| /* |
| * Copyright 2006 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "Sk4fLinearGradient.h" |
| #include "SkGradientShaderPriv.h" |
| #include "SkLinearGradient.h" |
| #include "SkRadialGradient.h" |
| #include "SkTwoPointConicalGradient.h" |
| #include "SkSweepGradient.h" |
| |
| void SkGradientShaderBase::Descriptor::flatten(SkWriteBuffer& buffer) const { |
| buffer.writeColorArray(fColors, fCount); |
| if (fPos) { |
| buffer.writeBool(true); |
| buffer.writeScalarArray(fPos, fCount); |
| } else { |
| buffer.writeBool(false); |
| } |
| buffer.write32(fTileMode); |
| buffer.write32(fGradFlags); |
| if (fLocalMatrix) { |
| buffer.writeBool(true); |
| buffer.writeMatrix(*fLocalMatrix); |
| } else { |
| buffer.writeBool(false); |
| } |
| } |
| |
| bool SkGradientShaderBase::DescriptorScope::unflatten(SkReadBuffer& buffer) { |
| fCount = buffer.getArrayCount(); |
| if (fCount > kStorageCount) { |
| size_t allocSize = (sizeof(SkColor) + sizeof(SkScalar)) * fCount; |
| fDynamicStorage.reset(allocSize); |
| fColors = (SkColor*)fDynamicStorage.get(); |
| fPos = (SkScalar*)(fColors + fCount); |
| } else { |
| fColors = fColorStorage; |
| fPos = fPosStorage; |
| } |
| |
| if (!buffer.readColorArray(const_cast<SkColor*>(fColors), fCount)) { |
| return false; |
| } |
| if (buffer.readBool()) { |
| if (!buffer.readScalarArray(const_cast<SkScalar*>(fPos), fCount)) { |
| return false; |
| } |
| } else { |
| fPos = nullptr; |
| } |
| |
| fTileMode = (SkShader::TileMode)buffer.read32(); |
| fGradFlags = buffer.read32(); |
| |
| if (buffer.readBool()) { |
| fLocalMatrix = &fLocalMatrixStorage; |
| buffer.readMatrix(&fLocalMatrixStorage); |
| } else { |
| fLocalMatrix = nullptr; |
| } |
| return buffer.isValid(); |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////////////////// |
| |
| SkGradientShaderBase::SkGradientShaderBase(const Descriptor& desc, const SkMatrix& ptsToUnit) |
| : INHERITED(desc.fLocalMatrix) |
| , fPtsToUnit(ptsToUnit) |
| { |
| fPtsToUnit.getType(); // Precache so reads are threadsafe. |
| SkASSERT(desc.fCount > 1); |
| |
| fGradFlags = SkToU8(desc.fGradFlags); |
| |
| SkASSERT((unsigned)desc.fTileMode < SkShader::kTileModeCount); |
| SkASSERT(SkShader::kTileModeCount == SK_ARRAY_COUNT(gTileProcs)); |
| fTileMode = desc.fTileMode; |
| fTileProc = gTileProcs[desc.fTileMode]; |
| |
| /* Note: we let the caller skip the first and/or last position. |
| i.e. pos[0] = 0.3, pos[1] = 0.7 |
| In these cases, we insert dummy entries to ensure that the final data |
| will be bracketed by [0, 1]. |
| i.e. our_pos[0] = 0, our_pos[1] = 0.3, our_pos[2] = 0.7, our_pos[3] = 1 |
| |
| Thus colorCount (the caller's value, and fColorCount (our value) may |
| differ by up to 2. In the above example: |
| colorCount = 2 |
| fColorCount = 4 |
| */ |
| fColorCount = desc.fCount; |
| // check if we need to add in dummy start and/or end position/colors |
| bool dummyFirst = false; |
| bool dummyLast = false; |
| if (desc.fPos) { |
| dummyFirst = desc.fPos[0] != 0; |
| dummyLast = desc.fPos[desc.fCount - 1] != SK_Scalar1; |
| fColorCount += dummyFirst + dummyLast; |
| } |
| |
| if (fColorCount > kColorStorageCount) { |
| size_t size = sizeof(SkColor) + sizeof(Rec); |
| if (desc.fPos) { |
| size += sizeof(SkScalar); |
| } |
| fOrigColors = reinterpret_cast<SkColor*>( |
| sk_malloc_throw(size * fColorCount)); |
| } |
| else { |
| fOrigColors = fStorage; |
| } |
| |
| // Now copy over the colors, adding the dummies as needed |
| { |
| SkColor* origColors = fOrigColors; |
| if (dummyFirst) { |
| *origColors++ = desc.fColors[0]; |
| } |
| memcpy(origColors, desc.fColors, desc.fCount * sizeof(SkColor)); |
| if (dummyLast) { |
| origColors += desc.fCount; |
| *origColors = desc.fColors[desc.fCount - 1]; |
| } |
| } |
| |
| if (desc.fPos && fColorCount) { |
| fOrigPos = (SkScalar*)(fOrigColors + fColorCount); |
| fRecs = (Rec*)(fOrigPos + fColorCount); |
| } else { |
| fOrigPos = nullptr; |
| fRecs = (Rec*)(fOrigColors + fColorCount); |
| } |
| |
| if (fColorCount > 2) { |
| Rec* recs = fRecs; |
| recs->fPos = 0; |
| // recs->fScale = 0; // unused; |
| recs += 1; |
| if (desc.fPos) { |
| SkScalar* origPosPtr = fOrigPos; |
| *origPosPtr++ = 0; |
| |
| /* We need to convert the user's array of relative positions into |
| fixed-point positions and scale factors. We need these results |
| to be strictly monotonic (no two values equal or out of order). |
| Hence this complex loop that just jams a zero for the scale |
| value if it sees a segment out of order, and it assures that |
| we start at 0 and end at 1.0 |
| */ |
| SkScalar prev = 0; |
| int startIndex = dummyFirst ? 0 : 1; |
| int count = desc.fCount + dummyLast; |
| for (int i = startIndex; i < count; i++) { |
| // force the last value to be 1.0 |
| SkScalar curr; |
| if (i == desc.fCount) { // we're really at the dummyLast |
| curr = 1; |
| } else { |
| curr = SkScalarPin(desc.fPos[i], 0, 1); |
| } |
| *origPosPtr++ = curr; |
| |
| recs->fPos = SkScalarToFixed(curr); |
