blob: 692530828f6bd8ef9d84f854dd689b727f41f1f5 [file] [log] [blame]
/*
* Copyright 2018 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkRasterPipeline_opts_DEFINED
#define SkRasterPipeline_opts_DEFINED
#include "include/core/SkTypes.h"
#include "src/core/SkUtils.h" // unaligned_{load,store}
#include "src/sksl/SkSLByteCode.h"
// Every function in this file should be marked static and inline using SI.
#if defined(__clang__)
#define SI __attribute__((always_inline)) static inline
#else
#define SI static inline
#endif
template <typename Dst, typename Src>
SI Dst bit_cast(const Src& src) {
static_assert(sizeof(Dst) == sizeof(Src), "");
return sk_unaligned_load<Dst>(&src);
}
template <typename Dst, typename Src>
SI Dst widen_cast(const Src& src) {
static_assert(sizeof(Dst) > sizeof(Src), "");
Dst dst;
memcpy(&dst, &src, sizeof(Src));
return dst;
}
// Our program is an array of void*, either
// - 1 void* per stage with no context pointer, the next stage;
// - 2 void* per stage with a context pointer, first the context pointer, then the next stage.
// load_and_inc() steps the program forward by 1 void*, returning that pointer.
SI void* load_and_inc(void**& program) {
#if defined(__GNUC__) && defined(__x86_64__)
// If program is in %rsi (we try to make this likely) then this is a single instruction.
void* rax;
asm("lodsq" : "=a"(rax), "+S"(program)); // Write-only %rax, read-write %rsi.
return rax;
#else
// On ARM *program++ compiles into pretty ideal code without any handholding.
return *program++;
#endif
}
// Lazily resolved on first cast. Does nothing if cast to Ctx::None.
struct Ctx {
struct None {};
void* ptr;
void**& program;
explicit Ctx(void**& p) : ptr(nullptr), program(p) {}
template <typename T>
operator T*() {
if (!ptr) { ptr = load_and_inc(program); }
return (T*)ptr;
}
operator None() { return None{}; }
};
#if !defined(__clang__)
#define JUMPER_IS_SCALAR
#elif defined(SK_ARM_HAS_NEON)
#define JUMPER_IS_NEON
#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX512
#define JUMPER_IS_AVX512
#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2
#define JUMPER_IS_HSW
#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX
#define JUMPER_IS_AVX
#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41
#define JUMPER_IS_SSE41
#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2
#define JUMPER_IS_SSE2
#else
#define JUMPER_IS_SCALAR
#endif
// Older Clangs seem to crash when generating non-optimized NEON code for ARMv7.
#if defined(__clang__) && !defined(__OPTIMIZE__) && defined(SK_CPU_ARM32)
// Apple Clang 9 and vanilla Clang 5 are fine, and may even be conservative.
#if defined(__apple_build_version__) && __clang_major__ < 9
#define JUMPER_IS_SCALAR
#elif __clang_major__ < 5
#define JUMPER_IS_SCALAR
#endif
#if defined(JUMPER_IS_NEON) && defined(JUMPER_IS_SCALAR)
#undef JUMPER_IS_NEON
#endif
#endif
#if defined(JUMPER_IS_SCALAR)
#include <math.h>
#elif defined(JUMPER_IS_NEON)
#include <arm_neon.h>
#else
#include <immintrin.h>
#endif
namespace SK_OPTS_NS {
#if defined(JUMPER_IS_SCALAR)
// This path should lead to portable scalar code.
using F = float ;
using I32 = int32_t;
using U64 = uint64_t;
using U32 = uint32_t;
using U16 = uint16_t;
using U8 = uint8_t ;
SI F mad(F f, F m, F a) { return f*m+a; }
SI F min(F a, F b) { return fminf(a,b); }
SI F max(F a, F b) { return fmaxf(a,b); }
SI F abs_ (F v) { return fabsf(v); }
SI F floor_(F v) { return floorf(v); }
SI F rcp (F v) { return 1.0f / v; }
SI F rsqrt (F v) { return 1.0f / sqrtf(v); }
SI F sqrt_(F v) { return sqrtf(v); }
SI U32 round (F v, F scale) { return (uint32_t)(v*scale + 0.5f); }
SI U16 pack(U32 v) { return (U16)v; }
SI U8 pack(U16 v) { return (U8)v; }
SI F if_then_else(I32 c, F t, F e) { return c ? t : e; }
template <typename T>
SI T gather(const T* p, U32 ix) { return p[ix]; }
SI void load2(const uint16_t* ptr, size_t tail, U16* r, U16* g) {
*r = ptr[0];
*g = ptr[1];
}
SI void store2(uint16_t* ptr, size_t tail, U16 r, U16 g) {
ptr[0] = r;
ptr[1] = g;
}
SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
*r = ptr[0];
*g = ptr[1];
*b = ptr[2];
}
SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
*r = ptr[0];
*g = ptr[1];
*b = ptr[2];
*a = ptr[3];
}
SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
ptr[0] = r;
ptr[1] = g;
ptr[2] = b;
ptr[3] = a;
}
SI void load2(const float* ptr, size_t tail, F* r, F* g) {
*r = ptr[0];
*g = ptr[1];
}
SI void store2(float* ptr, size_t tail, F r, F g) {
ptr[0] = r;
ptr[1] = g;
}
SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) {
*r = ptr[0];
*g = ptr[1];
*b = ptr[2];
*a = ptr[3];
}
SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) {
ptr[0] = r;
ptr[1] = g;
ptr[2] = b;
ptr[3] = a;
}
#elif defined(JUMPER_IS_NEON)
// Since we know we're using Clang, we can use its vector extensions.
template <typename T> using V = T __attribute__((ext_vector_type(4)));
using F = V<float >;
using I32 = V< int32_t>;
using U64 = V<uint64_t>;
using U32 = V<uint32_t>;
using U16 = V<uint16_t>;
using U8 = V<uint8_t >;
// We polyfill a few routines that Clang doesn't build into ext_vector_types.
SI F min(F a, F b) { return vminq_f32(a,b); }
SI F max(F a, F b) { return vmaxq_f32(a,b); }
SI F abs_ (F v) { return vabsq_f32(v); }
SI F rcp (F v) { auto e = vrecpeq_f32 (v); return vrecpsq_f32 (v,e ) * e; }
SI F rsqrt (F v) { auto e = vrsqrteq_f32(v); return vrsqrtsq_f32(v,e*e) * e; }
SI U16 pack(U32 v) { return __builtin_convertvector(v, U16); }
SI U8 pack(U16 v) { return __builtin_convertvector(v, U8); }
SI F if_then_else(I32 c, F t, F e) { return vbslq_f32((U32)c,t,e); }
#if defined(SK_CPU_ARM64)
SI F mad(F f, F m, F a) { return vfmaq_f32(a,f,m); }
SI F floor_(F v) { return vrndmq_f32(v); }
SI F sqrt_(F v) { return vsqrtq_f32(v); }
SI U32 round(F v, F scale) { return vcvtnq_u32_f32(v*scale); }
#else
SI F mad(F f, F m, F a) { return vmlaq_f32(a,f,m); }
SI F floor_(F v) {
F roundtrip = vcvtq_f32_s32(vcvtq_s32_f32(v));
return roundtrip - if_then_else(roundtrip > v, 1, 0);
}
SI F sqrt_(F v) {
auto e = vrsqrteq_f32(v); // Estimate and two refinement steps for e = rsqrt(v).
e *= vrsqrtsq_f32(v,e*e);
e *= vrsqrtsq_f32(v,e*e);
return v*e; // sqrt(v) == v*rsqrt(v).
}
SI U32 round(F v, F scale) {
return vcvtq_u32_f32(mad(v,scale,0.5f));
}
#endif
template <typename T>
SI V<T> gather(const T* p, U32 ix) {
return {p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]};
}
SI void load2(const uint16_t* ptr, size_t tail, U16* r, U16* g) {
uint16x4x2_t rg;
if (__builtin_expect(tail,0)) {
if ( true ) { rg = vld2_lane_u16(ptr + 0, rg, 0); }
if (tail > 1) { rg = vld2_lane_u16(ptr + 2, rg, 1); }
if (tail > 2) { rg = vld2_lane_u16(ptr + 4, rg, 2); }
} else {
rg = vld2_u16(ptr);
}
*r = rg.val[0];
*g = rg.val[1];
}
SI void store2(uint16_t* ptr, size_t tail, U16 r, U16 g) {
if (__builtin_expect(tail,0)) {
if ( true ) { vst2_lane_u16(ptr + 0, (uint16x4x2_t{{r,g}}), 0); }
if (tail > 1) { vst2_lane_u16(ptr + 2, (uint16x4x2_t{{r,g}}), 1); }
if (tail > 2) { vst2_lane_u16(ptr + 4, (uint16x4x2_t{{r,g}}), 2); }
} else {
vst2_u16(ptr, (uint16x4x2_t{{r,g}}));
}
}
SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
uint16x4x3_t rgb;
if (__builtin_expect(tail,0)) {
if ( true ) { rgb = vld3_lane_u16(ptr + 0, rgb, 0); }
if (tail > 1) { rgb = vld3_lane_u16(ptr + 3, rgb, 1); }
if (tail > 2) { rgb = vld3_lane_u16(ptr + 6, rgb, 2); }
} else {
rgb = vld3_u16(ptr);
}
*r = rgb.val[0];
*g = rgb.val[1];
*b = rgb.val[2];
}
SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
uint16x4x4_t rgba;
if (__builtin_expect(tail,0)) {
if ( true ) { rgba = vld4_lane_u16(ptr + 0, rgba, 0); }
if (tail > 1) { rgba = vld4_lane_u16(ptr + 4, rgba, 1); }
if (tail > 2) { rgba = vld4_lane_u16(ptr + 8, rgba, 2); }
} else {
rgba = vld4_u16(ptr);
}
*r = rgba.val[0];
*g = rgba.val[1];
*b = rgba.val[2];
*a = rgba.val[3];
}
SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
if (__builtin_expect(tail,0)) {
if ( true ) { vst4_lane_u16(ptr + 0, (uint16x4x4_t{{r,g,b,a}}), 0); }
if (tail > 1) { vst4_lane_u16(ptr + 4, (uint16x4x4_t{{r,g,b,a}}), 1); }
if (tail > 2) { vst4_lane_u16(ptr + 8, (uint16x4x4_t{{r,g,b,a}}), 2); }
} else {
vst4_u16(ptr, (uint16x4x4_t{{r,g,b,a}}));
}
}
SI void load2(const float* ptr, size_t tail, F* r, F* g) {
float32x4x2_t rg;
if (__builtin_expect(tail,0)) {
if ( true ) { rg = vld2q_lane_f32(ptr + 0, rg, 0); }
if (tail > 1) { rg = vld2q_lane_f32(ptr + 2, rg, 1); }
if (tail > 2) { rg = vld2q_lane_f32(ptr + 4, rg, 2); }
} else {
rg = vld2q_f32(ptr);
}
*r = rg.val[0];
*g = rg.val[1];
}
SI void store2(float* ptr, size_t tail, F r, F g) {
if (__builtin_expect(tail,0)) {
if ( true ) { vst2q_lane_f32(ptr + 0, (float32x4x2_t{{r,g}}), 0); }
if (tail > 1) { vst2q_lane_f32(ptr + 2, (float32x4x2_t{{r,g}}), 1); }
if (tail > 2) { vst2q_lane_f32(ptr + 4, (float32x4x2_t{{r,g}}), 2); }
} else {
vst2q_f32(ptr, (float32x4x2_t{{r,g}}));
}
}
SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) {
float32x4x4_t rgba;
if (__builtin_expect(tail,0)) {
if ( true ) { rgba = vld4q_lane_f32(ptr + 0, rgba, 0); }
if (tail > 1) { rgba = vld4q_lane_f32(ptr + 4, rgba, 1); }
if (tail > 2) { rgba = vld4q_lane_f32(ptr + 8, rgba, 2); }
} else {
rgba = vld4q_f32(ptr);
}
*r = rgba.val[0];
*g = rgba.val[1];
*b = rgba.val[2];
*a = rgba.val[3];
}
SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) {
if (__builtin_expect(tail,0)) {
if ( true ) { vst4q_lane_f32(ptr + 0, (float32x4x4_t{{r,g,b,a}}), 0); }
if (tail > 1) { vst4q_lane_f32(ptr + 4, (float32x4x4_t{{r,g,b,a}}), 1); }
if (tail > 2) { vst4q_lane_f32(ptr + 8, (float32x4x4_t{{r,g,b,a}}), 2); }
} else {
vst4q_f32(ptr, (float32x4x4_t{{r,g,b,a}}));
}
}
#elif defined(JUMPER_IS_AVX) || defined(JUMPER_IS_HSW) || defined(JUMPER_IS_AVX512)
// These are __m256 and __m256i, but friendlier and strongly-typed.
