(i - radius); |
| // Note that the constant term (1/(sqrt(2*pi*sigma^2)) of the Gaussian |
| // is dropped here, since we renormalize the kernel below. |
| kernel[i] = sk_float_exp(-x * x * denom); |
| sum += kernel[i]; |
| } |
| // Normalize the kernel |
| float scale = 1.0f / sum; |
| for (int i = 0; i < width; ++i) { |
| kernel[i] *= scale; |
| } |
| } |
| |
| GrGaussianConvolutionFragmentProcessor::GrGaussianConvolutionFragmentProcessor(GrTexture* texture, |
| Direction direction, |
| int radius, |
| float gaussianSigma, |
| bool useBounds, |
| int bounds[2]) |
| : INHERITED(texture, direction, radius, ModulationFlags(texture->config())) |
| , fUseBounds(useBounds) { |
| this->initClassID<GrGaussianConvolutionFragmentProcessor>(); |
| SkASSERT(radius <= kMaxKernelRadius); |
| |
| fill_in_1D_guassian_kernel(fKernel, this->width(), gaussianSigma, this->radius()); |
| |
| memcpy(fBounds, bounds, sizeof(fBounds)); |
| } |
| |
| GrGaussianConvolutionFragmentProcessor::GrGaussianConvolutionFragmentProcessor( |
| GrContext* context, |
| sk_sp<GrTextureProxy> proxy, |
| Direction direction, |
| int radius, |
| float gaussianSigma, |
| bool useBounds, |
| int bounds[2]) |
| : INHERITED{context, |
| ModulationFlags(proxy->config()), |
| GR_PROXY_MOVE(proxy), |
| direction, |
| radius} |
| , fUseBounds(useBounds) { |
| this->initClassID<GrGaussianConvolutionFragmentProcessor>(); |
| SkASSERT(radius <= kMaxKernelRadius); |
| |
| fill_in_1D_guassian_kernel(fKernel, this->width(), gaussianSigma, this->radius()); |
| |
| memcpy(fBounds, bounds, sizeof(fBounds)); |
| } |
| |
| GrGaussianConvolutionFragmentProcessor::~GrGaussianConvolutionFragmentProcessor() {} |
| |
| void GrGaussianConvolutionFragmentProcessor::onGetGLSLProcessorKey(const GrShaderCaps& caps, |
| GrProcessorKeyBuilder* b) const { |
| GrGLConvolutionEffect::GenKey(*this, caps, b); |
| } |
| |
| GrGLSLFragmentProcessor* GrGaussianConvolutionFragmentProcessor::onCreateGLSLInstance() const { |
| return new GrGLConvolutionEffect; |
| } |
| |
| bool GrGaussianConvolutionFragmentProcessor::onIsEqual(const GrFragmentProcessor& sBase) const { |
| const GrGaussianConvolutionFragmentProcessor& s = |
| sBase.cast<GrGaussianConvolutionFragmentProcessor>(); |
| return (this->radius() == s.radius() && this->direction() == s.direction() && |
| this->useBounds() == s.useBounds() && |
| 0 == memcmp(fBounds, s.fBounds, sizeof(fBounds)) && |
| 0 == memcmp(fKernel, s.fKernel, this->width() * sizeof(float))); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrGaussianConvolutionFragmentProcessor); |
| |
| #if GR_TEST_UTILS |
| sk_sp<GrFragmentProcessor> GrGaussianConvolutionFragmentProcessor::TestCreate( |
| GrProcessorTestData* d) { |
| int texIdx = d->fRandom->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx |
| : GrProcessorUnitTest::kAlphaTextureIdx; |
| sk_sp<GrTextureProxy> proxy = d->textureProxy(texIdx); |
| |
| bool useBounds = d->fRandom->nextBool(); |
| int bounds[2]; |
| |
| Direction dir; |
| if (d->fRandom->nextBool()) { |
| dir = kX_Direction; |
| bounds[0] = d->fRandom->nextRangeU(0, proxy->width()-1); |
| bounds[1] = d->fRandom->nextRangeU(bounds[0], proxy->width()-1); |
| } else { |
| dir = kY_Direction; |
| bounds[0] = d->fRandom->nextRangeU(0, proxy->height()-1); |
| bounds[1] = d->fRandom->nextRangeU(bounds[0], proxy->height()-1); |
| } |
| |
| int radius = d->fRandom->nextRangeU(1, kMaxKernelRadius); |
| float sigma = radius / 3.f; |
| |
| return GrGaussianConvolutionFragmentProcessor::Make( |
| d->context(), d->textureProxy(texIdx), dir, radius, sigma, useBounds, bounds); |
| } |
| #endif |