blob: f1deabc5febacb4d2f688c9dae61df581f2cfc2e [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkNx_neon_DEFINED
#define SkNx_neon_DEFINED
#include <arm_neon.h>
template <>
class SkNb<2, 4> {
public:
SkNb(uint32x2_t vec) : fVec(vec) {}
SkNb() {}
bool allTrue() const { return vget_lane_u32(fVec, 0) && vget_lane_u32(fVec, 1); }
bool anyTrue() const { return vget_lane_u32(fVec, 0) || vget_lane_u32(fVec, 1); }
private:
uint32x2_t fVec;
};
template <>
class SkNb<4, 4> {
public:
SkNb(uint32x4_t vec) : fVec(vec) {}
SkNb() {}
bool allTrue() const { return vgetq_lane_u32(fVec, 0) && vgetq_lane_u32(fVec, 1)
&& vgetq_lane_u32(fVec, 2) && vgetq_lane_u32(fVec, 3); }
bool anyTrue() const { return vgetq_lane_u32(fVec, 0) || vgetq_lane_u32(fVec, 1)
|| vgetq_lane_u32(fVec, 2) || vgetq_lane_u32(fVec, 3); }
private:
uint32x4_t fVec;
};
template <>
class SkNf<2, float> {
typedef SkNb<2, 4> Nb;
public:
SkNf(float32x2_t vec) : fVec(vec) {}
SkNf() {}
explicit SkNf(float val) : fVec(vdup_n_f32(val)) {}
static SkNf Load(const float vals[2]) { return vld1_f32(vals); }
SkNf(float a, float b) { fVec = (float32x2_t) { a, b }; }
void store(float vals[2]) const { vst1_f32(vals, fVec); }
SkNf approxInvert() const {
float32x2_t est0 = vrecpe_f32(fVec),
est1 = vmul_f32(vrecps_f32(est0, fVec), est0);
return est1;
}
SkNf invert() const {
float32x2_t est1 = this->approxInvert().fVec,
est2 = vmul_f32(vrecps_f32(est1, fVec), est1);
return est2;
}
SkNf operator + (const SkNf& o) const { return vadd_f32(fVec, o.fVec); }
SkNf operator - (const SkNf& o) const { return vsub_f32(fVec, o.fVec); }
SkNf operator * (const SkNf& o) const { return vmul_f32(fVec, o.fVec); }
SkNf operator / (const SkNf& o) const {
#if defined(SK_CPU_ARM64)
return vdiv_f32(fVec, o.fVec);
#else
return vmul_f32(fVec, o.invert().fVec);
#endif
}
Nb operator == (const SkNf& o) const { return vceq_f32(fVec, o.fVec); }
Nb operator < (const SkNf& o) const { return vclt_f32(fVec, o.fVec); }
Nb operator > (const SkNf& o) const { return vcgt_f32(fVec, o.fVec); }
Nb operator <= (const SkNf& o) const { return vcle_f32(fVec, o.fVec); }
Nb operator >= (const SkNf& o) const { return vcge_f32(fVec, o.fVec); }
Nb operator != (const SkNf& o) const { return vmvn_u32(vceq_f32(fVec, o.fVec)); }
static SkNf Min(const SkNf& l, const SkNf& r) { return vmin_f32(l.fVec, r.fVec); }
static SkNf Max(const SkNf& l, const SkNf& r) { return vmax_f32(l.fVec, r.fVec); }
SkNf rsqrt0() const { return vrsqrte_f32(fVec); }
SkNf rsqrt1() const {
float32x2_t est0 = this->rsqrt0().fVec;
return vmul_f32(vrsqrts_f32(fVec, vmul_f32(est0, est0)), est0);
}
SkNf rsqrt2() const {
float32x2_t est1 = this->rsqrt1().fVec;
return vmul_f32(vrsqrts_f32(fVec, vmul_f32(est1, est1)), est1);
}
SkNf sqrt() const {
#if defined(SK_CPU_ARM64)
return vsqrt_f32(fVec);
#else
return *this * this->rsqrt2();
#endif
}
template <int k> float kth() const {
SkASSERT(0 <= k && k < 2);
return vget_lane_f32(fVec, k&1);
}
private:
float32x2_t fVec;
};
#if defined(SK_CPU_ARM64)
template <>
class SkNb<2, 8> {
public:
SkNb(uint64x2_t vec) : fVec(vec) {}
SkNb() {}
bool allTrue() const { return vgetq_lane_u64(fVec, 0) && vgetq_lane_u64(fVec, 1); }
bool anyTrue() const { return vgetq_lane_u64(fVec, 0) || vgetq_lane_u64(fVec, 1); }
private:
uint64x2_t fVec;
};
template <>
class SkNf<2, double> {
typedef SkNb<2, 8> Nb;
public:
SkNf(float64x2_t vec) : fVec(vec) {}
SkNf() {}
explicit SkNf(double val) : fVec(vdupq_n_f64(val)) {}
static SkNf Load(const double vals[2]) { return vld1q_f64(vals); }
SkNf(double a, double b) { fVec = (float64x2_t) { a, b }; }
void store(double vals[2]) const { vst1q_f64(vals, fVec); }
SkNf operator + (const SkNf& o) const { return vaddq_f64(fVec, o.fVec); }
SkNf operator - (const SkNf& o) const { return vsubq_f64(fVec, o.fVec); }
SkNf operator * (const SkNf& o) const { return vmulq_f64(fVec, o.fVec); }
SkNf operator / (const SkNf& o) const { return vdivq_f64(fVec, o.fVec); }
Nb operator == (const SkNf& o) const { return vceqq_f64(fVec, o.fVec); }
Nb operator < (const SkNf& o) const { return vcltq_f64(fVec, o.fVec); }
Nb operator > (const SkNf& o) const { return vcgtq_f64(fVec, o.fVec); }
Nb operator <= (const SkNf& o) const { return vcleq_f64(fVec, o.fVec); }
Nb operator >= (const SkNf& o) const { return vcgeq_f64(fVec, o.fVec); }
Nb operator != (const SkNf& o) const {
return vreinterpretq_u64_u32(vmvnq_u32(vreinterpretq_u32_u64(vceqq_f64(fVec, o.fVec))));
}
static SkNf Min(const SkNf& l, const SkNf& r) { return vminq_f64(l.fVec, r.fVec); }
static SkNf Max(const SkNf& l, const SkNf& r) { return vmaxq_f64(l.fVec, r.fVec); }
SkNf sqrt() const { return vsqrtq_f64(fVec); }
SkNf rsqrt0() const { return vrsqrteq_f64(fVec); }
SkNf rsqrt1() const {
float64x2_t est0 = this->rsqrt0().fVec;
return vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est0, est0)), est0);
}
SkNf rsqrt2() const {
float64x2_t est1 = this->rsqrt1().fVec;
return vmulq_f64(vrsqrtsq_f64(fVec, vmulq_f64(est1, est1)), est1);
}
SkNf approxInvert() const {
float64x2_t est0 = vrecpeq_f64(fVec),
est1 = vmulq_f64(vrecpsq_f64(est0, fVec), est0);
return est1;
}
SkNf invert() const {
float64x2_t est1 = this->approxInvert().fVec,
est2 = vmulq_f64(vrecpsq_f64(est1, fVec), est1),
est3 = vmulq_f64(vrecpsq_f64(est2, fVec), est2);
return est3;
}
template <int k> double kth() const {
SkASSERT(0 <= k && k < 2);
return vgetq_lane_f64(fVec, k&1);
}
private:
float64x2_t fVec;
};
#endif//defined(SK_CPU_ARM64)
template <>
class SkNi<4, int> {
public:
SkNi(const int32x4_t& vec) : fVec(vec) {}
SkNi() {}
explicit SkNi(int val) : fVec(vdupq_n_s32(val)) {}
static SkNi Load(const int vals[4]) { return vld1q_s32(vals); }
SkNi(int a, int b, int c, int d) { fVec = (int32x4_t) { a, b, c, d }; }
void store(int vals[4]) const { vst1q_s32(vals, fVec); }
SkNi operator + (const SkNi& o) const { return vaddq_s32(fVec, o.fVec); }
SkNi operator - (const SkNi& o) const { return vsubq_s32(fVec, o.fVec); }
SkNi operator * (const SkNi& o) const { return vmulq_s32(fVec, o.fVec); }
// Well, this is absurd. The shifts require compile-time constant arguments.