| SkFixed diff = SkScalarToFixed(curr - prev); |
| if (diff > 0) { |
| recs->fScale = (1 << 24) / diff; |
| } else { |
| recs->fScale = 0; // ignore this segment |
| } |
| // get ready for the next value |
| prev = curr; |
| recs += 1; |
| } |
| } else { // assume even distribution |
| fOrigPos = nullptr; |
| |
| SkFixed dp = SK_Fixed1 / (desc.fCount - 1); |
| SkFixed p = dp; |
| SkFixed scale = (desc.fCount - 1) << 8; // (1 << 24) / dp |
| for (int i = 1; i < desc.fCount - 1; i++) { |
| recs->fPos = p; |
| recs->fScale = scale; |
| recs += 1; |
| p += dp; |
| } |
| recs->fPos = SK_Fixed1; |
| recs->fScale = scale; |
| } |
| } else if (desc.fPos) { |
| SkASSERT(2 == fColorCount); |
| fOrigPos[0] = SkScalarPin(desc.fPos[0], 0, 1); |
| fOrigPos[1] = SkScalarPin(desc.fPos[1], fOrigPos[0], 1); |
| if (0 == fOrigPos[0] && 1 == fOrigPos[1]) { |
| fOrigPos = nullptr; |
| } |
| } |
| this->initCommon(); |
| } |
| |
| SkGradientShaderBase::~SkGradientShaderBase() { |
| if (fOrigColors != fStorage) { |
| sk_free(fOrigColors); |
| } |
| } |
| |
| void SkGradientShaderBase::initCommon() { |
| unsigned colorAlpha = 0xFF; |
| for (int i = 0; i < fColorCount; i++) { |
| colorAlpha &= SkColorGetA(fOrigColors[i]); |
| } |
| fColorsAreOpaque = colorAlpha == 0xFF; |
| } |
| |
| void SkGradientShaderBase::flatten(SkWriteBuffer& buffer) const { |
| Descriptor desc; |
| desc.fColors = fOrigColors; |
| desc.fPos = fOrigPos; |
| desc.fCount = fColorCount; |
| desc.fTileMode = fTileMode; |
| desc.fGradFlags = fGradFlags; |
| |
| const SkMatrix& m = this->getLocalMatrix(); |
| desc.fLocalMatrix = m.isIdentity() ? nullptr : &m; |
| desc.flatten(buffer); |
| } |
| |
| SkGradientShaderBase::GpuColorType SkGradientShaderBase::getGpuColorType(SkColor colors[3]) const { |
| if (fColorCount <= 3) { |
| memcpy(colors, fOrigColors, fColorCount * sizeof(SkColor)); |
| } |
| |
| if (SkShader::kClamp_TileMode == fTileMode) { |
| if (2 == fColorCount) { |
| return kTwo_GpuColorType; |
| } else if (3 == fColorCount && |
| (SkScalarAbs( |
| SkFixedToScalar(fRecs[1].fPos) - SK_ScalarHalf) < SK_Scalar1 / 1000)) { |
| return kThree_GpuColorType; |
| } |
| } |
| return kTexture_GpuColorType; |
| } |
| |
| void SkGradientShaderBase::FlipGradientColors(SkColor* colorDst, Rec* recDst, |
| SkColor* colorSrc, Rec* recSrc, |
| int count) { |
| SkAutoSTArray<8, SkColor> colorsTemp(count); |
| for (int i = 0; i < count; ++i) { |
| int offset = count - i - 1; |
| colorsTemp[i] = colorSrc[offset]; |
| } |
| if (count > 2) { |
| SkAutoSTArray<8, Rec> recsTemp(count); |
| for (int i = 0; i < count; ++i) { |
| int offset = count - i - 1; |
| recsTemp[i].fPos = SK_Fixed1 - recSrc[offset].fPos; |
| recsTemp[i].fScale = recSrc[offset].fScale; |
| } |
| memcpy(recDst, recsTemp.get(), count * sizeof(Rec)); |
| } |
| memcpy(colorDst, colorsTemp.get(), count * sizeof(SkColor)); |
| } |
| |
| bool SkGradientShaderBase::isOpaque() const { |
| return fColorsAreOpaque; |
| } |
| |
| static unsigned rounded_divide(unsigned numer, unsigned denom) { |
| return (numer + (denom >> 1)) / denom; |
| } |
| |
| bool SkGradientShaderBase::onAsLuminanceColor(SkColor* lum) const { |
| // we just compute an average color. |
| // possibly we could weight this based on the proportional width for each color |
| // assuming they are not evenly distributed in the fPos array. |
| int r = 0; |
| int g = 0; |
| int b = 0; |
| const int n = fColorCount; |
| for (int i = 0; i < n; ++i) { |
| SkColor c = fOrigColors[i]; |
| r += SkColorGetR(c); |
| g += SkColorGetG(c); |
| b += SkColorGetB(c); |
| } |
| *lum = SkColorSetRGB(rounded_divide(r, n), rounded_divide(g, n), rounded_divide(b, n)); |
| return true; |
| } |
| |
| SkGradientShaderBase::GradientShaderBaseContext::GradientShaderBaseContext( |
| const SkGradientShaderBase& shader, const ContextRec& rec) |
| : INHERITED(shader, rec) |
| #ifdef SK_SUPPORT_LEGACY_GRADIENT_DITHERING |
| , fDither(true) |
| #else |
| , fDither(rec.fPaint->isDither()) |
| #endif |
| , fCache(shader.refCache(getPaintAlpha(), fDither)) |
| { |
| const SkMatrix& inverse = this->getTotalInverse(); |
| |
| fDstToIndex.setConcat(shader.fPtsToUnit, inverse); |
| |
| fDstToIndexProc = fDstToIndex.getMapXYProc(); |
| fDstToIndexClass = (uint8_t)SkShader::Context::ComputeMatrixClass(fDstToIndex); |
| |
| // now convert our colors in to PMColors |
| unsigned paintAlpha = this->getPaintAlpha(); |
| |
| fFlags = this->INHERITED::getFlags(); |
| if (shader.fColorsAreOpaque && paintAlpha == 0xFF) { |
| fFlags |= kOpaqueAlpha_Flag; |
| } |
| } |
| |
| SkGradientShaderBase::GradientShaderCache::GradientShaderCache( |
| U8CPU alpha, bool dither, const SkGradientShaderBase& shader) |
| : fCacheAlpha(alpha) |
| , fCacheDither(dither) |
| , fShader(shader) |
| { |
| // Only initialize the cache in getCache16/32. |
| fCache16 = nullptr; |
| fCache32 = nullptr; |
| fCache16Storage = nullptr; |
| fCache32PixelRef = nullptr; |
| } |
| |
| SkGradientShaderBase::GradientShaderCache::~GradientShaderCache() { |