template <typename T> using V = T __attribute__((ext_vector_type(8)));
using F = V<float >;
using I32 = V< int32_t>;
using U64 = V<uint64_t>;
using U32 = V<uint32_t>;
using U16 = V<uint16_t>;
using U8 = V<uint8_t >;
SI F mad(F f, F m, F a) {
#if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_AVX512)
return _mm256_fmadd_ps(f,m,a);
#else
return f*m+a;
#endif
}
SI F min(F a, F b) { return _mm256_min_ps(a,b); }
SI F max(F a, F b) { return _mm256_max_ps(a,b); }
SI F abs_ (F v) { return _mm256_and_ps(v, 0-v); }
SI F floor_(F v) { return _mm256_floor_ps(v); }
SI F rcp (F v) { return _mm256_rcp_ps (v); }
SI F rsqrt (F v) { return _mm256_rsqrt_ps(v); }
SI F sqrt_(F v) { return _mm256_sqrt_ps (v); }
SI U32 round (F v, F scale) { return _mm256_cvtps_epi32(v*scale); }
SI U16 pack(U32 v) {
return _mm_packus_epi32(_mm256_extractf128_si256(v, 0),
_mm256_extractf128_si256(v, 1));
}
SI U8 pack(U16 v) {
auto r = _mm_packus_epi16(v,v);
return sk_unaligned_load<U8>(&r);
}
SI F if_then_else(I32 c, F t, F e) { return _mm256_blendv_ps(e,t,c); }
template <typename T>
SI V<T> gather(const T* p, U32 ix) {
return { p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]],
p[ix[4]], p[ix[5]], p[ix[6]], p[ix[7]], };
}
#if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_AVX512)
SI F gather(const float* p, U32 ix) { return _mm256_i32gather_ps (p, ix, 4); }
SI U32 gather(const uint32_t* p, U32 ix) { return _mm256_i32gather_epi32(p, ix, 4); }
SI U64 gather(const uint64_t* p, U32 ix) {
__m256i parts[] = {
_mm256_i32gather_epi64(p, _mm256_extracti128_si256(ix,0), 8),
_mm256_i32gather_epi64(p, _mm256_extracti128_si256(ix,1), 8),
};
return bit_cast<U64>(parts);
}
#endif
SI void load2(const uint16_t* ptr, size_t tail, U16* r, U16* g) {
U16 _0123, _4567;
if (__builtin_expect(tail,0)) {
_0123 = _4567 = _mm_setzero_si128();
auto* d = &_0123;
if (tail > 3) {
*d = _mm_loadu_si128(((__m128i*)ptr) + 0);
tail -= 4;
ptr += 8;
d = &_4567;
}
bool high = false;
if (tail > 1) {
*d = _mm_loadu_si64(ptr);
tail -= 2;
ptr += 4;
high = true;
}
if (tail > 0) {
(*d)[high ? 4 : 0] = *(ptr + 0);
(*d)[high ? 5 : 1] = *(ptr + 1);
}
} else {
_0123 = _mm_loadu_si128(((__m128i*)ptr) + 0);
_4567 = _mm_loadu_si128(((__m128i*)ptr) + 1);
}
*r = _mm_packs_epi32(_mm_srai_epi32(_mm_slli_epi32(_0123, 16), 16),
_mm_srai_epi32(_mm_slli_epi32(_4567, 16), 16));
*g = _mm_packs_epi32(_mm_srai_epi32(_0123, 16),
_mm_srai_epi32(_4567, 16));
}
SI void store2(uint16_t* ptr, size_t tail, U16 r, U16 g) {
auto _0123 = _mm_unpacklo_epi16(r, g),
_4567 = _mm_unpackhi_epi16(r, g);
if (__builtin_expect(tail,0)) {
const auto* s = &_0123;
if (tail > 3) {
_mm_storeu_si128((__m128i*)ptr, *s);
s = &_4567;
tail -= 4;
ptr += 8;
}
bool high = false;
if (tail > 1) {
_mm_storel_epi64((__m128i*)ptr, *s);
ptr += 4;
tail -= 2;
high = true;
}
if (tail > 0) {
if (high) {
*(int32_t*)ptr = _mm_extract_epi32(*s, 2);
} else {
*(int32_t*)ptr = _mm_cvtsi128_si32(*s);
}
}
} else {
_mm_storeu_si128((__m128i*)ptr + 0, _0123);
_mm_storeu_si128((__m128i*)ptr + 1, _4567);
}
}
SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
__m128i _0,_1,_2,_3,_4,_5,_6,_7;
if (__builtin_expect(tail,0)) {
auto load_rgb = [](const uint16_t* src) {
auto v = _mm_cvtsi32_si128(*(const uint32_t*)src);
return _mm_insert_epi16(v, src[2], 2);
};
_1 = _2 = _3 = _4 = _5 = _6 = _7 = _mm_setzero_si128();
if ( true ) { _0 = load_rgb(ptr + 0); }
if (tail > 1) { _1 = load_rgb(ptr + 3); }
if (tail > 2) { _2 = load_rgb(ptr + 6); }
if (tail > 3) { _3 = load_rgb(ptr + 9); }
if (tail > 4) { _4 = load_rgb(ptr + 12); }
if (tail > 5) { _5 = load_rgb(ptr + 15); }
if (tail > 6) { _6 = load_rgb(ptr + 18); }
} else {
// Load 0+1, 2+3, 4+5 normally, and 6+7 backed up 4 bytes so we don't run over.
auto _01 = _mm_loadu_si128((const __m128i*)(ptr + 0)) ;
auto _23 = _mm_loadu_si128((const __m128i*)(ptr + 6)) ;
auto _45 = _mm_loadu_si128((const __m128i*)(ptr + 12)) ;
auto _67 = _mm_srli_si128(_mm_loadu_si128((const __m128i*)(ptr + 16)), 4);
_0 = _01; _1 = _mm_srli_si128(_01, 6);
_2 = _23; _3 = _mm_srli_si128(_23, 6);
_4 = _45; _5 = _mm_srli_si128(_45, 6);
_6 = _67; _7 = _mm_srli_si128(_67, 6);
}
auto _02 = _mm_unpacklo_epi16(_0, _2), // r0 r2 g0 g2 b0 b2 xx xx
_13 = _mm_unpacklo_epi16(_1, _3),
_46 = _mm_unpacklo_epi16(_4, _6),
_57 = _mm_unpacklo_epi16(_5, _7);
auto rg0123 = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3
bx0123 = _mm_unpackhi_epi16(_02, _13), // b0 b1 b2 b3 xx xx xx xx
rg4567 = _mm_unpacklo_epi16(_46, _57),
bx4567 = _mm_unpackhi_epi16(_46, _57);
*r = _mm_unpacklo_epi64(rg0123, rg4567);
*g = _mm_unpackhi_epi64(rg0123, rg4567);
*b = _mm_unpacklo_epi64(bx0123, bx4567);
}
SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
__m128i _01, _23, _45, _67;
if (__builtin_expect(tail,0)) {
auto src = (const double*)ptr;
_01 = _23 = _45 = _67 = _mm_setzero_si128();
if (tail > 0) { _01 = _mm_loadl_pd(_01, src+0); }
if (tail > 1) { _01 = _mm_loadh_pd(_01, src+1); }
if (tail > 2) { _23 = _mm_loadl_pd(_23, src+2); }
if (tail > 3) { _23 = _mm_loadh_pd(_23, src+3); }
if (tail > 4) { _45 = _mm_loadl_pd(_45, src+4); }
if (tail > 5) { _45 = _mm_loadh_pd(_45, src+5); }
if (tail > 6) { _67 = _mm_loadl_pd(_67, src+6); }
} else {
_01 = _mm_loadu_si128(((__m128i*)ptr) + 0);
_23 = _mm_loadu_si128(((__m128i*)ptr) + 1);
_45 = _mm_loadu_si128(((__m128i*)ptr) + 2);
_67 = _mm_loadu_si128(((__m128i*)ptr) + 3);
}
auto _02 = _mm_unpacklo_epi16(_01, _23), // r0 r2 g0 g2 b0 b2 a0 a2
_13 = _mm_unpackhi_epi16(_01, _23), // r1 r3 g1 g3 b1 b3 a1 a3
_46 = _mm_unpacklo_epi16(_45, _67),
_57 = _mm_unpackhi_epi16(_45, _67);
auto rg0123 = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3
ba0123 = _mm_unpackhi_epi16(_02, _13), // b0 b1 b2 b3 a0 a1 a2 a3
rg4567 = _mm_unpacklo_epi16(_46, _57),
ba4567 = _mm_unpackhi_epi16(_46, _57);
*r = _mm_unpacklo_epi64(rg0123, rg4567);
*g = _mm_unpackhi_epi64(rg0123, rg4567);
*b = _mm_unpacklo_epi64(ba0123, ba4567);
*a = _mm_unpackhi_epi64(ba0123, ba4567);
}
SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
auto rg0123 = _mm_unpacklo_epi16(r, g), // r0 g0 r1 g1 r2 g2 r3 g3
rg4567 = _mm_unpackhi_epi16(r, g), // r4 g4 r5 g5 r6 g6 r7 g7
ba0123 = _mm_unpacklo_epi16(b, a),
ba4567 = _mm_unpackhi_epi16(b, a);
auto _01 = _mm_unpacklo_epi32(rg0123, ba0123),
_23 = _mm_unpackhi_epi32(rg0123, ba0123),
_45 = _mm_unpacklo_epi32(rg4567, ba4567),
_67 = _mm_unpackhi_epi32(rg4567, ba4567);
if (__builtin_expect(tail,0)) {
auto dst = (double*)ptr;
if (tail > 0) { _mm_storel_pd(dst+0, _01); }
if (tail > 1) { _mm_storeh_pd(dst+1, _01); }
if (tail > 2) { _mm_storel_pd(dst+2, _23); }
if (tail > 3) { _mm_storeh_pd(dst+3, _23); }
if (tail > 4) { _mm_storel_pd(dst+4, _45); }
if (tail > 5) { _mm_storeh_pd(dst+5, _45); }
if (tail > 6) { _mm_storel_pd(dst+6, _67); }
} else {
_mm_storeu_si128((__m128i*)ptr + 0, _01);
_mm_storeu_si128((__m128i*)ptr + 1, _23);
_mm_storeu_si128((__m128i*)ptr + 2, _45);
_mm_storeu_si128((__m128i*)ptr + 3, _67);
}
}
SI void load2(const float* ptr, size_t tail, F* r, F* g) {
F _0123, _4567;
if (__builtin_expect(tail, 0)) {
_0123 = _4567 = _mm256_setzero_ps();
F* d = &_0123;
if (tail > 3) {
*d = _mm256_loadu_ps(ptr);
ptr += 8;
tail -= 4;
d = &_4567;
}
bool high = false;
if (tail > 1) {
*d = _mm256_castps128_ps256(_mm_loadu_ps(ptr));
ptr += 4;
tail -= 2;
high = true;
}
if (tail > 0) {
*d = high ? _mm256_insertf128_ps(*d, _mm_loadu_si64(ptr), 1)
: _mm256_insertf128_ps(*d, _mm_loadu_si64(ptr), 0);
}
} else {
_0123 = _mm256_loadu_ps(ptr + 0);
_4567 = _mm256_loadu_ps(ptr + 8);
}
F _0145 = _mm256_permute2f128_pd(_0123, _4567, 0x20),
_2367 = _mm256_permute2f128_pd(_0123, _4567, 0x31);
*r = _mm256_shuffle_ps(_0145, _2367, 0x88);
*g = _mm256_shuffle_ps(_0145, _2367, 0xDD);
}
SI void store2(float* ptr, size_t tail, F r, F g) {
F _0145 = _mm256_unpacklo_ps(r, g),
_2367 = _mm256_unpackhi_ps(r, g);
F _0123 = _mm256_permute2f128_pd(_0145, _2367, 0x20),
_4567 = _mm256_permute2f128_pd(_0145, _2367, 0x31);
if (__builtin_expect(tail, 0)) {
const __m256* s = &_0123;
if (tail > 3) {
_mm256_storeu_ps(ptr, *s);
s = &_4567;
tail -= 4;
ptr += 8;
}
bool high = false;
if (tail > 1) {
_mm_storeu_ps(ptr, _mm256_extractf128_ps(*s, 0));
ptr += 4;
tail -= 2;
high = true;
}
if (tail > 0) {
*(ptr + 0) = (*s)[ high ? 4 : 0];
*(ptr + 1) = (*s)[ high ? 5 : 1];
}
} else {
_mm256_storeu_ps(ptr + 0, _0123);
_mm256_storeu_ps(ptr + 8, _4567);
}
}
SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) {
F _04, _15, _26, _37;
_04 = _15 = _26 = _37 = 0;
switch (tail) {
case 0: _37 = _mm256_insertf128_ps(_37, _mm_loadu_ps(ptr+28), 1);
case 7: _26 = _mm256_insertf128_ps(_26, _mm_loadu_ps(ptr+24), 1);
case 6: _15 = _mm256_insertf128_ps(_15, _mm_loadu_ps(ptr+20), 1);
case 5: _04 = _mm256_insertf128_ps(_04, _mm_loadu_ps(ptr+16), 1);
case 4: _37 = _mm256_insertf128_ps(_37, _mm_loadu_ps(ptr+12), 0);
case 3: _26 = _mm256_insertf128_ps(_26, _mm_loadu_ps(ptr+ 8), 0);
case 2: _15 = _mm256_insertf128_ps(_15, _mm_loadu_ps(ptr+ 4), 0);
case 1: _04 = _mm256_insertf128_ps(_04, _mm_loadu_ps(ptr+ 0), 0);
}
F rg0145 = _mm256_unpacklo_ps(_04,_15), // r0 r1 g0 g1 | r4 r5 g4 g5
ba0145 = _mm256_unpackhi_ps(_04,_15),
rg2367 = _mm256_unpacklo_ps(_26,_37),
ba2367 = _mm256_unpackhi_ps(_26,_37);
*r = _mm256_unpacklo_pd(rg0145, rg2367);
*g = _mm256_unpackhi_pd(rg0145, rg2367);
*b = _mm256_unpacklo_pd(ba0145, ba2367);
*a = _mm256_unpackhi_pd(ba0145, ba2367);
}
SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) {
F rg0145 = _mm256_unpacklo_ps(r, g), // r0 g0 r1 g1 | r4 g4 r5 g5
rg2367 = _mm256_unpackhi_ps(r, g), // r2 ... | r6 ...
ba0145 = _mm256_unpacklo_ps(b, a), // b0 a0 b1 a1 | b4 a4 b5 a5
ba2367 = _mm256_unpackhi_ps(b, a); // b2 ... | b6 ...