#define SHIFT(op, v, bits) switch(bits) { \
case 1: return op(v, 1); case 2: return op(v, 2); case 3: return op(v, 3); \
case 4: return op(v, 4); case 5: return op(v, 5); case 6: return op(v, 6); \
case 7: return op(v, 7); case 8: return op(v, 8); case 9: return op(v, 9); \
case 10: return op(v, 10); case 11: return op(v, 11); case 12: return op(v, 12); \
case 13: return op(v, 13); case 14: return op(v, 14); case 15: return op(v, 15); \
case 16: return op(v, 16); case 17: return op(v, 17); case 18: return op(v, 18); \
case 19: return op(v, 19); case 20: return op(v, 20); case 21: return op(v, 21); \
case 22: return op(v, 22); case 23: return op(v, 23); case 24: return op(v, 24); \
case 25: return op(v, 25); case 26: return op(v, 26); case 27: return op(v, 27); \
case 28: return op(v, 28); case 29: return op(v, 29); case 30: return op(v, 30); \
case 31: return op(v, 31); } return fVec
SkNi operator << (int bits) const { SHIFT(vshlq_n_s32, fVec, bits); }
SkNi operator >> (int bits) const { SHIFT(vshrq_n_s32, fVec, bits); }
#undef SHIFT
template <int k> int kth() const {
SkASSERT(0 <= k && k < 4);
return vgetq_lane_s32(fVec, k&3);
}
protected:
int32x4_t fVec;
};
template <>
class SkNf<4, float> {
typedef SkNb<4, 4> Nb;
public:
SkNf(float32x4_t vec) : fVec(vec) {}
SkNf() {}
explicit SkNf(float val) : fVec(vdupq_n_f32(val)) {}
static SkNf Load(const float vals[4]) { return vld1q_f32(vals); }
SkNf(float a, float b, float c, float d) { fVec = (float32x4_t) { a, b, c, d }; }
void store(float vals[4]) const { vst1q_f32(vals, fVec); }
SkNi<4, int> castTrunc() const { return vcvtq_s32_f32(fVec); }
SkNf approxInvert() const {
float32x4_t est0 = vrecpeq_f32(fVec),
est1 = vmulq_f32(vrecpsq_f32(est0, fVec), est0);
return est1;
}
SkNf invert() const {
float32x4_t est1 = this->approxInvert().fVec,
est2 = vmulq_f32(vrecpsq_f32(est1, fVec), est1);
return est2;
}
SkNf operator + (const SkNf& o) const { return vaddq_f32(fVec, o.fVec); }
SkNf operator - (const SkNf& o) const { return vsubq_f32(fVec, o.fVec); }
SkNf operator * (const SkNf& o) const { return vmulq_f32(fVec, o.fVec); }
SkNf operator / (const SkNf& o) const {
#if defined(SK_CPU_ARM64)
return vdivq_f32(fVec, o.fVec);
#else
return vmulq_f32(fVec, o.invert().fVec);
#endif
}
Nb operator == (const SkNf& o) const { return vceqq_f32(fVec, o.fVec); }
Nb operator < (const SkNf& o) const { return vcltq_f32(fVec, o.fVec); }
Nb operator > (const SkNf& o) const { return vcgtq_f32(fVec, o.fVec); }
Nb operator <= (const SkNf& o) const { return vcleq_f32(fVec, o.fVec); }
Nb operator >= (const SkNf& o) const { return vcgeq_f32(fVec, o.fVec); }
Nb operator != (const SkNf& o) const { return vmvnq_u32(vceqq_f32(fVec, o.fVec)); }
static SkNf Min(const SkNf& l, const SkNf& r) { return vminq_f32(l.fVec, r.fVec); }
static SkNf Max(const SkNf& l, const SkNf& r) { return vmaxq_f32(l.fVec, r.fVec); }
SkNf rsqrt0() const { return vrsqrteq_f32(fVec); }
SkNf rsqrt1() const {
float32x4_t est0 = this->rsqrt0().fVec;
return vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est0, est0)), est0);
}
SkNf rsqrt2() const {
float32x4_t est1 = this->rsqrt1().fVec;
return vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est1, est1)), est1);
}
SkNf sqrt() const {
#if defined(SK_CPU_ARM64)
return vsqrtq_f32(fVec);
#else
return *this * this->rsqrt2();
#endif
}
template <int k> float kth() const {
SkASSERT(0 <= k && k < 4);
return vgetq_lane_f32(fVec, k&3);
}
protected:
float32x4_t fVec;
};
#endif//SkNx_neon_DEFINED