| sk_free(fCache16Storage); |
| SkSafeUnref(fCache32PixelRef); |
| } |
| |
| #define Fixed_To_Dot8(x) (((x) + 0x80) >> 8) |
| |
| /** We take the original colors, not our premultiplied PMColors, since we can |
| build a 16bit table as long as the original colors are opaque, even if the |
| paint specifies a non-opaque alpha. |
| */ |
| void SkGradientShaderBase::GradientShaderCache::Build16bitCache( |
| uint16_t cache[], SkColor c0, SkColor c1, int count, bool dither) { |
| SkASSERT(count > 1); |
| SkASSERT(SkColorGetA(c0) == 0xFF); |
| SkASSERT(SkColorGetA(c1) == 0xFF); |
| |
| SkFixed r = SkColorGetR(c0); |
| SkFixed g = SkColorGetG(c0); |
| SkFixed b = SkColorGetB(c0); |
| |
| SkFixed dr = SkIntToFixed(SkColorGetR(c1) - r) / (count - 1); |
| SkFixed dg = SkIntToFixed(SkColorGetG(c1) - g) / (count - 1); |
| SkFixed db = SkIntToFixed(SkColorGetB(c1) - b) / (count - 1); |
| |
| r = SkIntToFixed(r) + 0x8000; |
| g = SkIntToFixed(g) + 0x8000; |
| b = SkIntToFixed(b) + 0x8000; |
| |
| if (dither) { |
| do { |
| unsigned rr = r >> 16; |
| unsigned gg = g >> 16; |
| unsigned bb = b >> 16; |
| cache[0] = SkPackRGB16(SkR32ToR16(rr), SkG32ToG16(gg), SkB32ToB16(bb)); |
| cache[kCache16Count] = SkDitherPack888ToRGB16(rr, gg, bb); |
| cache += 1; |
| r += dr; |
| g += dg; |
| b += db; |
| } while (--count != 0); |
| } else { |
| do { |
| unsigned rr = r >> 16; |
| unsigned gg = g >> 16; |
| unsigned bb = b >> 16; |
| cache[0] = SkPackRGB16(SkR32ToR16(rr), SkG32ToG16(gg), SkB32ToB16(bb)); |
| cache[kCache16Count] = cache[0]; |
| cache += 1; |
| r += dr; |
| g += dg; |
| b += db; |
| } while (--count != 0); |
| } |
| } |
| |
| /* |
| * r,g,b used to be SkFixed, but on gcc (4.2.1 mac and 4.6.3 goobuntu) in |
| * release builds, we saw a compiler error where the 0xFF parameter in |
| * SkPackARGB32() was being totally ignored whenever it was called with |
| * a non-zero add (e.g. 0x8000). |
| * |
| * We found two work-arounds: |
| * 1. change r,g,b to unsigned (or just one of them) |
| * 2. change SkPackARGB32 to + its (a << SK_A32_SHIFT) value instead |
| * of using | |
| * |
| * We chose #1 just because it was more localized. |
| * See http://code.google.com/p/skia/issues/detail?id=1113 |
| * |
| * The type SkUFixed encapsulate this need for unsigned, but logically Fixed. |
| */ |
| typedef uint32_t SkUFixed; |
| |
| void SkGradientShaderBase::GradientShaderCache::Build32bitCache( |
| SkPMColor cache[], SkColor c0, SkColor c1, |
| int count, U8CPU paintAlpha, uint32_t gradFlags, bool dither) { |
| SkASSERT(count > 1); |
| |
| // need to apply paintAlpha to our two endpoints |
| uint32_t a0 = SkMulDiv255Round(SkColorGetA(c0), paintAlpha); |
| uint32_t a1 = SkMulDiv255Round(SkColorGetA(c1), paintAlpha); |
| |
| |
| const bool interpInPremul = SkToBool(gradFlags & |
| SkGradientShader::kInterpolateColorsInPremul_Flag); |
| |
| uint32_t r0 = SkColorGetR(c0); |
| uint32_t g0 = SkColorGetG(c0); |
| uint32_t b0 = SkColorGetB(c0); |
| |
| uint32_t r1 = SkColorGetR(c1); |
| uint32_t g1 = SkColorGetG(c1); |
| uint32_t b1 = SkColorGetB(c1); |
| |
| if (interpInPremul) { |
| r0 = SkMulDiv255Round(r0, a0); |
| g0 = SkMulDiv255Round(g0, a0); |
| b0 = SkMulDiv255Round(b0, a0); |
| |
| r1 = SkMulDiv255Round(r1, a1); |
| g1 = SkMulDiv255Round(g1, a1); |
| b1 = SkMulDiv255Round(b1, a1); |
| } |
| |
| SkFixed da = SkIntToFixed(a1 - a0) / (count - 1); |
| SkFixed dr = SkIntToFixed(r1 - r0) / (count - 1); |
| SkFixed dg = SkIntToFixed(g1 - g0) / (count - 1); |
| SkFixed db = SkIntToFixed(b1 - b0) / (count - 1); |
| |
| /* We pre-add 1/8 to avoid having to add this to our [0] value each time |
| in the loop. Without this, the bias for each would be |
| 0x2000 0xA000 0xE000 0x6000 |
| With this trick, we can add 0 for the first (no-op) and just adjust the |
| others. |
| */ |
| const SkUFixed bias0 = dither ? 0x2000 : 0x8000; |
| const SkUFixed bias1 = dither ? 0x8000 : 0; |
| const SkUFixed bias2 = dither ? 0xC000 : 0; |
| const SkUFixed bias3 = dither ? 0x4000 : 0; |
| |
| SkUFixed a = SkIntToFixed(a0) + bias0; |
| SkUFixed r = SkIntToFixed(r0) + bias0; |
| SkUFixed g = SkIntToFixed(g0) + bias0; |
| SkUFixed b = SkIntToFixed(b0) + bias0; |
| |
| /* |
| * Our dither-cell (spatially) is |
| * 0 2 |
| * 3 1 |
| * Where |
| * [0] -> [-1/8 ... 1/8 ) values near 0 |
| * [1] -> [ 1/8 ... 3/8 ) values near 1/4 |
| * [2] -> [ 3/8 ... 5/8 ) values near 1/2 |
| * [3] -> [ 5/8 ... 7/8 ) values near 3/4 |
| */ |
| |
| if (0xFF == a0 && 0 == da) { |
| do { |
| cache[kCache32Count*0] = SkPackARGB32(0xFF, (r + 0 ) >> 16, |
| (g + 0 ) >> 16, |
| (b + 0 ) >> 16); |
| cache[kCache32Count*1] = SkPackARGB32(0xFF, (r + bias1) >> 16, |
| (g + bias1) >> 16, |
| (b + bias1) >> 16); |
| cache[kCache32Count*2] = SkPackARGB32(0xFF, (r + bias2) >> 16, |
| (g + bias2) >> 16, |
| (b + bias2) >> 16); |
| cache[kCache32Count*3] = SkPackARGB32(0xFF, (r + bias3) >> 16, |
| (g + bias3) >> 16, |
| (b + bias3) >> 16); |
| cache += 1; |
| r += dr; |
| g += dg; |
| b += db; |
| } while (--count != 0); |