F _04 = _mm256_unpacklo_pd(rg0145, ba0145), // r0 g0 b0 a0 | r4 g4 b4 a4
_15 = _mm256_unpackhi_pd(rg0145, ba0145), // r1 ... | r5 ...
_26 = _mm256_unpacklo_pd(rg2367, ba2367), // r2 ... | r6 ...
_37 = _mm256_unpackhi_pd(rg2367, ba2367); // r3 ... | r7 ...
if (__builtin_expect(tail, 0)) {
if (tail > 0) { _mm_storeu_ps(ptr+ 0, _mm256_extractf128_ps(_04, 0)); }
if (tail > 1) { _mm_storeu_ps(ptr+ 4, _mm256_extractf128_ps(_15, 0)); }
if (tail > 2) { _mm_storeu_ps(ptr+ 8, _mm256_extractf128_ps(_26, 0)); }
if (tail > 3) { _mm_storeu_ps(ptr+12, _mm256_extractf128_ps(_37, 0)); }
if (tail > 4) { _mm_storeu_ps(ptr+16, _mm256_extractf128_ps(_04, 1)); }
if (tail > 5) { _mm_storeu_ps(ptr+20, _mm256_extractf128_ps(_15, 1)); }
if (tail > 6) { _mm_storeu_ps(ptr+24, _mm256_extractf128_ps(_26, 1)); }
} else {
F _01 = _mm256_permute2f128_ps(_04, _15, 32), // 32 == 0010 0000 == lo, lo
_23 = _mm256_permute2f128_ps(_26, _37, 32),
_45 = _mm256_permute2f128_ps(_04, _15, 49), // 49 == 0011 0001 == hi, hi
_67 = _mm256_permute2f128_ps(_26, _37, 49);
_mm256_storeu_ps(ptr+ 0, _01);
_mm256_storeu_ps(ptr+ 8, _23);
_mm256_storeu_ps(ptr+16, _45);
_mm256_storeu_ps(ptr+24, _67);
}
}
#elif defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41)
template <typename T> using V = T __attribute__((ext_vector_type(4)));
using F = V<float >;
using I32 = V< int32_t>;
using U64 = V<uint64_t>;
using U32 = V<uint32_t>;
using U16 = V<uint16_t>;
using U8 = V<uint8_t >;
SI F mad(F f, F m, F a) { return f*m+a; }
SI F min(F a, F b) { return _mm_min_ps(a,b); }
SI F max(F a, F b) { return _mm_max_ps(a,b); }
SI F abs_(F v) { return _mm_and_ps(v, 0-v); }
SI F rcp (F v) { return _mm_rcp_ps (v); }
SI F rsqrt (F v) { return _mm_rsqrt_ps(v); }
SI F sqrt_(F v) { return _mm_sqrt_ps (v); }
SI U32 round(F v, F scale) { return _mm_cvtps_epi32(v*scale); }
SI U16 pack(U32 v) {
#if defined(JUMPER_IS_SSE41)
auto p = _mm_packus_epi32(v,v);
#else
// Sign extend so that _mm_packs_epi32() does the pack we want.
auto p = _mm_srai_epi32(_mm_slli_epi32(v, 16), 16);
p = _mm_packs_epi32(p,p);
#endif
return sk_unaligned_load<U16>(&p); // We have two copies. Return (the lower) one.
}
SI U8 pack(U16 v) {
auto r = widen_cast<__m128i>(v);
r = _mm_packus_epi16(r,r);
return sk_unaligned_load<U8>(&r);
}
SI F if_then_else(I32 c, F t, F e) {
return _mm_or_ps(_mm_and_ps(c, t), _mm_andnot_ps(c, e));
}
SI F floor_(F v) {
#if defined(JUMPER_IS_SSE41)
return _mm_floor_ps(v);
#else
F roundtrip = _mm_cvtepi32_ps(_mm_cvttps_epi32(v));
return roundtrip - if_then_else(roundtrip > v, 1, 0);
#endif
}
template <typename T>
SI V<T> gather(const T* p, U32 ix) {
return {p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]};
}
// TODO: these loads and stores are incredibly difficult to follow.
SI void load2(const uint16_t* ptr, size_t tail, U16* r, U16* g) {
__m128i _01;
if (__builtin_expect(tail,0)) {
_01 = _mm_setzero_si128();
if (tail > 1) {
_01 = _mm_loadl_pd(_01, (const double*)ptr); // r0 g0 r1 g1 00 00 00 00
if (tail > 2) {
_01 = _mm_insert_epi16(_01, *(ptr+4), 4); // r0 g0 r1 g1 r2 00 00 00
_01 = _mm_insert_epi16(_01, *(ptr+5), 5); // r0 g0 r1 g1 r2 g2 00 00
}
} else {
_01 = _mm_cvtsi32_si128(*(const uint32_t*)ptr); // r0 g0 00 00 00 00 00 00
}
} else {
_01 = _mm_loadu_si128(((__m128i*)ptr) + 0); // r0 g0 r1 g1 r2 g2 r3 g3
}
auto rg01_23 = _mm_shufflelo_epi16(_01, 0xD8); // r0 r1 g0 g1 r2 g2 r3 g3
auto rg = _mm_shufflehi_epi16(rg01_23, 0xD8); // r0 r1 g0 g1 r2 r3 g2 g3
auto R = _mm_shuffle_epi32(rg, 0x88); // r0 r1 r2 r3 r0 r1 r2 r3
auto G = _mm_shuffle_epi32(rg, 0xDD); // g0 g1 g2 g3 g0 g1 g2 g3
*r = sk_unaligned_load<U16>(&R);
*g = sk_unaligned_load<U16>(&G);
}
SI void store2(uint16_t* ptr, size_t tail, U16 r, U16 g) {
U32 rg = _mm_unpacklo_epi16(widen_cast<__m128i>(r), widen_cast<__m128i>(g));
if (__builtin_expect(tail, 0)) {
if (tail > 1) {
_mm_storel_epi64((__m128i*)ptr, rg);
if (tail > 2) {
int32_t rgpair = rg[2];
memcpy(ptr + 4, &rgpair, sizeof(rgpair));
}
} else {
int32_t rgpair = rg[0];
memcpy(ptr, &rgpair, sizeof(rgpair));
}
} else {
_mm_storeu_si128((__m128i*)ptr + 0, rg);
}
}
SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
__m128i _0, _1, _2, _3;
if (__builtin_expect(tail,0)) {
_1 = _2 = _3 = _mm_setzero_si128();
auto load_rgb = [](const uint16_t* src) {
auto v = _mm_cvtsi32_si128(*(const uint32_t*)src);
return _mm_insert_epi16(v, src[2], 2);
};
if ( true ) { _0 = load_rgb(ptr + 0); }
if (tail > 1) { _1 = load_rgb(ptr + 3); }
if (tail > 2) { _2 = load_rgb(ptr + 6); }
} else {
// Load slightly weirdly to make sure we don't load past the end of 4x48 bits.
auto _01 = _mm_loadu_si128((const __m128i*)(ptr + 0)) ,
_23 = _mm_srli_si128(_mm_loadu_si128((const __m128i*)(ptr + 4)), 4);
// Each _N holds R,G,B for pixel N in its lower 3 lanes (upper 5 are ignored).
_0 = _01;
_1 = _mm_srli_si128(_01, 6);
_2 = _23;
_3 = _mm_srli_si128(_23, 6);
}
// De-interlace to R,G,B.
auto _02 = _mm_unpacklo_epi16(_0, _2), // r0 r2 g0 g2 b0 b2 xx xx
_13 = _mm_unpacklo_epi16(_1, _3); // r1 r3 g1 g3 b1 b3 xx xx
auto R = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3
G = _mm_srli_si128(R, 8),
B = _mm_unpackhi_epi16(_02, _13); // b0 b1 b2 b3 xx xx xx xx
*r = sk_unaligned_load<U16>(&R);
*g = sk_unaligned_load<U16>(&G);
*b = sk_unaligned_load<U16>(&B);
}
SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
__m128i _01, _23;
if (__builtin_expect(tail,0)) {
_01 = _23 = _mm_setzero_si128();
auto src = (const double*)ptr;
if ( true ) { _01 = _mm_loadl_pd(_01, src + 0); } // r0 g0 b0 a0 00 00 00 00
if (tail > 1) { _01 = _mm_loadh_pd(_01, src + 1); } // r0 g0 b0 a0 r1 g1 b1 a1
if (tail > 2) { _23 = _mm_loadl_pd(_23, src + 2); } // r2 g2 b2 a2 00 00 00 00
} else {
_01 = _mm_loadu_si128(((__m128i*)ptr) + 0); // r0 g0 b0 a0 r1 g1 b1 a1
_23 = _mm_loadu_si128(((__m128i*)ptr) + 1); // r2 g2 b2 a2 r3 g3 b3 a3
}
auto _02 = _mm_unpacklo_epi16(_01, _23), // r0 r2 g0 g2 b0 b2 a0 a2
_13 = _mm_unpackhi_epi16(_01, _23); // r1 r3 g1 g3 b1 b3 a1 a3
auto rg = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3
ba = _mm_unpackhi_epi16(_02, _13); // b0 b1 b2 b3 a0 a1 a2 a3
*r = sk_unaligned_load<U16>((uint16_t*)&rg + 0);
*g = sk_unaligned_load<U16>((uint16_t*)&rg + 4);
*b = sk_unaligned_load<U16>((uint16_t*)&ba + 0);
*a = sk_unaligned_load<U16>((uint16_t*)&ba + 4);
}
SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
auto rg = _mm_unpacklo_epi16(widen_cast<__m128i>(r), widen_cast<__m128i>(g)),
ba = _mm_unpacklo_epi16(widen_cast<__m128i>(b), widen_cast<__m128i>(a));
if (__builtin_expect(tail, 0)) {
auto dst = (double*)ptr;
if ( true ) { _mm_storel_pd(dst + 0, _mm_unpacklo_epi32(rg, ba)); }
if (tail > 1) { _mm_storeh_pd(dst + 1, _mm_unpacklo_epi32(rg, ba)); }
if (tail > 2) { _mm_storel_pd(dst + 2, _mm_unpackhi_epi32(rg, ba)); }
} else {
_mm_storeu_si128((__m128i*)ptr + 0, _mm_unpacklo_epi32(rg, ba));
_mm_storeu_si128((__m128i*)ptr + 1, _mm_unpackhi_epi32(rg, ba));
}
}
SI void load2(const float* ptr, size_t tail, F* r, F* g) {
F _01, _23;
if (__builtin_expect(tail, 0)) {
_01 = _23 = _mm_setzero_si128();
if ( true ) { _01 = _mm_loadl_pi(_01, (__m64 const*)(ptr + 0)); }
if (tail > 1) { _01 = _mm_loadh_pi(_01, (__m64 const*)(ptr + 2)); }
if (tail > 2) { _23 = _mm_loadl_pi(_23, (__m64 const*)(ptr + 4)); }
} else {
_01 = _mm_loadu_ps(ptr + 0);
_23 = _mm_loadu_ps(ptr + 4);
}
*r = _mm_shuffle_ps(_01, _23, 0x88);
*g = _mm_shuffle_ps(_01, _23, 0xDD);
}
SI void store2(float* ptr, size_t tail, F r, F g) {
F _01 = _mm_unpacklo_ps(r, g),
_23 = _mm_unpackhi_ps(r, g);
if (__builtin_expect(tail, 0)) {
if ( true ) { _mm_storel_pi((__m64*)(ptr + 0), _01); }
if (tail > 1) { _mm_storeh_pi((__m64*)(ptr + 2), _01); }
if (tail > 2) { _mm_storel_pi((__m64*)(ptr + 4), _23); }
} else {
_mm_storeu_ps(ptr + 0, _01);
_mm_storeu_ps(ptr + 4, _23);
}
}
SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) {
F _0, _1, _2, _3;
if (__builtin_expect(tail, 0)) {
_1 = _2 = _3 = _mm_setzero_si128();
if ( true ) { _0 = _mm_loadu_ps(ptr + 0); }
if (tail > 1) { _1 = _mm_loadu_ps(ptr + 4); }
if (tail > 2) { _2 = _mm_loadu_ps(ptr + 8); }
} else {
_0 = _mm_loadu_ps(ptr + 0);
_1 = _mm_loadu_ps(ptr + 4);
_2 = _mm_loadu_ps(ptr + 8);
_3 = _mm_loadu_ps(ptr +12);
}
_MM_TRANSPOSE4_PS(_0,_1,_2,_3);
*r = _0;
*g = _1;
*b = _2;
*a = _3;
}
SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) {
_MM_TRANSPOSE4_PS(r,g,b,a);
if (__builtin_expect(tail, 0)) {
if ( true ) { _mm_storeu_ps(ptr + 0, r); }
if (tail > 1) { _mm_storeu_ps(ptr + 4, g); }
if (tail > 2) { _mm_storeu_ps(ptr + 8, b); }
} else {
_mm_storeu_ps(ptr + 0, r);
_mm_storeu_ps(ptr + 4, g);
_mm_storeu_ps(ptr + 8, b);
_mm_storeu_ps(ptr +12, a);
}
}
#endif
// We need to be a careful with casts.