| } else if (interpInPremul) { |
| do { |
| cache[kCache32Count*0] = SkPackARGB32((a + 0 ) >> 16, |
| (r + 0 ) >> 16, |
| (g + 0 ) >> 16, |
| (b + 0 ) >> 16); |
| cache[kCache32Count*1] = SkPackARGB32((a + bias1) >> 16, |
| (r + bias1) >> 16, |
| (g + bias1) >> 16, |
| (b + bias1) >> 16); |
| cache[kCache32Count*2] = SkPackARGB32((a + bias2) >> 16, |
| (r + bias2) >> 16, |
| (g + bias2) >> 16, |
| (b + bias2) >> 16); |
| cache[kCache32Count*3] = SkPackARGB32((a + bias3) >> 16, |
| (r + bias3) >> 16, |
| (g + bias3) >> 16, |
| (b + bias3) >> 16); |
| cache += 1; |
| a += da; |
| r += dr; |
| g += dg; |
| b += db; |
| } while (--count != 0); |
| } else { // interpolate in unpreml space |
| do { |
| cache[kCache32Count*0] = SkPremultiplyARGBInline((a + 0 ) >> 16, |
| (r + 0 ) >> 16, |
| (g + 0 ) >> 16, |
| (b + 0 ) >> 16); |
| cache[kCache32Count*1] = SkPremultiplyARGBInline((a + bias1) >> 16, |
| (r + bias1) >> 16, |
| (g + bias1) >> 16, |
| (b + bias1) >> 16); |
| cache[kCache32Count*2] = SkPremultiplyARGBInline((a + bias2) >> 16, |
| (r + bias2) >> 16, |
| (g + bias2) >> 16, |
| (b + bias2) >> 16); |
| cache[kCache32Count*3] = SkPremultiplyARGBInline((a + bias3) >> 16, |
| (r + bias3) >> 16, |
| (g + bias3) >> 16, |
| (b + bias3) >> 16); |
| cache += 1; |
| a += da; |
| r += dr; |
| g += dg; |
| b += db; |
| } while (--count != 0); |
| } |
| } |
| |
| static inline int SkFixedToFFFF(SkFixed x) { |
| SkASSERT((unsigned)x <= SK_Fixed1); |
| return x - (x >> 16); |
| } |
| |
| const uint16_t* SkGradientShaderBase::GradientShaderCache::getCache16() { |
| fCache16InitOnce(SkGradientShaderBase::GradientShaderCache::initCache16, this); |
| SkASSERT(fCache16); |
| return fCache16; |
| } |
| |
| void SkGradientShaderBase::GradientShaderCache::initCache16(GradientShaderCache* cache) { |
| // double the count for dither entries |
| const int entryCount = kCache16Count * 2; |
| const size_t allocSize = sizeof(uint16_t) * entryCount; |
| |
| SkASSERT(nullptr == cache->fCache16Storage); |
| cache->fCache16Storage = (uint16_t*)sk_malloc_throw(allocSize); |
| cache->fCache16 = cache->fCache16Storage; |
| if (cache->fShader.fColorCount == 2) { |
| Build16bitCache(cache->fCache16, cache->fShader.fOrigColors[0], |
| cache->fShader.fOrigColors[1], kCache16Count, cache->fCacheDither); |
| } else { |
| Rec* rec = cache->fShader.fRecs; |
| int prevIndex = 0; |
| for (int i = 1; i < cache->fShader.fColorCount; i++) { |
| int nextIndex = SkFixedToFFFF(rec[i].fPos) >> kCache16Shift; |
| SkASSERT(nextIndex < kCache16Count); |
| |
| if (nextIndex > prevIndex) |
| Build16bitCache(cache->fCache16 + prevIndex, cache->fShader.fOrigColors[i-1], |
| cache->fShader.fOrigColors[i], nextIndex - prevIndex + 1, |
| cache->fCacheDither); |
| prevIndex = nextIndex; |
| } |
| } |
| } |
| |
| const SkPMColor* SkGradientShaderBase::GradientShaderCache::getCache32() { |
| fCache32InitOnce(SkGradientShaderBase::GradientShaderCache::initCache32, this); |
| SkASSERT(fCache32); |
| return fCache32; |
| } |
| |
| void SkGradientShaderBase::GradientShaderCache::initCache32(GradientShaderCache* cache) { |
| const int kNumberOfDitherRows = 4; |
| const SkImageInfo info = SkImageInfo::MakeN32Premul(kCache32Count, kNumberOfDitherRows); |
| |
| SkASSERT(nullptr == cache->fCache32PixelRef); |
| cache->fCache32PixelRef = SkMallocPixelRef::NewAllocate(info, 0, nullptr); |
| cache->fCache32 = (SkPMColor*)cache->fCache32PixelRef->getAddr(); |
| if (cache->fShader.fColorCount == 2) { |
| Build32bitCache(cache->fCache32, cache->fShader.fOrigColors[0], |
| cache->fShader.fOrigColors[1], kCache32Count, cache->fCacheAlpha, |
| cache->fShader.fGradFlags, cache->fCacheDither); |
| } else { |
| Rec* rec = cache->fShader.fRecs; |
| int prevIndex = 0; |
| for (int i = 1; i < cache->fShader.fColorCount; i++) { |
| int nextIndex = SkFixedToFFFF(rec[i].fPos) >> kCache32Shift; |
| SkASSERT(nextIndex < kCache32Count); |
| |
| if (nextIndex > prevIndex) |
| Build32bitCache(cache->fCache32 + prevIndex, cache->fShader.fOrigColors[i-1], |
| cache->fShader.fOrigColors[i], nextIndex - prevIndex + 1, |
| cache->fCacheAlpha, cache->fShader.fGradFlags, cache->fCacheDither); |
| prevIndex = nextIndex; |
| } |
| } |
| } |
| |
| /* |
| * The gradient holds a cache for the most recent value of alpha. Successive |
| * callers with the same alpha value will share the same cache. |
| */ |
| SkGradientShaderBase::GradientShaderCache* SkGradientShaderBase::refCache(U8CPU alpha, |
| bool dither) const { |
| SkAutoMutexAcquire ama(fCacheMutex); |
| if (!fCache || fCache->getAlpha() != alpha || fCache->getDither() != dither) { |
| fCache.reset(new GradientShaderCache(alpha, dither, *this)); |
| } |
| // Increment the ref counter inside the mutex to ensure the returned pointer is still valid. |
| // Otherwise, the pointer may have been overwritten on a different thread before the object's |
| // ref count was incremented. |
| fCache.get()->ref(); |
| return fCache; |
| } |
| |
| SK_DECLARE_STATIC_MUTEX(gGradientCacheMutex); |
| /* |
| * Because our caller might rebuild the same (logically the same) gradient |
| * over and over, we'd like to return exactly the same "bitmap" if possible, |
| * allowing the client to utilize a cache of our bitmap (e.g. with a GPU). |
| * To do that, we maintain a private cache of built-bitmaps, based on our |
| * colors and positions. Note: we don't try to flatten the fMapper, so if one |
| * is present, we skip the cache for now. |
| */ |
| void SkGradientShaderBase::getGradientTableBitmap(SkBitmap* bitmap) const { |
| // our caller assumes no external alpha, so we ensure that our cache is |
| // built with 0xFF |
| SkAutoTUnref<GradientShaderCache> cache(this->refCache(0xFF, true)); |
| |
| // build our key: [numColors + colors[] + {positions[]} + flags ] |
| int count = 1 + fColorCount + 1; |
| if (fColorCount > 2) { |
| count += fColorCount - 1; // fRecs[].fPos |
| } |
| |
| SkAutoSTMalloc<16, int32_t> storage(count); |
| int32_t* buffer = storage.get(); |
| |
| *buffer++ = fColorCount; |
| memcpy(buffer, fOrigColors, fColorCount * sizeof(SkColor)); |
| buffer += fColorCount; |
| if (fColorCount > 2) { |
| for (int i = 1; i < fColorCount; i++) { |
| *buffer++ = fRecs[i].fPos; |
| } |
| } |
| *buffer++ = fGradFlags; |
| SkASSERT(buffer - storage.get() == count); |
| |
| /////////////////////////////////// |
| |
| static SkGradientBitmapCache* gCache; |
| // each cache cost 1K of RAM, since each bitmap will be 1x256 at 32bpp |
| static const int MAX_NUM_CACHED_GRADIENT_BITMAPS = 32; |
| SkAutoMutexAcquire ama(gGradientCacheMutex); |
| |
| if (nullptr == gCache) { |
| gCache = new SkGradientBitmapCache(MAX_NUM_CACHED_GRADIENT_BITMAPS); |
| } |
| size_t size = count * sizeof(int32_t); |
| |
| if (!gCache->find(storage.get(), size, bitmap)) { |
| // force our cahce32pixelref to be built |
| (void)cache->getCache32(); |
| bitmap->setInfo(SkImageInfo::MakeN32Premul(kCache32Count, 1)); |
| bitmap->setPixelRef(cache->getCache32PixelRef()); |
| |
| gCache->add(storage.get(), size, *bitmap); |
| } |
| } |
| |
| void SkGradientShaderBase::commonAsAGradient(GradientInfo* info, bool flipGrad) const { |
| if (info) { |
| if (info->fColorCount >= fColorCount) { |
| SkColor* colorLoc; |
| Rec* recLoc; |
| if (flipGrad && (info->fColors || info->fColorOffsets)) { |
| SkAutoSTArray<8, SkColor> colorStorage(fColorCount); |
| SkAutoSTArray<8, Rec> recStorage(fColorCount); |
| colorLoc = colorStorage.get(); |
| recLoc = recStorage.get(); |
| FlipGradientColors(colorLoc, recLoc, fOrigColors, fRecs, fColorCount); |
| } else { |
| colorLoc = fOrigColors; |
| recLoc = fRecs; |
| } |
| if (info->fColors) { |
| memcpy(info->fColors, colorLoc, fColorCount * sizeof(SkColor)); |
| } |
| if (info->fColorOffsets) { |
| if (fColorCount == 2) { |
| info->fColorOffsets[0] = 0; |
| info->fColorOffsets[1] = SK_Scalar1; |
| } else if (fColorCount > 2) { |
| for (int i = 0; i < fColorCount; ++i) { |
| info->fColorOffsets[i] = SkFixedToScalar(recLoc[i].fPos); |
| } |
| } |
| } |
| } |
| info->fColorCount = fColorCount; |
| info->fTileMode = fTileMode; |
| info->fGradientFlags = fGradFlags; |
| } |
| } |
| |
| #ifndef SK_IGNORE_TO_STRING |
| void SkGradientShaderBase::toString(SkString* str) const { |
| |
| str->appendf("%d colors: ", fColorCount); |
| |
| for (int i = 0; i < fColorCount; ++i) { |
| str->appendHex(fOrigColors[i], 8); |
| if (i < fColorCount-1) { |
| str->append(", "); |
| } |
| } |
| |
| if (fColorCount > 2) { |
| str->append(" points: ("); |
| for (int i = 0; i < fColorCount; ++i) { |
| str->appendScalar(SkFixedToScalar(fRecs[i].fPos)); |
| if (i < fColorCount-1) { |
| str->append(", "); |
| } |
| } |
| str->append(")"); |
| } |
| |
| static const char* gTileModeName[SkShader::kTileModeCount] = { |
| "clamp", "repeat", "mirror" |
| }; |
| |
| str->append(" "); |
| str->append(gTileModeName[fTileMode]); |
| |
| this->INHERITED::toString(str); |
| } |
| #endif |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| // Return true if these parameters are valid/legal/safe to construct a gradient |
| // |
| static bool valid_grad(const SkColor colors[], const SkScalar pos[], int count, unsigned tileMode) { |
| return nullptr != colors && count >= 1 && tileMode < (unsigned)SkShader::kTileModeCount; |
| } |
| |
| // assumes colors is SkColor* and pos is SkScalar* |
| #define EXPAND_1_COLOR(count) \ |
| SkColor tmp[2]; \ |
| do { \ |
| if (1 == count) { \ |
| tmp[0] = tmp[1] = colors[0]; \ |
| colors = tmp; \ |
| pos = nullptr; \ |
| count = 2; \ |
| } \ |
| } while (0) |
| |
| static void desc_init(SkGradientShaderBase::Descriptor* desc, |
| const SkColor colors[], const SkScalar pos[], int colorCount, |
| SkShader::TileMode mode, uint32_t flags, const SkMatrix* localMatrix) { |
| desc->fColors = colors; |
| desc->fPos = pos; |
| desc->fCount = colorCount; |
| desc->fTileMode = mode; |
| desc->fGradFlags = flags; |
| desc->fLocalMatrix = localMatrix; |
| } |
| |
| sk_sp<SkShader> SkGradientShader::MakeLinear(const SkPoint pts[2], |