// (F)x means cast x to float in the portable path, but bit_cast x to float in the others.
// These named casts and bit_cast() are always what they seem to be.
#if defined(JUMPER_IS_SCALAR)
SI F cast (U32 v) { return (F)v; }
SI F cast64(U64 v) { return (F)v; }
SI U32 trunc_(F v) { return (U32)v; }
SI U32 expand(U16 v) { return (U32)v; }
SI U32 expand(U8 v) { return (U32)v; }
#else
SI F cast (U32 v) { return __builtin_convertvector((I32)v, F); }
SI F cast64(U64 v) { return __builtin_convertvector( v, F); }
SI U32 trunc_(F v) { return (U32)__builtin_convertvector( v, I32); }
SI U32 expand(U16 v) { return __builtin_convertvector( v, U32); }
SI U32 expand(U8 v) { return __builtin_convertvector( v, U32); }
#endif
template <typename V>
SI V if_then_else(I32 c, V t, V e) {
return bit_cast<V>(if_then_else(c, bit_cast<F>(t), bit_cast<F>(e)));
}
SI U16 bswap(U16 x) {
#if defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41)
// Somewhat inexplicably Clang decides to do (x<<8) | (x>>8) in 32-bit lanes
// when generating code for SSE2 and SSE4.1. We'll do it manually...
auto v = widen_cast<__m128i>(x);
v = _mm_slli_epi16(v,8) | _mm_srli_epi16(v,8);
return sk_unaligned_load<U16>(&v);
#else
return (x<<8) | (x>>8);
#endif
}
SI F fract(F v) { return v - floor_(v); }
// See http://www.machinedlearnings.com/2011/06/fast-approximate-logarithm-exponential.html.
SI F approx_log2(F x) {
// e - 127 is a fair approximation of log2(x) in its own right...
F e = cast(bit_cast<U32>(x)) * (1.0f / (1<<23));
// ... but using the mantissa to refine its error is _much_ better.
F m = bit_cast<F>((bit_cast<U32>(x) & 0x007fffff) | 0x3f000000);
return e
- 124.225514990f
- 1.498030302f * m
- 1.725879990f / (0.3520887068f + m);
}
SI F approx_log(F x) {
const float ln2 = 0.69314718f;
return ln2 * approx_log2(x);
}
SI F approx_pow2(F x) {
F f = fract(x);
return bit_cast<F>(round(1.0f * (1<<23),
x + 121.274057500f
- 1.490129070f * f
+ 27.728023300f / (4.84252568f - f)));
}
SI F approx_exp(F x) {
const float log2_e = 1.4426950408889634074f;
return approx_pow2(log2_e * x);
}
SI F approx_powf(F x, F y) {
#if defined(SK_LEGACY_APPROX_POWF_SPECIALCASE)
return if_then_else((x == 0) , 0
#else
return if_then_else((x == 0)|(x == 1), x
#endif
, approx_pow2(approx_log2(x) * y));
}
SI F from_half(U16 h) {
#if defined(JUMPER_IS_NEON) && defined(SK_CPU_ARM64) \
&& !defined(SK_BUILD_FOR_GOOGLE3) // Temporary workaround for some Google3 builds.
return vcvt_f32_f16(h);
#elif defined(JUMPER_IS_HSW) || defined(JUMPER_IS_AVX512)
return _mm256_cvtph_ps(h);
#else
// Remember, a half is 1-5-10 (sign-exponent-mantissa) with 15 exponent bias.
U32 sem = expand(h),
s = sem & 0x8000,
em = sem ^ s;
// Convert to 1-8-23 float with 127 bias, flushing denorm halfs (including zero) to zero.
auto denorm = (I32)em < 0x0400; // I32 comparison is often quicker, and always safe here.
return if_then_else(denorm, F(0)
, bit_cast<F>( (s<<16) + (em<<13) + ((127-15)<<23) ));
#endif
}
SI U16 to_half(F f) {
#if defined(JUMPER_IS_NEON) && defined(SK_CPU_ARM64) \
&& !defined(SK_BUILD_FOR_GOOGLE3) // Temporary workaround for some Google3 builds.
return vcvt_f16_f32(f);
#elif defined(JUMPER_IS_HSW) || defined(JUMPER_IS_AVX512)
return _mm256_cvtps_ph(f, _MM_FROUND_CUR_DIRECTION);
#else
// Remember, a float is 1-8-23 (sign-exponent-mantissa) with 127 exponent bias.
U32 sem = bit_cast<U32>(f),
s = sem & 0x80000000,
em = sem ^ s;
// Convert to 1-5-10 half with 15 bias, flushing denorm halfs (including zero) to zero.
auto denorm = (I32)em < 0x38800000; // I32 comparison is often quicker, and always safe here.
return pack(if_then_else(denorm, U32(0)
, (s>>16) + (em>>13) - ((127-15)<<10)));
#endif
}
// Our fundamental vector depth is our pixel stride.
static const size_t N = sizeof(F) / sizeof(float);
// We're finally going to get to what a Stage function looks like!
// tail == 0 ~~> work on a full N pixels
// tail != 0 ~~> work on only the first tail pixels
// tail is always < N.
// Any custom ABI to use for all (non-externally-facing) stage functions?
// Also decide here whether to use narrow (compromise) or wide (ideal) stages.
#if defined(SK_CPU_ARM32) && defined(JUMPER_IS_NEON)
// This lets us pass vectors more efficiently on 32-bit ARM.
// We can still only pass 16 floats, so best as 4x {r,g,b,a}.
#define ABI __attribute__((pcs("aapcs-vfp")))
#define JUMPER_NARROW_STAGES 1
#elif 0 && defined(_MSC_VER) && defined(__clang__) && defined(__x86_64__)
// SysV ABI makes it very sensible to use wide stages with clang-cl.
// TODO: crashes during compilation :(
#define ABI __attribute__((sysv_abi))
#define JUMPER_NARROW_STAGES 0
#elif defined(_MSC_VER)
// Even if not vectorized, this lets us pass {r,g,b,a} as registers,
// instead of {b,a} on the stack. Narrow stages work best for __vectorcall.
#define ABI __vectorcall
#define JUMPER_NARROW_STAGES 1
#elif defined(__x86_64__) || defined(SK_CPU_ARM64)
// These platforms are ideal for wider stages, and their default ABI is ideal.
#define ABI
#define JUMPER_NARROW_STAGES 0
#else
// 32-bit or unknown... shunt them down the narrow path.
// Odds are these have few registers and are better off there.
#define ABI
#define JUMPER_NARROW_STAGES 1
#endif
#if JUMPER_NARROW_STAGES
struct Params {
size_t dx, dy, tail;
F dr,dg,db,da;
};
using Stage = void(ABI*)(Params*, void** program, F r, F g, F b, F a);
#else
// We keep program the second argument, so that it's passed in rsi for load_and_inc().
using Stage = void(ABI*)(size_t tail, void** program, size_t dx, size_t dy, F,F,F,F, F,F,F,F);
#endif
static void start_pipeline(size_t dx, size_t dy, size_t xlimit, size_t ylimit, void** program) {
auto start = (Stage)load_and_inc(program);
const size_t x0 = dx;
for (; dy < ylimit; dy++) {
#if JUMPER_NARROW_STAGES
Params params = { x0,dy,0, 0,0,0,0 };
while (params.dx + N <= xlimit) {
start(&params,program, 0,0,0,0);
params.dx += N;
}
if (size_t tail = xlimit - params.dx) {
params.tail = tail;
start(&params,program, 0,0,0,0);
}
#else
dx = x0;
while (dx + N <= xlimit) {
start(0,program,dx,dy, 0,0,0,0, 0,0,0,0);
dx += N;
}
if (size_t tail = xlimit - dx) {
start(tail,program,dx,dy, 0,0,0,0, 0,0,0,0);
}
#endif
}
}
#if JUMPER_NARROW_STAGES
#define STAGE(name, ...) \
SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da); \
static void ABI name(Params* params, void** program, \
F r, F g, F b, F a) { \
name##_k(Ctx{program},params->dx,params->dy,params->tail, r,g,b,a, \
params->dr, params->dg, params->db, params->da); \
auto next = (Stage)load_and_inc(program); \
next(params,program, r,g,b,a); \
} \
SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da)
#else
#define STAGE(name, ...) \
SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da); \
static void ABI name(size_t tail, void** program, size_t dx, size_t dy, \
F r, F g, F b, F a, F dr, F dg, F db, F da) { \
name##_k(Ctx{program},dx,dy,tail, r,g,b,a, dr,dg,db,da); \
auto next = (Stage)load_and_inc(program); \
next(tail,program,dx,dy, r,g,b,a, dr,dg,db,da); \
} \
SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da)
#endif
// just_return() is a simple no-op stage that only exists to end the chain,
// returning back up to start_pipeline(), and from there to the caller.
#if JUMPER_NARROW_STAGES
static void ABI just_return(Params*, void**, F,F,F,F) {}
#else
static void ABI just_return(size_t, void**, size_t,size_t, F,F,F,F, F,F,F,F) {}
#endif
// We could start defining normal Stages now. But first, some helper functions.
// These load() and store() methods are tail-aware,
// but focus mainly on keeping the at-stride tail==0 case fast.
template <typename V, typename T>
SI V load(const T* src, size_t tail) {
#if !defined(JUMPER_IS_SCALAR)
__builtin_assume(tail < N);
if (__builtin_expect(tail, 0)) {
V v{}; // Any inactive lanes are zeroed.
switch (tail) {
case 7: v[6] = src[6];
case 6: v[5] = src[5];
case 5: v[4] = src[4];
case 4: memcpy(&v, src, 4*sizeof(T)); break;
case 3: v[2] = src[2];
case 2: memcpy(&v, src, 2*sizeof(T)); break;
case 1: memcpy(&v, src, 1*sizeof(T)); break;
}
return v;
}
#endif
return sk_unaligned_load<V>(src);
}
template <typename V, typename T>
SI void store(T* dst, V v, size_t tail) {
#if !defined(JUMPER_IS_SCALAR)
__builtin_assume(tail < N);
if (__builtin_expect(tail, 0)) {
switch (tail) {
case 7: dst[6] = v[6];
case 6: dst[5] = v[5];
case 5: dst[4] = v[4];
case 4: memcpy(dst, &v, 4*sizeof(T)); break;
case 3: dst[2] = v[2];
case 2: memcpy(dst, &v, 2*sizeof(T)); break;
case 1: memcpy(dst, &v, 1*sizeof(T)); break;
}
return;
}
#endif
sk_unaligned_store(dst, v);
}
SI F from_byte(U8 b) {
return cast(expand(b)) * (1/255.0f);
}
SI F from_short(U16 s) {
return cast(expand(s)) * (1/65535.0f);
}
SI void from_565(U16 _565, F* r, F* g, F* b) {
U32 wide = expand(_565);
*r = cast(wide & (31<<11)) * (1.0f / (31<<11));
*g = cast(wide & (63<< 5)) * (1.0f / (63<< 5));
*b = cast(wide & (31<< 0)) * (1.0f / (31<< 0));
}
SI void from_4444(U16 _4444, F* r, F* g, F* b, F* a) {
U32 wide = expand(_4444);
*r = cast(wide & (15<<12)) * (1.0f / (15<<12));
*g = cast(wide & (15<< 8)) * (1.0f / (15<< 8));
*b = cast(wide & (15<< 4)) * (1.0f / (15<< 4));
*a = cast(wide & (15<< 0)) * (1.0f / (15<< 0));
}
SI void from_8888(U32 _8888, F* r, F* g, F* b, F* a) {
*r = cast((_8888 ) & 0xff) * (1/255.0f);
*g = cast((_8888 >> 8) & 0xff) * (1/255.0f);
*b = cast((_8888 >> 16) & 0xff) * (1/255.0f);
*a = cast((_8888 >> 24) ) * (1/255.0f);
}
SI void from_88(U16 _88, F* r, F* g) {
U32 wide = expand(_88);
*r = cast((wide ) & 0xff) * (1/255.0f);
*g = cast((wide >> 8) & 0xff) * (1/255.0f);
}
SI void from_1010102(U32 rgba, F* r, F* g, F* b, F* a) {
*r = cast((rgba ) & 0x3ff) * (1/1023.0f);
*g = cast((rgba >> 10) & 0x3ff) * (1/1023.0f);
*b = cast((rgba >> 20) & 0x3ff) * (1/1023.0f);
*a = cast((rgba >> 30) ) * (1/ 3.0f);
}
SI void from_1616(U32 _1616, F* r, F* g) {
*r = cast((_1616 ) & 0xffff) * (1/65535.0f);
*g = cast((_1616 >> 16) & 0xffff) * (1/65535.0f);
}
SI void from_16161616(U64 _16161616, F* r, F* g, F* b, F* a) {
*r = cast64((_16161616 ) & 0xffff) * (1/65535.0f);
*g = cast64((_16161616 >> 16) & 0xffff) * (1/65535.0f);
*b = cast64((_16161616 >> 32) & 0xffff) * (1/65535.0f);
*a = cast64((_16161616 >> 48) & 0xffff) * (1/65535.0f);
}
// Used by load_ and store_ stages to get to the right (dx,dy) starting point of contiguous memory.
template <typename T>
SI T* ptr_at_xy(const SkRasterPipeline_MemoryCtx* ctx, size_t dx, size_t dy) {
return (T*)ctx->pixels + dy*ctx->stride + dx;
}
// clamp v to [0,limit).