| const SkColor colors[], |
| const SkScalar pos[], int colorCount, |
| SkShader::TileMode mode, |
| uint32_t flags, |
| const SkMatrix* localMatrix) { |
| if (!pts) { |
| return nullptr; |
| } |
| if (!valid_grad(colors, pos, colorCount, mode)) { |
| return nullptr; |
| } |
| EXPAND_1_COLOR(colorCount); |
| |
| SkGradientShaderBase::Descriptor desc; |
| desc_init(&desc, colors, pos, colorCount, mode, flags, localMatrix); |
| return sk_make_sp<SkLinearGradient>(pts, desc); |
| } |
| |
| sk_sp<SkShader> SkGradientShader::MakeRadial(const SkPoint& center, SkScalar radius, |
| const SkColor colors[], |
| const SkScalar pos[], int colorCount, |
| SkShader::TileMode mode, |
| uint32_t flags, |
| const SkMatrix* localMatrix) { |
| if (radius <= 0) { |
| return nullptr; |
| } |
| if (!valid_grad(colors, pos, colorCount, mode)) { |
| return nullptr; |
| } |
| EXPAND_1_COLOR(colorCount); |
| |
| SkGradientShaderBase::Descriptor desc; |
| desc_init(&desc, colors, pos, colorCount, mode, flags, localMatrix); |
| return sk_make_sp<SkRadialGradient>(center, radius, desc); |
| } |
| |
| sk_sp<SkShader> SkGradientShader::MakeTwoPointConical(const SkPoint& start, |
| SkScalar startRadius, |
| const SkPoint& end, |
| SkScalar endRadius, |
| const SkColor colors[], |
| const SkScalar pos[], |
| int colorCount, |
| SkShader::TileMode mode, |
| uint32_t flags, |
| const SkMatrix* localMatrix) { |
| if (startRadius < 0 || endRadius < 0) { |
| return nullptr; |
| } |
| if (!valid_grad(colors, pos, colorCount, mode)) { |
| return nullptr; |
| } |
| if (startRadius == endRadius) { |
| if (start == end || startRadius == 0) { |
| return SkShader::MakeEmptyShader(); |
| } |
| } |
| |
| EXPAND_1_COLOR(colorCount); |
| |
| bool flipGradient = startRadius > endRadius; |
| |
| SkGradientShaderBase::Descriptor desc; |
| |
| if (!flipGradient) { |
| desc_init(&desc, colors, pos, colorCount, mode, flags, localMatrix); |
| return sk_make_sp<SkTwoPointConicalGradient>(start, startRadius, end, endRadius, |
| flipGradient, desc); |
| } else { |
| SkAutoSTArray<8, SkColor> colorsNew(colorCount); |
| SkAutoSTArray<8, SkScalar> posNew(colorCount); |
| for (int i = 0; i < colorCount; ++i) { |
| colorsNew[i] = colors[colorCount - i - 1]; |
| } |
| |
| if (pos) { |
| for (int i = 0; i < colorCount; ++i) { |
| posNew[i] = 1 - pos[colorCount - i - 1]; |
| } |
| desc_init(&desc, colorsNew.get(), posNew.get(), colorCount, mode, flags, localMatrix); |
| } else { |
| desc_init(&desc, colorsNew.get(), nullptr, colorCount, mode, flags, localMatrix); |
| } |
| |
| return sk_make_sp<SkTwoPointConicalGradient>(end, endRadius, start, startRadius, |
| flipGradient, desc); |
| } |
| } |
| |
| sk_sp<SkShader> SkGradientShader::MakeSweep(SkScalar cx, SkScalar cy, |
| const SkColor colors[], |
| const SkScalar pos[], |
| int colorCount, |
| uint32_t flags, |
| const SkMatrix* localMatrix) { |
| if (!valid_grad(colors, pos, colorCount, SkShader::kClamp_TileMode)) { |
| return nullptr; |
| } |
| EXPAND_1_COLOR(colorCount); |
| |
| SkGradientShaderBase::Descriptor desc; |
| desc_init(&desc, colors, pos, colorCount, SkShader::kClamp_TileMode, flags, localMatrix); |
| return sk_make_sp<SkSweepGradient>(cx, cy, desc); |
| } |
| |
| SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkGradientShader) |
| SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkLinearGradient) |
| SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkRadialGradient) |
| SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkSweepGradient) |
| SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkTwoPointConicalGradient) |
| SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #if SK_SUPPORT_GPU |
| |
| #include "effects/GrTextureStripAtlas.h" |
| #include "GrContext.h" |
| #include "GrInvariantOutput.h" |
| #include "gl/GrGLContext.h" |
| #include "glsl/GrGLSLFragmentShaderBuilder.h" |
| #include "glsl/GrGLSLProgramDataManager.h" |
| #include "glsl/GrGLSLUniformHandler.h" |
| #include "SkGr.h" |
| |
| GrGLGradientEffect::GrGLGradientEffect() |
| : fCachedYCoord(SK_ScalarMax) { |
| } |
| |
| void GrGLGradientEffect::emitUniforms(GrGLSLUniformHandler* uniformHandler, |
| const GrGradientEffect& ge) { |
| |
| if (SkGradientShaderBase::kTwo_GpuColorType == ge.getColorType()) { // 2 Color case |
| fColorStartUni = uniformHandler->addUniform(kFragment_GrShaderFlag, |
| kVec4f_GrSLType, kDefault_GrSLPrecision, |
| "GradientStartColor"); |
| fColorEndUni = uniformHandler->addUniform(kFragment_GrShaderFlag, |
| kVec4f_GrSLType, kDefault_GrSLPrecision, |
| "GradientEndColor"); |
| |
| } else if (SkGradientShaderBase::kThree_GpuColorType == ge.getColorType()) { // 3 Color Case |
| fColorStartUni = uniformHandler->addUniform(kFragment_GrShaderFlag, |
| kVec4f_GrSLType, kDefault_GrSLPrecision, |
| "GradientStartColor"); |
| fColorMidUni = uniformHandler->addUniform(kFragment_GrShaderFlag, |
| kVec4f_GrSLType, kDefault_GrSLPrecision, |
| "GradientMidColor"); |
| fColorEndUni = uniformHandler->addUniform(kFragment_GrShaderFlag, |