SI F clamp(F v, F limit) {
F inclusive = bit_cast<F>( bit_cast<U32>(limit) - 1 ); // Exclusive -> inclusive.
return min(max(0, v), inclusive);
}
// Used by gather_ stages to calculate the base pointer and a vector of indices to load.
template <typename T>
SI U32 ix_and_ptr(T** ptr, const SkRasterPipeline_GatherCtx* ctx, F x, F y) {
x = clamp(x, ctx->width);
y = clamp(y, ctx->height);
*ptr = (const T*)ctx->pixels;
return trunc_(y)*ctx->stride + trunc_(x);
}
// We often have a nominally [0,1] float value we need to scale and convert to an integer,
// whether for a table lookup or to pack back down into bytes for storage.
//
// In practice, especially when dealing with interesting color spaces, that notionally
// [0,1] float may be out of [0,1] range. Unorms cannot represent that, so we must clamp.
//
// You can adjust the expected input to [0,bias] by tweaking that parameter.
SI U32 to_unorm(F v, F scale, F bias = 1.0f) {
// TODO: platform-specific implementations to to_unorm(), removing round() entirely?
// Any time we use round() we probably want to use to_unorm().
return round(min(max(0, v), bias), scale);
}
SI I32 cond_to_mask(I32 cond) { return if_then_else(cond, I32(~0), I32(0)); }
// Now finally, normal Stages!
STAGE(seed_shader, Ctx::None) {
static const float iota[] = {
0.5f, 1.5f, 2.5f, 3.5f, 4.5f, 5.5f, 6.5f, 7.5f,
8.5f, 9.5f,10.5f,11.5f,12.5f,13.5f,14.5f,15.5f,
};
// It's important for speed to explicitly cast(dx) and cast(dy),
// which has the effect of splatting them to vectors before converting to floats.
// On Intel this breaks a data dependency on previous loop iterations' registers.
r = cast(dx) + sk_unaligned_load<F>(iota);
g = cast(dy) + 0.5f;
b = 1.0f;
a = 0;
dr = dg = db = da = 0;
}
STAGE(dither, const float* rate) {
// Get [(dx,dy), (dx+1,dy), (dx+2,dy), ...] loaded up in integer vectors.
uint32_t iota[] = {0,1,2,3,4,5,6,7};
U32 X = dx + sk_unaligned_load<U32>(iota),
Y = dy;
// We're doing 8x8 ordered dithering, see https://en.wikipedia.org/wiki/Ordered_dithering.
// In this case n=8 and we're using the matrix that looks like 1/64 x [ 0 48 12 60 ... ].
// We only need X and X^Y from here on, so it's easier to just think of that as "Y".
Y ^= X;
// We'll mix the bottom 3 bits of each of X and Y to make 6 bits,
// for 2^6 == 64 == 8x8 matrix values. If X=abc and Y=def, we make fcebda.
U32 M = (Y & 1) << 5 | (X & 1) << 4
| (Y & 2) << 2 | (X & 2) << 1
| (Y & 4) >> 1 | (X & 4) >> 2;
// Scale that dither to [0,1), then (-0.5,+0.5), here using 63/128 = 0.4921875 as 0.5-epsilon.
// We want to make sure our dither is less than 0.5 in either direction to keep exact values
// like 0 and 1 unchanged after rounding.
F dither = cast(M) * (2/128.0f) - (63/128.0f);
r += *rate*dither;
g += *rate*dither;
b += *rate*dither;
r = max(0, min(r, a));
g = max(0, min(g, a));
b = max(0, min(b, a));
}
// load 4 floats from memory, and splat them into r,g,b,a
STAGE(uniform_color, const SkRasterPipeline_UniformColorCtx* c) {
r = c->r;
g = c->g;
b = c->b;
a = c->a;
}
STAGE(unbounded_uniform_color, const SkRasterPipeline_UniformColorCtx* c) {
r = c->r;
g = c->g;
b = c->b;
a = c->a;
}
// load 4 floats from memory, and splat them into dr,dg,db,da
STAGE(uniform_color_dst, const SkRasterPipeline_UniformColorCtx* c) {
dr = c->r;
dg = c->g;
db = c->b;
da = c->a;
}
// splats opaque-black into r,g,b,a
STAGE(black_color, Ctx::None) {
r = g = b = 0.0f;
a = 1.0f;
}
STAGE(white_color, Ctx::None) {
r = g = b = a = 1.0f;
}
// load registers r,g,b,a from context (mirrors store_rgba)
STAGE(load_src, const float* ptr) {
r = sk_unaligned_load<F>(ptr + 0*N);
g = sk_unaligned_load<F>(ptr + 1*N);
b = sk_unaligned_load<F>(ptr + 2*N);
a = sk_unaligned_load<F>(ptr + 3*N);
}
// store registers r,g,b,a into context (mirrors load_rgba)
STAGE(store_src, float* ptr) {
sk_unaligned_store(ptr + 0*N, r);
sk_unaligned_store(ptr + 1*N, g);
sk_unaligned_store(ptr + 2*N, b);
sk_unaligned_store(ptr + 3*N, a);
}
// load registers dr,dg,db,da from context (mirrors store_dst)
STAGE(load_dst, const float* ptr) {
dr = sk_unaligned_load<F>(ptr + 0*N);
dg = sk_unaligned_load<F>(ptr + 1*N);
db = sk_unaligned_load<F>(ptr + 2*N);
da = sk_unaligned_load<F>(ptr + 3*N);
}
// store registers dr,dg,db,da into context (mirrors load_dst)
STAGE(store_dst, float* ptr) {
sk_unaligned_store(ptr + 0*N, dr);
sk_unaligned_store(ptr + 1*N, dg);
sk_unaligned_store(ptr + 2*N, db);
sk_unaligned_store(ptr + 3*N, da);
}
// Most blend modes apply the same logic to each channel.
#define BLEND_MODE(name) \
SI F name##_channel(F s, F d, F sa, F da); \
STAGE(name, Ctx::None) { \
r = name##_channel(r,dr,a,da); \
g = name##_channel(g,dg,a,da); \
b = name##_channel(b,db,a,da); \
a = name##_channel(a,da,a,da); \
} \
SI F name##_channel(F s, F d, F sa, F da)
SI F inv(F x) { return 1.0f - x; }
SI F two(F x) { return x + x; }
BLEND_MODE(clear) { return 0; }
BLEND_MODE(srcatop) { return s*da + d*inv(sa); }
BLEND_MODE(dstatop) { return d*sa + s*inv(da); }
BLEND_MODE(srcin) { return s * da; }
BLEND_MODE(dstin) { return d * sa; }
BLEND_MODE(srcout) { return s * inv(da); }
BLEND_MODE(dstout) { return d * inv(sa); }
BLEND_MODE(srcover) { return mad(d, inv(sa), s); }
BLEND_MODE(dstover) { return mad(s, inv(da), d); }
BLEND_MODE(modulate) { return s*d; }
BLEND_MODE(multiply) { return s*inv(da) + d*inv(sa) + s*d; }
BLEND_MODE(plus_) { return min(s + d, 1.0f); } // We can clamp to either 1 or sa.
BLEND_MODE(screen) { return s + d - s*d; }
BLEND_MODE(xor_) { return s*inv(da) + d*inv(sa); }
#undef BLEND_MODE
// Most other blend modes apply the same logic to colors, and srcover to alpha.
#define BLEND_MODE(name) \
SI F name##_channel(F s, F d, F sa, F da); \
STAGE(name, Ctx::None) { \
r = name##_channel(r,dr,a,da); \
g = name##_channel(g,dg,a,da); \
b = name##_channel(b,db,a,da); \
a = mad(da, inv(a), a); \
} \
SI F name##_channel(F s, F d, F sa, F da)
BLEND_MODE(darken) { return s + d - max(s*da, d*sa) ; }
BLEND_MODE(lighten) { return s + d - min(s*da, d*sa) ; }
BLEND_MODE(difference) { return s + d - two(min(s*da, d*sa)); }
BLEND_MODE(exclusion) { return s + d - two(s*d); }
BLEND_MODE(colorburn) {
return if_then_else(d == da, d + s*inv(da),
if_then_else(s == 0, /* s + */ d*inv(sa),
sa*(da - min(da, (da-d)*sa*rcp(s))) + s*inv(da) + d*inv(sa)));
}
BLEND_MODE(colordodge) {
return if_then_else(d == 0, /* d + */ s*inv(da),
if_then_else(s == sa, s + d*inv(sa),
sa*min(da, (d*sa)*rcp(sa - s)) + s*inv(da) + d*inv(sa)));
}
BLEND_MODE(hardlight) {
return s*inv(da) + d*inv(sa)
+ if_then_else(two(s) <= sa, two(s*d), sa*da - two((da-d)*(sa-s)));
}
BLEND_MODE(overlay) {
return s*inv(da) + d*inv(sa)
+ if_then_else(two(d) <= da, two(s*d), sa*da - two((da-d)*(sa-s)));
}
BLEND_MODE(softlight) {
F m = if_then_else(da > 0, d / da, 0),
s2 = two(s),
m4 = two(two(m));
// The logic forks three ways:
// 1. dark src?
// 2. light src, dark dst?
// 3. light src, light dst?
F darkSrc = d*(sa + (s2 - sa)*(1.0f - m)), // Used in case 1.
darkDst = (m4*m4 + m4)*(m - 1.0f) + 7.0f*m, // Used in case 2.
liteDst = rcp(rsqrt(m)) - m, // Used in case 3.
liteSrc = d*sa + da*(s2 - sa) * if_then_else(two(two(d)) <= da, darkDst, liteDst); // 2 or 3?
return s*inv(da) + d*inv(sa) + if_then_else(s2 <= sa, darkSrc, liteSrc); // 1 or (2 or 3)?
}
#undef BLEND_MODE
// We're basing our implemenation of non-separable blend modes on
// https://www.w3.org/TR/compositing-1/#blendingnonseparable.
// and
// https://www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf
// They're equivalent, but ES' math has been better simplified.
//
// Anything extra we add beyond that is to make the math work with premul inputs.
SI F sat(F r, F g, F b) { return max(r, max(g,b)) - min(r, min(g,b)); }
SI F lum(F r, F g, F b) { return r*0.30f + g*0.59f + b*0.11f; }
SI void set_sat(F* r, F* g, F* b, F s) {
F mn = min(*r, min(*g,*b)),
mx = max(*r, max(*g,*b)),
sat = mx - mn;
// Map min channel to 0, max channel to s, and scale the middle proportionally.
auto scale = [=](F c) {
return if_then_else(sat == 0, 0, (c - mn) * s / sat);
};
*r = scale(*r);
*g = scale(*g);
*b = scale(*b);
}
SI void set_lum(F* r, F* g, F* b, F l) {
F diff = l - lum(*r, *g, *b);
*r += diff;
*g += diff;
*b += diff;
}
SI void clip_color(F* r, F* g, F* b, F a) {
F mn = min(*r, min(*g, *b)),
mx = max(*r, max(*g, *b)),
l = lum(*r, *g, *b);
auto clip = [=](F c) {
c = if_then_else(mn >= 0, c, l + (c - l) * ( l) / (l - mn) );
c = if_then_else(mx > a, l + (c - l) * (a - l) / (mx - l), c);
c = max(c, 0); // Sometimes without this we may dip just a little negative.
return c;
};
*r = clip(*r);
*g = clip(*g);
*b = clip(*b);
}
STAGE(hue, Ctx::None) {
F R = r*a,
G = g*a,
B = b*a;
set_sat(&R, &G, &B, sat(dr,dg,db)*a);
set_lum(&R, &G, &B, lum(dr,dg,db)*a);
clip_color(&R,&G,&B, a*da);
r = r*inv(da) + dr*inv(a) + R;
g = g*inv(da) + dg*inv(a) + G;
b = b*inv(da) + db*inv(a) + B;
a = a + da - a*da;
}
STAGE(saturation, Ctx::None) {
F R = dr*a,
G = dg*a,
B = db*a;
set_sat(&R, &G, &B, sat( r, g, b)*da);
set_lum(&R, &G, &B, lum(dr,dg,db)* a); // (This is not redundant.)
clip_color(&R,&G,&B, a*da);
r = r*inv(da) + dr*inv(a) + R;
g = g*inv(da) + dg*inv(a) + G;
b = b*inv(da) + db*inv(a) + B;
a = a + da - a*da;
}
STAGE(color, Ctx::None) {
F R = r*da,
G = g*da,
B = b*da;
set_lum(&R, &G, &B, lum(dr,dg,db)*a);
clip_color(&R,&G,&B, a*da);
r = r*inv(da) + dr*inv(a) + R;
g = g*inv(da) + dg*inv(a) + G;
b = b*inv(da) + db*inv(a) + B;
a = a + da - a*da;
}
STAGE(luminosity, Ctx::None) {
F R = dr*a,
G = dg*a,
B = db*a;
set_lum(&R, &G, &B, lum(r,g,b)*da);
clip_color(&R,&G,&B, a*da);
r = r*inv(da) + dr*inv(a) + R;
g = g*inv(da) + dg*inv(a) + G;
b = b*inv(da) + db*inv(a) + B;
a = a + da - a*da;
}
STAGE(srcover_rgba_8888, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
U32 dst = load<U32>(ptr, tail);
dr = cast((dst ) & 0xff);
dg = cast((dst >> 8) & 0xff);
db = cast((dst >> 16) & 0xff);
da = cast((dst >> 24) );
// {dr,dg,db,da} are in [0,255]
// { r, g, b, a} are in [0, 1] (but may be out of gamut)
r = mad(dr, inv(a), r*255.0f);
g = mad(dg, inv(a), g*255.0f);
b = mad(db, inv(a), b*255.0f);
a = mad(da, inv(a), a*255.0f);
// { r, g, b, a} are now in [0,255] (but may be out of gamut)
// to_unorm() clamps back to gamut. Scaling by 1 since we're already 255-biased.