| kVec4f_GrSLType, kDefault_GrSLPrecision, |
| "GradientEndColor"); |
| |
| } else { // if not a fast case |
| fFSYUni = uniformHandler->addUniform(kFragment_GrShaderFlag, |
| kFloat_GrSLType, kDefault_GrSLPrecision, |
| "GradientYCoordFS"); |
| } |
| } |
| |
| static inline void set_color_uni(const GrGLSLProgramDataManager& pdman, |
| const GrGLSLProgramDataManager::UniformHandle uni, |
| const SkColor* color) { |
| pdman.set4f(uni, |
| SkColorGetR(*color) / 255.f, |
| SkColorGetG(*color) / 255.f, |
| SkColorGetB(*color) / 255.f, |
| SkColorGetA(*color) / 255.f); |
| } |
| |
| static inline void set_mul_color_uni(const GrGLSLProgramDataManager& pdman, |
| const GrGLSLProgramDataManager::UniformHandle uni, |
| const SkColor* color){ |
| float a = SkColorGetA(*color) / 255.f; |
| float aDiv255 = a / 255.f; |
| pdman.set4f(uni, |
| SkColorGetR(*color) * aDiv255, |
| SkColorGetG(*color) * aDiv255, |
| SkColorGetB(*color) * aDiv255, |
| a); |
| } |
| |
| void GrGLGradientEffect::onSetData(const GrGLSLProgramDataManager& pdman, |
| const GrProcessor& processor) { |
| |
| const GrGradientEffect& e = processor.cast<GrGradientEffect>(); |
| |
| |
| if (SkGradientShaderBase::kTwo_GpuColorType == e.getColorType()){ |
| |
| if (GrGradientEffect::kBeforeInterp_PremulType == e.getPremulType()) { |
| set_mul_color_uni(pdman, fColorStartUni, e.getColors(0)); |
| set_mul_color_uni(pdman, fColorEndUni, e.getColors(1)); |
| } else { |
| set_color_uni(pdman, fColorStartUni, e.getColors(0)); |
| set_color_uni(pdman, fColorEndUni, e.getColors(1)); |
| } |
| |
| } else if (SkGradientShaderBase::kThree_GpuColorType == e.getColorType()){ |
| |
| if (GrGradientEffect::kBeforeInterp_PremulType == e.getPremulType()) { |
| set_mul_color_uni(pdman, fColorStartUni, e.getColors(0)); |
| set_mul_color_uni(pdman, fColorMidUni, e.getColors(1)); |
| set_mul_color_uni(pdman, fColorEndUni, e.getColors(2)); |
| } else { |
| set_color_uni(pdman, fColorStartUni, e.getColors(0)); |
| set_color_uni(pdman, fColorMidUni, e.getColors(1)); |
| set_color_uni(pdman, fColorEndUni, e.getColors(2)); |
| } |
| } else { |
| |
| SkScalar yCoord = e.getYCoord(); |
| if (yCoord != fCachedYCoord) { |
| pdman.set1f(fFSYUni, yCoord); |
| fCachedYCoord = yCoord; |
| } |
| } |
| } |
| |
| |
| uint32_t GrGLGradientEffect::GenBaseGradientKey(const GrProcessor& processor) { |
| const GrGradientEffect& e = processor.cast<GrGradientEffect>(); |
| |
| uint32_t key = 0; |
| |
| if (SkGradientShaderBase::kTwo_GpuColorType == e.getColorType()) { |
| key |= kTwoColorKey; |
| } else if (SkGradientShaderBase::kThree_GpuColorType == e.getColorType()) { |
| key |= kThreeColorKey; |
| } |
| |
| if (GrGradientEffect::kBeforeInterp_PremulType == e.getPremulType()) { |
| key |= kPremulBeforeInterpKey; |
| } |
| |
| return key; |
| } |
| |
| void GrGLGradientEffect::emitColor(GrGLSLFPFragmentBuilder* fragBuilder, |
| GrGLSLUniformHandler* uniformHandler, |
| const GrGLSLCaps* glslCaps, |
| const GrGradientEffect& ge, |
| const char* gradientTValue, |
| const char* outputColor, |
| const char* inputColor, |
| const SamplerHandle* texSamplers) { |
| if (SkGradientShaderBase::kTwo_GpuColorType == ge.getColorType()){ |
| fragBuilder->codeAppendf("\tvec4 colorTemp = mix(%s, %s, clamp(%s, 0.0, 1.0));\n", |
| uniformHandler->getUniformVariable(fColorStartUni).c_str(), |
| uniformHandler->getUniformVariable(fColorEndUni).c_str(), |
| gradientTValue); |
| // Note that we could skip this step if both colors are known to be opaque. Two |
| // considerations: |
| // The gradient SkShader reporting opaque is more restrictive than necessary in the two pt |
| // case. Make sure the key reflects this optimization (and note that it can use the same |
| // shader as thekBeforeIterp case). This same optimization applies to the 3 color case |
| // below. |
| if (GrGradientEffect::kAfterInterp_PremulType == ge.getPremulType()) { |
| fragBuilder->codeAppend("\tcolorTemp.rgb *= colorTemp.a;\n"); |
| } |
| |
| fragBuilder->codeAppendf("\t%s = %s;\n", outputColor, |
| (GrGLSLExpr4(inputColor) * GrGLSLExpr4("colorTemp")).c_str()); |
| } else if (SkGradientShaderBase::kThree_GpuColorType == ge.getColorType()) { |
| fragBuilder->codeAppendf("\tfloat oneMinus2t = 1.0 - (2.0 * (%s));\n", |
| gradientTValue); |
| fragBuilder->codeAppendf("\tvec4 colorTemp = clamp(oneMinus2t, 0.0, 1.0) * %s;\n", |
| uniformHandler->getUniformVariable(fColorStartUni).c_str()); |
| if (!glslCaps->canUseMinAndAbsTogether()) { |
| // The Tegra3 compiler will sometimes never return if we have |
| // min(abs(oneMinus2t), 1.0), or do the abs first in a separate expression. |
| fragBuilder->codeAppend("\tfloat minAbs = abs(oneMinus2t);\n"); |
| fragBuilder->codeAppend("\tminAbs = minAbs > 1.0 ? 1.0 : minAbs;\n"); |
| fragBuilder->codeAppendf("\tcolorTemp += (1.0 - minAbs) * %s;\n", |
| uniformHandler->getUniformVariable(fColorMidUni).c_str()); |
| } else { |
| fragBuilder->codeAppendf("\tcolorTemp += (1.0 - min(abs(oneMinus2t), 1.0)) * %s;\n", |