dst = to_unorm(r, 1, 255)
| to_unorm(g, 1, 255) << 8
| to_unorm(b, 1, 255) << 16
| to_unorm(a, 1, 255) << 24;
store(ptr, dst, tail);
}
STAGE(clamp_0, Ctx::None) {
r = max(r, 0);
g = max(g, 0);
b = max(b, 0);
a = max(a, 0);
}
STAGE(clamp_1, Ctx::None) {
r = min(r, 1.0f);
g = min(g, 1.0f);
b = min(b, 1.0f);
a = min(a, 1.0f);
}
STAGE(clamp_a, Ctx::None) {
a = min(a, 1.0f);
r = min(r, a);
g = min(g, a);
b = min(b, a);
}
STAGE(clamp_gamut, Ctx::None) {
// If you're using this stage, a should already be in [0,1].
r = min(max(r, 0), a);
g = min(max(g, 0), a);
b = min(max(b, 0), a);
}
STAGE(set_rgb, const float* rgb) {
r = rgb[0];
g = rgb[1];
b = rgb[2];
}
STAGE(unbounded_set_rgb, const float* rgb) {
r = rgb[0];
g = rgb[1];
b = rgb[2];
}
STAGE(swap_rb, Ctx::None) {
auto tmp = r;
r = b;
b = tmp;
}
STAGE(swap_rb_dst, Ctx::None) {
auto tmp = dr;
dr = db;
db = tmp;
}
STAGE(move_src_dst, Ctx::None) {
dr = r;
dg = g;
db = b;
da = a;
}
STAGE(move_dst_src, Ctx::None) {
r = dr;
g = dg;
b = db;
a = da;
}
STAGE(premul, Ctx::None) {
r = r * a;
g = g * a;
b = b * a;
}
STAGE(premul_dst, Ctx::None) {
dr = dr * da;
dg = dg * da;
db = db * da;
}
STAGE(unpremul, Ctx::None) {
float inf = bit_cast<float>(0x7f800000);
auto scale = if_then_else(1.0f/a < inf, 1.0f/a, 0);
r *= scale;
g *= scale;
b *= scale;
}
STAGE(force_opaque , Ctx::None) { a = 1; }
STAGE(force_opaque_dst, Ctx::None) { da = 1; }
// Clamp x to [0,1], both sides inclusive (think, gradients).
// Even repeat and mirror funnel through a clamp to handle bad inputs like +Inf, NaN.
SI F clamp_01(F v) { return min(max(0, v), 1); }
STAGE(rgb_to_hsl, Ctx::None) {
F mx = max(r, max(g,b)),
mn = min(r, min(g,b)),
d = mx - mn,
d_rcp = 1.0f / d;
F h = (1/6.0f) *
if_then_else(mx == mn, 0,
if_then_else(mx == r, (g-b)*d_rcp + if_then_else(g < b, 6.0f, 0),
if_then_else(mx == g, (b-r)*d_rcp + 2.0f,
(r-g)*d_rcp + 4.0f)));
F l = (mx + mn) * 0.5f;
F s = if_then_else(mx == mn, 0,
d / if_then_else(l > 0.5f, 2.0f-mx-mn, mx+mn));
r = h;
g = s;
b = l;
}
STAGE(hsl_to_rgb, Ctx::None) {
// See GrRGBToHSLFilterEffect.fp
F h = r,
s = g,
l = b,
c = (1.0f - abs_(2.0f * l - 1)) * s;
auto hue_to_rgb = [&](F hue) {
F q = clamp_01(abs_(fract(hue) * 6.0f - 3.0f) - 1.0f);
return (q - 0.5f) * c + l;
};
r = hue_to_rgb(h + 0.0f/3.0f);
g = hue_to_rgb(h + 2.0f/3.0f);
b = hue_to_rgb(h + 1.0f/3.0f);
}
// Derive alpha's coverage from rgb coverage and the values of src and dst alpha.
SI F alpha_coverage_from_rgb_coverage(F a, F da, F cr, F cg, F cb) {
return if_then_else(a < da, min(cr, min(cg,cb))
, max(cr, max(cg,cb)));
}
STAGE(scale_1_float, const float* c) {
r = r * *c;
g = g * *c;
b = b * *c;
a = a * *c;
}
STAGE(scale_u8, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
auto scales = load<U8>(ptr, tail);
auto c = from_byte(scales);
r = r * c;
g = g * c;
b = b * c;
a = a * c;
}
STAGE(scale_565, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
F cr,cg,cb;
from_565(load<U16>(ptr, tail), &cr, &cg, &cb);
F ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
r = r * cr;
g = g * cg;
b = b * cb;
a = a * ca;
}
SI F lerp(F from, F to, F t) {
return mad(to-from, t, from);
}
STAGE(lerp_1_float, const float* c) {
r = lerp(dr, r, *c);
g = lerp(dg, g, *c);
b = lerp(db, b, *c);
a = lerp(da, a, *c);
}
STAGE(lerp_native, const float scales[]) {
auto c = sk_unaligned_load<F>(scales);
r = lerp(dr, r, c);
g = lerp(dg, g, c);
b = lerp(db, b, c);
a = lerp(da, a, c);
}
STAGE(lerp_u8, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
auto scales = load<U8>(ptr, tail);
auto c = from_byte(scales);
r = lerp(dr, r, c);
g = lerp(dg, g, c);
b = lerp(db, b, c);
a = lerp(da, a, c);
}
STAGE(lerp_565, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
F cr,cg,cb;
from_565(load<U16>(ptr, tail), &cr, &cg, &cb);
F ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
r = lerp(dr, r, cr);
g = lerp(dg, g, cg);
b = lerp(db, b, cb);
a = lerp(da, a, ca);
}
STAGE(emboss, const SkRasterPipeline_EmbossCtx* ctx) {
auto mptr = ptr_at_xy<const uint8_t>(&ctx->mul, dx,dy),
aptr = ptr_at_xy<const uint8_t>(&ctx->add, dx,dy);
F mul = from_byte(load<U8>(mptr, tail)),
add = from_byte(load<U8>(aptr, tail));
r = mad(r, mul, add);
g = mad(g, mul, add);
b = mad(b, mul, add);
}
STAGE(byte_tables, const void* ctx) { // TODO: rename Tables SkRasterPipeline_ByteTablesCtx
struct Tables { const uint8_t *r, *g, *b, *a; };
auto tables = (const Tables*)ctx;
r = from_byte(gather(tables->r, to_unorm(r, 255)));
g = from_byte(gather(tables->g, to_unorm(g, 255)));
b = from_byte(gather(tables->b, to_unorm(b, 255)));
a = from_byte(gather(tables->a, to_unorm(a, 255)));
}
SI F strip_sign(F x, U32* sign) {
U32 bits = bit_cast<U32>(x);
*sign = bits & 0x80000000;
return bit_cast<F>(bits ^ *sign);
}
SI F apply_sign(F x, U32 sign) {
return bit_cast<F>(sign | bit_cast<U32>(x));
}
STAGE(parametric, const skcms_TransferFunction* ctx) {
auto fn = [&](F v) {
U32 sign;
v = strip_sign(v, &sign);
F r = if_then_else(v <= ctx->d, mad(ctx->c, v, ctx->f)
, approx_powf(mad(ctx->a, v, ctx->b), ctx->g) + ctx->e);
return apply_sign(r, sign);
};
r = fn(r);
g = fn(g);
b = fn(b);
}
STAGE(gamma_, const float* G) {
auto fn = [&](F v) {
U32 sign;
v = strip_sign(v, &sign);
return apply_sign(approx_powf(v, *G), sign);
};
r = fn(r);
g = fn(g);
b = fn(b);
}
STAGE(PQish, const skcms_TransferFunction* ctx) {
auto fn = [&](F v) {
U32 sign;
v = strip_sign(v, &sign);
F r = approx_powf(max(mad(ctx->b, approx_powf(v, ctx->c), ctx->a), 0)
/ (mad(ctx->e, approx_powf(v, ctx->c), ctx->d)),
ctx->f);
return apply_sign(r, sign);
};
r = fn(r);
g = fn(g);
b = fn(b);
}
STAGE(HLGish, const skcms_TransferFunction* ctx) {
auto fn = [&](F v) {
U32 sign;
v = strip_sign(v, &sign);
const float R = ctx->a, G = ctx->b,
a = ctx->c, b = ctx->d, c = ctx->e;
F r = if_then_else(v*R <= 1, approx_powf(v*R, G)
, approx_exp((v-c)*a) + b);
return apply_sign(r, sign);
};
r = fn(r);
g = fn(g);
b = fn(b);
}
STAGE(HLGinvish, const skcms_TransferFunction* ctx) {
auto fn = [&](F v) {
U32 sign;
v = strip_sign(v, &sign);
const float R = ctx->a, G = ctx->b,
a = ctx->c, b = ctx->d, c = ctx->e;
F r = if_then_else(v <= 1, R * approx_powf(v, G)
, a * approx_log(v - b) + c);
return apply_sign(r, sign);
};
r = fn(r);
g = fn(g);
b = fn(b);
}
STAGE(from_srgb, Ctx::None) {
auto fn = [](F s) {
U32 sign;
s = strip_sign(s, &sign);
auto lo = s * (1/12.92f);
auto hi = mad(s*s, mad(s, 0.3000f, 0.6975f), 0.0025f);
return apply_sign(if_then_else(s < 0.055f, lo, hi), sign);
};
r = fn(r);
g = fn(g);
b = fn(b);
}
STAGE(to_srgb, Ctx::None) {
auto fn = [](F l) {
U32 sign;
l = strip_sign(l, &sign);
// We tweak c and d for each instruction set to make sure fn(1) is exactly 1.