| uniformHandler->getUniformVariable(fColorMidUni).c_str()); |
| } |
| fragBuilder->codeAppendf("\tcolorTemp += clamp(-oneMinus2t, 0.0, 1.0) * %s;\n", |
| uniformHandler->getUniformVariable(fColorEndUni).c_str()); |
| if (GrGradientEffect::kAfterInterp_PremulType == ge.getPremulType()) { |
| fragBuilder->codeAppend("\tcolorTemp.rgb *= colorTemp.a;\n"); |
| } |
| |
| fragBuilder->codeAppendf("\t%s = %s;\n", outputColor, |
| (GrGLSLExpr4(inputColor) * GrGLSLExpr4("colorTemp")).c_str()); |
| } else { |
| fragBuilder->codeAppendf("\tvec2 coord = vec2(%s, %s);\n", |
| gradientTValue, |
| uniformHandler->getUniformVariable(fFSYUni).c_str()); |
| fragBuilder->codeAppendf("\t%s = ", outputColor); |
| fragBuilder->appendTextureLookupAndModulate(inputColor, |
| texSamplers[0], |
| "coord"); |
| fragBuilder->codeAppend(";\n"); |
| } |
| } |
| |
| ///////////////////////////////////////////////////////////////////// |
| |
| GrGradientEffect::GrGradientEffect(GrContext* ctx, |
| const SkGradientShaderBase& shader, |
| const SkMatrix& matrix, |
| SkShader::TileMode tileMode) { |
| |
| fIsOpaque = shader.isOpaque(); |
| |
| fColorType = shader.getGpuColorType(&fColors[0]); |
| |
| // The two and three color specializations do not currently support tiling. |
| if (SkGradientShaderBase::kTwo_GpuColorType == fColorType || |
| SkGradientShaderBase::kThree_GpuColorType == fColorType) { |
| fRow = -1; |
| |
| if (SkGradientShader::kInterpolateColorsInPremul_Flag & shader.getGradFlags()) { |
| fPremulType = kBeforeInterp_PremulType; |
| } else { |
| fPremulType = kAfterInterp_PremulType; |
| } |
| fCoordTransform.reset(kCoordSet, matrix); |
| } else { |
| // doesn't matter how this is set, just be consistent because it is part of the effect key. |
| fPremulType = kBeforeInterp_PremulType; |
| SkBitmap bitmap; |
| shader.getGradientTableBitmap(&bitmap); |
| |
| GrTextureStripAtlas::Desc desc; |
| desc.fWidth = bitmap.width(); |
| desc.fHeight = 32; |
| desc.fRowHeight = bitmap.height(); |
| desc.fContext = ctx; |
| desc.fConfig = SkImageInfo2GrPixelConfig(bitmap.info(), *ctx->caps()); |
| fAtlas = GrTextureStripAtlas::GetAtlas(desc); |
| SkASSERT(fAtlas); |
| |
| // We always filter the gradient table. Each table is one row of a texture, always y-clamp. |
| GrTextureParams params; |
| params.setFilterMode(GrTextureParams::kBilerp_FilterMode); |
| params.setTileModeX(tileMode); |
| |
| fRow = fAtlas->lockRow(bitmap); |
| if (-1 != fRow) { |
| fYCoord = fAtlas->getYOffset(fRow) + SK_ScalarHalf * fAtlas->getNormalizedTexelHeight(); |
| fCoordTransform.reset(kCoordSet, matrix, fAtlas->getTexture(), params.filterMode()); |
| fTextureAccess.reset(fAtlas->getTexture(), params); |
| } else { |
| SkAutoTUnref<GrTexture> texture(GrRefCachedBitmapTexture(ctx, bitmap, params)); |
| if (!texture) { |
| return; |
| } |
| fCoordTransform.reset(kCoordSet, matrix, texture, params.filterMode()); |
| fTextureAccess.reset(texture, params); |
| fYCoord = SK_ScalarHalf; |
| } |
| this->addTextureAccess(&fTextureAccess); |
| } |
| this->addCoordTransform(&fCoordTransform); |
| } |
| |
| GrGradientEffect::~GrGradientEffect() { |
| if (this->useAtlas()) { |
| fAtlas->unlockRow(fRow); |
| } |
| } |
| |
| bool GrGradientEffect::onIsEqual(const GrFragmentProcessor& processor) const { |
| const GrGradientEffect& s = processor.cast<GrGradientEffect>(); |
| |
| if (this->fColorType == s.getColorType()){ |
| |
| if (SkGradientShaderBase::kTwo_GpuColorType == fColorType) { |
| if (*this->getColors(0) != *s.getColors(0) || |
| *this->getColors(1) != *s.getColors(1)) { |
| return false; |
| } |
| } else if (SkGradientShaderBase::kThree_GpuColorType == fColorType) { |
| if (*this->getColors(0) != *s.getColors(0) || |
| *this->getColors(1) != *s.getColors(1) || |
| *this->getColors(2) != *s.getColors(2)) { |
| return false; |
| } |
| } else { |
| if (fYCoord != s.getYCoord()) { |
| return false; |
| } |
| } |
| |
| SkASSERT(this->useAtlas() == s.useAtlas()); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void GrGradientEffect::onComputeInvariantOutput(GrInvariantOutput* inout) const { |
| if (fIsOpaque) { |
| inout->mulByUnknownOpaqueFourComponents(); |
| } else { |
| inout->mulByUnknownFourComponents(); |
| } |
| } |
| |
| int GrGradientEffect::RandomGradientParams(SkRandom* random, |
| SkColor colors[], |
| SkScalar** stops, |
| SkShader::TileMode* tm) { |
| int outColors = random->nextRangeU(1, kMaxRandomGradientColors); |
| |
| // if one color, omit stops, otherwise randomly decide whether or not to |
| if (outColors == 1 || (outColors >= 2 && random->nextBool())) { |
| *stops = nullptr; |
| } |
| |
| SkScalar stop = 0.f; |
| for (int i = 0; i < outColors; ++i) { |
| colors[i] = random->nextU(); |
| if (*stops) { |
| (*stops)[i] = stop; |
| stop = i < outColors - 1 ? stop + random->nextUScalar1() * (1.f - stop) : 1.f; |
| } |
| } |
| *tm = static_cast<SkShader::TileMode>(random->nextULessThan(SkShader::kTileModeCount)); |
| |
| return outColors; |
| } |
| |
| #endif |