#if defined(JUMPER_IS_AVX512)
const float c = 1.130026340485f,
d = 0.141387879848f;
#elif defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41) || \
defined(JUMPER_IS_AVX ) || defined(JUMPER_IS_HSW )
const float c = 1.130048394203f,
d = 0.141357362270f;
#elif defined(JUMPER_IS_NEON)
const float c = 1.129999995232f,
d = 0.141381442547f;
#else
const float c = 1.129999995232f,
d = 0.141377761960f;
#endif
F t = rsqrt(l);
auto lo = l * 12.92f;
auto hi = mad(t, mad(t, -0.0024542345f, 0.013832027f), c)
* rcp(d + t);
return apply_sign(if_then_else(l < 0.00465985f, lo, hi), sign);
};
r = fn(r);
g = fn(g);
b = fn(b);
}
STAGE(load_a8, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
r = g = b = 0.0f;
a = from_byte(load<U8>(ptr, tail));
}
STAGE(load_a8_dst, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy);
dr = dg = db = 0.0f;
da = from_byte(load<U8>(ptr, tail));
}
STAGE(gather_a8, const SkRasterPipeline_GatherCtx* ctx) {
const uint8_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r,g);
r = g = b = 0.0f;
a = from_byte(gather(ptr, ix));
}
STAGE(store_a8, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint8_t>(ctx, dx,dy);
U8 packed = pack(pack(to_unorm(a, 255)));
store(ptr, packed, tail);
}
STAGE(load_565, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
from_565(load<U16>(ptr, tail), &r,&g,&b);
a = 1.0f;
}
STAGE(load_565_dst, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
from_565(load<U16>(ptr, tail), &dr,&dg,&db);
da = 1.0f;
}
STAGE(gather_565, const SkRasterPipeline_GatherCtx* ctx) {
const uint16_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r,g);
from_565(gather(ptr, ix), &r,&g,&b);
a = 1.0f;
}
STAGE(store_565, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
U16 px = pack( to_unorm(r, 31) << 11
| to_unorm(g, 63) << 5
| to_unorm(b, 31) );
store(ptr, px, tail);
}
STAGE(load_4444, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
from_4444(load<U16>(ptr, tail), &r,&g,&b,&a);
}
STAGE(load_4444_dst, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
from_4444(load<U16>(ptr, tail), &dr,&dg,&db,&da);
}
STAGE(gather_4444, const SkRasterPipeline_GatherCtx* ctx) {
const uint16_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r,g);
from_4444(gather(ptr, ix), &r,&g,&b,&a);
}
STAGE(store_4444, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
U16 px = pack( to_unorm(r, 15) << 12
| to_unorm(g, 15) << 8
| to_unorm(b, 15) << 4
| to_unorm(a, 15) );
store(ptr, px, tail);
}
STAGE(load_8888, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
from_8888(load<U32>(ptr, tail), &r,&g,&b,&a);
}
STAGE(load_8888_dst, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
from_8888(load<U32>(ptr, tail), &dr,&dg,&db,&da);
}
STAGE(gather_8888, const SkRasterPipeline_GatherCtx* ctx) {
const uint32_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r,g);
from_8888(gather(ptr, ix), &r,&g,&b,&a);
}
STAGE(store_8888, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
U32 px = to_unorm(r, 255)
| to_unorm(g, 255) << 8
| to_unorm(b, 255) << 16
| to_unorm(a, 255) << 24;
store(ptr, px, tail);
}
STAGE(load_rg88, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy);
from_88(load<U16>(ptr, tail), &r, &g);
b = 0;
a = 1;
}
STAGE(load_rg88_dst, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy);
from_88(load<U16>(ptr, tail), &dr, &dg);
db = 0;
da = 1;
}
STAGE(gather_rg88, const SkRasterPipeline_GatherCtx* ctx) {
const uint16_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r, g);
from_88(gather(ptr, ix), &r, &g);
b = 0;
a = 1;
}
STAGE(store_rg88, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint16_t>(ctx, dx, dy);
U16 px = pack( to_unorm(r, 255) | to_unorm(g, 255) << 8 );
store(ptr, px, tail);
}
STAGE(load_a16, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
r = g = b = 0;
a = from_short(load<U16>(ptr, tail));
}
STAGE(load_a16_dst, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy);
dr = dg = db = 0.0f;
da = from_short(load<U16>(ptr, tail));
}
STAGE(gather_a16, const SkRasterPipeline_GatherCtx* ctx) {
const uint16_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r, g);
r = g = b = 0.0f;
a = from_short(gather(ptr, ix));
}
STAGE(store_a16, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
U16 px = pack(to_unorm(a, 65535));
store(ptr, px, tail);
}
STAGE(load_rg1616, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy);
b = 0; a = 1;
from_1616(load<U32>(ptr, tail), &r,&g);
}
STAGE(load_rg1616_dst, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy);
from_1616(load<U32>(ptr, tail), &dr, &dg);
db = 0;
da = 1;
}
STAGE(gather_rg1616, const SkRasterPipeline_GatherCtx* ctx) {
const uint32_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r, g);
from_1616(gather(ptr, ix), &r, &g);
b = 0;
a = 1;
}
STAGE(store_rg1616, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
U32 px = to_unorm(r, 65535)
| to_unorm(g, 65535) << 16;
store(ptr, px, tail);
}
STAGE(load_16161616, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint64_t>(ctx, dx, dy);
from_16161616(load<U64>(ptr, tail), &r,&g, &b, &a);
}
STAGE(load_16161616_dst, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint64_t>(ctx, dx, dy);
from_16161616(load<U64>(ptr, tail), &dr, &dg, &db, &da);
}
STAGE(gather_16161616, const SkRasterPipeline_GatherCtx* ctx) {
const uint64_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r, g);
from_16161616(gather(ptr, ix), &r, &g, &b, &a);
}
STAGE(store_16161616, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint16_t>(ctx, 4*dx,4*dy);
U16 R = pack(to_unorm(r, 65535)),
G = pack(to_unorm(g, 65535)),
B = pack(to_unorm(b, 65535)),
A = pack(to_unorm(a, 65535));
store4(ptr,tail, R,G,B,A);
}
STAGE(load_1010102, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
from_1010102(load<U32>(ptr, tail), &r,&g,&b,&a);
}
STAGE(load_1010102_dst, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy);
from_1010102(load<U32>(ptr, tail), &dr,&dg,&db,&da);
}
STAGE(gather_1010102, const SkRasterPipeline_GatherCtx* ctx) {
const uint32_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r,g);
from_1010102(gather(ptr, ix), &r,&g,&b,&a);
}
STAGE(store_1010102, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
U32 px = to_unorm(r, 1023)
| to_unorm(g, 1023) << 10
| to_unorm(b, 1023) << 20
| to_unorm(a, 3) << 30;
store(ptr, px, tail);
}
STAGE(load_f16, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint64_t>(ctx, dx,dy);
U16 R,G,B,A;
load4((const uint16_t*)ptr,tail, &R,&G,&B,&A);
r = from_half(R);
g = from_half(G);
b = from_half(B);
a = from_half(A);
}
STAGE(load_f16_dst, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint64_t>(ctx, dx,dy);
U16 R,G,B,A;
load4((const uint16_t*)ptr,tail, &R,&G,&B,&A);
dr = from_half(R);
dg = from_half(G);
db = from_half(B);
da = from_half(A);
}
STAGE(gather_f16, const SkRasterPipeline_GatherCtx* ctx) {
const uint64_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r,g);
auto px = gather(ptr, ix);
U16 R,G,B,A;
load4((const uint16_t*)&px,0, &R,&G,&B,&A);
r = from_half(R);
g = from_half(G);
b = from_half(B);
a = from_half(A);
}
STAGE(store_f16, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint64_t>(ctx, dx,dy);
store4((uint16_t*)ptr,tail, to_half(r)
, to_half(g)
, to_half(b)
, to_half(a));
}
STAGE(store_u16_be, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint16_t>(ctx, 4*dx,dy);
U16 R = bswap(pack(to_unorm(r, 65535))),
G = bswap(pack(to_unorm(g, 65535))),
B = bswap(pack(to_unorm(b, 65535))),
A = bswap(pack(to_unorm(a, 65535)));
store4(ptr,tail, R,G,B,A);
}
STAGE(load_af16, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy);
U16 A = load<U16>((const uint16_t*)ptr, tail);
r = 0;
g = 0;
b = 0;
a = from_half(A);
}
STAGE(load_af16_dst, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy);
U16 A = load<U16>((const uint16_t*)ptr, tail);
dr = dg = db = 0.0f;
da = from_half(A);
}
STAGE(gather_af16, const SkRasterPipeline_GatherCtx* ctx) {
const uint16_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r, g);
r = g = b = 0.0f;
a = from_half(gather(ptr, ix));
}
STAGE(store_af16, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy);
store(ptr, to_half(a), tail);
}
STAGE(load_rgf16, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy);
U16 R,G;
load2((const uint16_t*)ptr, tail, &R, &G);
r = from_half(R);
g = from_half(G);
b = 0;
a = 1;
}
STAGE(load_rgf16_dst, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy);
U16 R,G;
load2((const uint16_t*)ptr, tail, &R, &G);
dr = from_half(R);
dg = from_half(G);
db = 0;
da = 1;
}
STAGE(gather_rgf16, const SkRasterPipeline_GatherCtx* ctx) {
const uint32_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r, g);
auto px = gather(ptr, ix);
U16 R,G;
load2((const uint16_t*)&px, 0, &R, &G);
r = from_half(R);
g = from_half(G);
b = 0;
a = 1;
}
STAGE(store_rgf16, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint32_t>(ctx, dx, dy);
store2((uint16_t*)ptr, tail, to_half(r)
, to_half(g));
}
STAGE(load_f32, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const float>(ctx, 4*dx,4*dy);
load4(ptr,tail, &r,&g,&b,&a);
}
STAGE(load_f32_dst, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const float>(ctx, 4*dx,4*dy);
load4(ptr,tail, &dr,&dg,&db,&da);
}
STAGE(gather_f32, const SkRasterPipeline_GatherCtx* ctx) {
const float* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, r,g);
r = gather(ptr, 4*ix + 0);
g = gather(ptr, 4*ix + 1);
b = gather(ptr, 4*ix + 2);
a = gather(ptr, 4*ix + 3);
}
STAGE(store_f32, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<float>(ctx, 4*dx,4*dy);
store4(ptr,tail, r,g,b,a);
}
STAGE(load_rgf32, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<const float>(ctx, 2*dx,2*dy);
load2(ptr, tail, &r, &g);
b = 0;
a = 1;
}
STAGE(store_rgf32, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<float>(ctx, 2*dx,2*dy);
store2(ptr, tail, r, g);
}
SI F exclusive_repeat(F v, const SkRasterPipeline_TileCtx* ctx) {
return v - floor_(v*ctx->invScale)*ctx->scale;
}
SI F exclusive_mirror(F v, const SkRasterPipeline_TileCtx* ctx) {
auto limit = ctx->scale;
auto invLimit = ctx->invScale;
return abs_( (v-limit) - (limit+limit)*floor_((v-limit)*(invLimit*0.5f)) - limit );
}
// Tile x or y to [0,limit) == [0,limit - 1 ulp] (think, sampling from images).
// The gather stages will hard clamp the output of these stages to [0,limit)...
// we just need to do the basic repeat or mirroring.
STAGE(repeat_x, const SkRasterPipeline_TileCtx* ctx) { r = exclusive_repeat(r, ctx); }
STAGE(repeat_y, const SkRasterPipeline_TileCtx* ctx) { g = exclusive_repeat(g, ctx); }
STAGE(mirror_x, const SkRasterPipeline_TileCtx* ctx) { r = exclusive_mirror(r, ctx); }
STAGE(mirror_y, const SkRasterPipeline_TileCtx* ctx) { g = exclusive_mirror(g, ctx); }
STAGE( clamp_x_1, Ctx::None) { r = clamp_01(r); }
STAGE(repeat_x_1, Ctx::None) { r = clamp_01(r - floor_(r)); }
STAGE(mirror_x_1, Ctx::None) { r = clamp_01(abs_( (r-1.0f) - two(floor_((r-1.0f)*0.5f)) - 1.0f )); }
// Decal stores a 32bit mask after checking the coordinate (x and/or y) against its domain:
// mask == 0x00000000 if the coordinate(s) are out of bounds
// mask == 0xFFFFFFFF if the coordinate(s) are in bounds
// After the gather stage, the r,g,b,a values are AND'd with this mask, setting them to 0
// if either of the coordinates were out of bounds.
STAGE(decal_x, SkRasterPipeline_DecalTileCtx* ctx) {
auto w = ctx->limit_x;
sk_unaligned_store(ctx->mask, cond_to_mask((0 <= r) & (r < w)));
}
STAGE(decal_y, SkRasterPipeline_DecalTileCtx* ctx) {
auto h = ctx->limit_y;
sk_unaligned_store(ctx->mask, cond_to_mask((0 <= g) & (g < h)));
}
STAGE(decal_x_and_y, SkRasterPipeline_DecalTileCtx* ctx) {
auto w = ctx->limit_x;
auto h = ctx->limit_y;
sk_unaligned_store(ctx->mask,
cond_to_mask((0 <= r) & (r < w) & (0 <= g) & (g < h)));
}
STAGE(check_decal_mask, SkRasterPipeline_DecalTileCtx* ctx) {
auto mask = sk_unaligned_load<U32>(ctx->mask);
r = bit_cast<F>( bit_cast<U32>(r) & mask );
g = bit_cast<F>( bit_cast<U32>(g) & mask );
b = bit_cast<F>( bit_cast<U32>(b) & mask );
a = bit_cast<F>( bit_cast<U32>(a) & mask );
}
STAGE(alpha_to_gray, Ctx::None) {
r = g = b = a;
a = 1;
}
STAGE(alpha_to_gray_dst, Ctx::None) {
dr = dg = db = da;
da = 1;
}
STAGE(bt709_luminance_or_luma_to_alpha, Ctx::None) {
a = r*0.2126f + g*0.7152f + b*0.0722f;
r = g = b = 0;
}
STAGE(matrix_translate, const float* m) {
r += m[0];
g += m[1];
}
STAGE(matrix_scale_translate, const float* m) {
r = mad(r,m[0], m[2]);
g = mad(g,m[1], m[3]);
}
STAGE(matrix_2x3, const float* m) {
auto R = mad(r,m[0], mad(g,m[2], m[4])),
G = mad(r,m[1], mad(g,m[3], m[5]));
r = R;
g = G;
}
STAGE(matrix_3x3, const float* m) {
auto R = mad(r,m[0], mad(g,m[3], b*m[6])),
G = mad(r,m[1], mad(g,m[4], b*m[7])),
B = mad(r,m[2], mad(g,m[5], b*m[8]));
r = R;
g = G;
b = B;
}
STAGE(matrix_3x4, const float* m) {
auto R = mad(r,m[0], mad(g,m[3], mad(b,m[6], m[ 9]))),
G = mad(r,m[1], mad(g,m[4], mad(b,m[7], m[10]))),
B = mad(r,m[2], mad(g,m[5], mad(b,m[8], m[11])));
r = R;
g = G;
b = B;
}
STAGE(matrix_4x5, const float* m) {
auto R = mad(r,m[ 0], mad(g,m[ 1], mad(b,m[ 2], mad(a,m[ 3], m[ 4])))),
G = mad(r,m[ 5], mad(g,m[ 6], mad(b,m[ 7], mad(a,m[ 8], m[ 9])))),
B = mad(r,m[10], mad(g,m[11], mad(b,m[12], mad(a,m[13], m[14])))),
A = mad(r,m[15], mad(g,m[16], mad(b,m[17], mad(a,m[18], m[19]))));
r = R;
g = G;
b = B;
a = A;
}
STAGE(matrix_4x3, const float* m) {
auto X = r,
Y = g;
r = mad(X, m[0], mad(Y, m[4], m[ 8]));
g = mad(X, m[1], mad(Y, m[5], m[ 9]));
b = mad(X, m[2], mad(Y, m[6], m[10]));
a = mad(X, m[3], mad(Y, m[7], m[11]));
}
STAGE(matrix_perspective, const float* m) {
// N.B. Unlike the other matrix_ stages, this matrix is row-major.
auto R = mad(r,m[0], mad(g,m[1], m[2])),
G = mad(r,m[3], mad(g,m[4], m[5])),
Z = mad(r,m[6], mad(g,m[7], m[8]));
r = R * rcp(Z);
g = G * rcp(Z);
}
SI void gradient_lookup(const SkRasterPipeline_GradientCtx* c, U32 idx, F t,
F* r, F* g, F* b, F* a) {
F fr, br, fg, bg, fb, bb, fa, ba;
#if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_AVX512)
if (c->stopCount <=8) {
fr = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), idx);
br = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), idx);
fg = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), idx);
bg = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), idx);
fb = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), idx);
bb = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), idx);
fa = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), idx);
ba = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), idx);
} else
#endif
{
fr = gather(c->fs[0], idx);
br = gather(c->bs[0], idx);
fg = gather(c->fs[1], idx);
bg = gather(c->bs[1], idx);
fb = gather(c->fs[2], idx);
bb = gather(c->bs[2], idx);
fa = gather(c->fs[3], idx);
ba = gather(c->bs[3], idx);
}
*r = mad(t, fr, br);
*g = mad(t, fg, bg);
*b = mad(t, fb, bb);
*a = mad(t, fa, ba);
}
STAGE(evenly_spaced_gradient, const SkRasterPipeline_GradientCtx* c) {
auto t = r;
auto idx = trunc_(t * (c->stopCount-1));
gradient_lookup(c, idx, t, &r, &g, &b, &a);
}
STAGE(gradient, const SkRasterPipeline_GradientCtx* c) {
auto t = r;
U32 idx = 0;
// N.B. The loop starts at 1 because idx 0 is the color to use before the first stop.
for (size_t i = 1; i < c->stopCount; i++) {
idx += if_then_else(t >= c->ts[i], U32(1), U32(0));
}
gradient_lookup(c, idx, t, &r, &g, &b, &a);
}
STAGE(evenly_spaced_2_stop_gradient, const void* ctx) {
// TODO: Rename Ctx SkRasterPipeline_EvenlySpaced2StopGradientCtx.
struct Ctx { float f[4], b[4]; };
auto c = (const Ctx*)ctx;
auto t = r;
r = mad(t, c->f[0], c->b[0]);
g = mad(t, c->f[1], c->b[1]);
b = mad(t, c->f[2], c->b[2]);
a = mad(t, c->f[3], c->b[3]);
}
STAGE(xy_to_unit_angle, Ctx::None) {
F X = r,
Y = g;
F xabs = abs_(X),
yabs = abs_(Y);
F slope = min(xabs, yabs)/max(xabs, yabs);
F s = slope * slope;
// Use a 7th degree polynomial to approximate atan.
// This was generated using sollya.gforge.inria.fr.
// A float optimized polynomial was generated using the following command.
// P1 = fpminimax((1/(2*Pi))*atan(x),[|1,3,5,7|],[|24...|],[2^(-40),1],relative);
F phi = slope
* (0.15912117063999176025390625f + s
* (-5.185396969318389892578125e-2f + s
* (2.476101927459239959716796875e-2f + s
* (-7.0547382347285747528076171875e-3f))));
phi = if_then_else(xabs < yabs, 1.0f/4.0f - phi, phi);
phi = if_then_else(X < 0.0f , 1.0f/2.0f - phi, phi);
phi = if_then_else(Y < 0.0f , 1.0f - phi , phi);
phi = if_then_else(phi != phi , 0 , phi); // Check for NaN.
r = phi;
}
STAGE(xy_to_radius, Ctx::None) {
F X2 = r * r,
Y2 = g * g;
r = sqrt_(X2 + Y2);
}
// Please see https://skia.org/dev/design/conical for how our 2pt conical shader works.
STAGE(negate_x, Ctx::None) { r = -r; }
STAGE(xy_to_2pt_conical_strip, const SkRasterPipeline_2PtConicalCtx* ctx) {
F x = r, y = g, &t = r;
t = x + sqrt_(ctx->fP0 - y*y); // ctx->fP0 = r0 * r0
}
STAGE(xy_to_2pt_conical_focal_on_circle, Ctx::None) {
F x = r, y = g, &t = r;
t = x + y*y / x; // (x^2 + y^2) / x
}
STAGE(xy_to_2pt_conical_well_behaved, const SkRasterPipeline_2PtConicalCtx* ctx) {
F x = r, y = g, &t = r;
t = sqrt_(x*x + y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1
}
STAGE(xy_to_2pt_conical_greater, const SkRasterPipeline_2PtConicalCtx* ctx) {
F x = r, y = g, &t = r;
t = sqrt_(x*x - y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1
}
STAGE(xy_to_2pt_conical_smaller, const SkRasterPipeline_2PtConicalCtx* ctx) {
F x = r, y = g, &t = r;
t = -sqrt_(x*x - y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1
}
STAGE(alter_2pt_conical_compensate_focal, const SkRasterPipeline_2PtConicalCtx* ctx) {
F& t = r;
t = t + ctx->fP1; // ctx->fP1 = f
}
STAGE(alter_2pt_conical_unswap, Ctx::None) {
F& t = r;
t = 1 - t;
}
STAGE(mask_2pt_conical_nan, SkRasterPipeline_2PtConicalCtx* c) {
F& t = r;
auto is_degenerate = (t != t); // NaN
t = if_then_else(is_degenerate, F(0), t);
sk_unaligned_store(&c->fMask, cond_to_mask(!is_degenerate));
}
STAGE(mask_2pt_conical_degenerates, SkRasterPipeline_2PtConicalCtx* c) {
F& t = r;
auto is_degenerate = (t <= 0) | (t != t);
t = if_then_else(is_degenerate, F(0), t);
sk_unaligned_store(&c->fMask, cond_to_mask(!is_degenerate));
}
STAGE(apply_vector_mask, const uint32_t* ctx) {
const U32 mask = sk_unaligned_load<U32>(ctx);
r = bit_cast<F>(bit_cast<U32>(r) & mask);
g = bit_cast<F>(bit_cast<U32>(g) & mask);
b = bit_cast<F>(bit_cast<U32>(b) & mask);
a = bit_cast<F>(bit_cast<U32>(a) & mask);
}
STAGE(save_xy, SkRasterPipeline_SamplerCtx* c) {
// Whether bilinear or bicubic, all sample points are at the same fractional offset (fx,fy).
// They're either the 4 corners of a logical 1x1 pixel or the 16 corners of a 3x3 grid
// surrounding (x,y) at (0.5,0.5) off-center.
F fx = fract(r + 0.5f),
fy = fract(g + 0.5f);
// Samplers will need to load x and fx, or y and fy.
sk_unaligned_store(c->x, r);
sk_unaligned_store(c->y, g);
sk_unaligned_store(c->fx, fx);
sk_unaligned_store(c->fy, fy);
}
STAGE(accumulate, const SkRasterPipeline_SamplerCtx* c) {
// Bilinear and bicubic filters are both separable, so we produce independent contributions
// from x and y, multiplying them together here to get each pixel's total scale factor.
auto scale = sk_unaligned_load<F>(c->scalex)
* sk_unaligned_load<F>(c->scaley);
dr = mad(scale, r, dr);
dg = mad(scale, g, dg);
db = mad(scale, b, db);
da = mad(scale, a, da);
}
// In bilinear interpolation, the 4 pixels at +/- 0.5 offsets from the sample pixel center
// are combined in direct proportion to their area overlapping that logical query pixel.
// At positive offsets, the x-axis contribution to that rectangle is fx, or (1-fx) at negative x.
// The y-axis is symmetric.
template <int kScale>
SI void bilinear_x(SkRasterPipeline_SamplerCtx* ctx, F* x) {
*x = sk_unaligned_load<F>(ctx->x) + (kScale * 0.5f);
F fx = sk_unaligned_load<F>(ctx->fx);
F scalex;
if (kScale == -1) { scalex = 1.0f - fx; }
if (kScale == +1) { scalex = fx; }
sk_unaligned_store(ctx->scalex, scalex);
}
template <int kScale>
SI void bilinear_y(SkRasterPipeline_SamplerCtx* ctx, F* y) {
*y = sk_unaligned_load<F>(ctx->y) + (kScale * 0.5f);
F fy = sk_unaligned_load<F>(ctx->fy);
F scaley;
if (kScale == -1) { scaley = 1.0f - fy; }
if (kScale == +1) { scaley = fy; }
sk_unaligned_store(ctx->scaley, scaley);
}
STAGE(bilinear_nx, SkRasterPipeline_SamplerCtx* ctx) { bilinear_x<-1>(ctx, &r); }
STAGE(bilinear_px, SkRasterPipeline_SamplerCtx* ctx) { bilinear_x<+1>(ctx, &r); }
STAGE(bilinear_ny, SkRasterPipeline_SamplerCtx* ctx) { bilinear_y<-1>(ctx, &g); }
STAGE(bilinear_py, SkRasterPipeline_SamplerCtx* ctx) { bilinear_y<+1>(ctx, &g); }
// In bicubic interpolation, the 16 pixels and +/- 0.5 and +/- 1.5 offsets from the sample
// pixel center are combined with a non-uniform cubic filter, with higher values near the center.
//
// We break this function into two parts, one for near 0.5 offsets and one for far 1.5 offsets.
// See GrCubicEffect for details of this particular filter.
SI F bicubic_near(F t) {
// 1/18 + 9/18t + 27/18t^2 - 21/18t^3 == t ( t ( -21/18t + 27/18) + 9/18) + 1/18
return mad(t, mad(t, mad((-21/18.0f), t, (27/18.0f)), (9/18.0f)), (1/18.0f));
}
SI F bicubic_far(F t) {
// 0/18 + 0/18*t - 6/18t^2 + 7/18t^3 == t^2 (7/18t - 6/18)
return (t*t)*mad((7/18.0f), t, (-6/18.0f));
}
template <int kScale>
SI void bicubic_x(SkRasterPipeline_SamplerCtx* ctx, F* x) {
*x = sk_unaligned_load<F>(ctx->x) + (kScale * 0.5f);
F fx = sk_unaligned_load<F>(ctx->fx);
F scalex;
if (kScale == -3) { scalex = bicubic_far (1.0f - fx); }
if (kScale == -1) { scalex = bicubic_near(1.0f - fx); }
if (kScale == +1) { scalex = bicubic_near( fx); }
if (kScale == +3) { scalex = bicubic_far ( fx); }
sk_unaligned_store(ctx->scalex, scalex);
}
template <int kScale>
SI void bicubic_y(SkRasterPipeline_SamplerCtx* ctx, F* y) {
*y = sk_unaligned_load<F>(ctx->y) + (kScale * 0.5f);
F fy = sk_unaligned_load<F>(ctx->fy);
F scaley;
if (kScale == -3) { scaley = bicubic_far (1.0f - fy); }
if (kScale == -1) { scaley = bicubic_near(1.0f - fy); }
if (kScale == +1) { scaley = bicubic_near( fy); }
if (kScale == +3) { scaley = bicubic_far ( fy); }
sk_unaligned_store(ctx->scaley, scaley);
}
STAGE(bicubic_n3x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<-3>(ctx, &r); }
STAGE(bicubic_n1x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<-1>(ctx, &r); }
STAGE(bicubic_p1x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<+1>(ctx, &r); }
STAGE(bicubic_p3x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<+3>(ctx, &r); }
STAGE(bicubic_n3y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<-3>(ctx, &g); }
STAGE(bicubic_n1y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<-1>(ctx, &g); }
STAGE(bicubic_p1y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<+1>(ctx, &g); }
STAGE(bicubic_p3y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<+3>(ctx, &g); }
STAGE(callback, SkRasterPipeline_CallbackCtx* c) {
store4(c->rgba,0, r,g,b,a);
c->fn(c, tail ? tail : N);
load4(c->read_from,0, &r,&g,&b,&a);
}
// shader: void main(float x, float y, inout half4 color)
// colorfilter: void main(inout half4 color)
STAGE(interpreter, SkRasterPipeline_InterpreterCtx* c) {
// If N is less than the interpreter's VecWidth, then we are doing more work than necessary in
// the interpreter. This is a known issue, and will be addressed at some point.
float xx[N], yy[N],
rr[N], gg[N], bb[N], aa[N];
float* args[] = { xx, yy, rr, gg, bb, aa };
float** in_args = args;
int in_count = 6;
if (c->shaderConvention) {
// our caller must have called seed_shader to set these
sk_unaligned_store(xx, r);
sk_unaligned_store(yy, g);
sk_unaligned_store(rr, F(c->paintColor.fR));
sk_unaligned_store(gg, F(c->paintColor.fG));
sk_unaligned_store(bb, F(c->paintColor.fB));
sk_unaligned_store(aa, F(c->paintColor.fA));
} else {
in_args += 2; // skip x,y
in_count = 4;
sk_unaligned_store(rr, r);
sk_unaligned_store(gg, g);
sk_unaligned_store(bb, b);
sk_unaligned_store(aa, a);
}
SkAssertResult(c->byteCode->runStriped(c->fn, tail ? tail : N, in_args, in_count,
nullptr, 0, (const float*)c->inputs, c->ninputs));
r = sk_unaligned_load<F>(rr);
g = sk_unaligned_load<F>(gg);
b = sk_unaligned_load<F>(bb);
a = sk_unaligned_load<F>(aa);
}
STAGE(gauss_a_to_rgba, Ctx::None) {
// x = 1 - x;
// exp(-x * x * 4) - 0.018f;
// ... now approximate with quartic
//
const float c4 = -2.26661229133605957031f;
const float c3 = 2.89795351028442382812f;
const float c2 = 0.21345567703247070312f;
const float c1 = 0.15489584207534790039f;
const float c0 = 0.00030726194381713867f;
a = mad(a, mad(a, mad(a, mad(a, c4, c3), c2), c1), c0);
r = a;
g = a;
b = a;
}
SI F tile(F v, SkTileMode mode, float limit, float invLimit) {
// The ix_and_ptr() calls in sample() will clamp tile()'s output, so no need to clamp here.
switch (mode) {
case SkTileMode::kDecal: // TODO, for now fallthrough to clamp
case SkTileMode::kClamp: return v;
case SkTileMode::kRepeat: return v - floor_(v*invLimit)*limit;
case SkTileMode::kMirror:
return abs_( (v-limit) - (limit+limit)*floor_((v-limit)*(invLimit*0.5f)) - limit );
}
SkUNREACHABLE;
}
SI void sample(const SkRasterPipeline_SamplerCtx2* ctx, F x, F y,
F* r, F* g, F* b, F* a) {
x = tile(x, ctx->tileX, ctx->width , ctx->invWidth );
y = tile(y, ctx->tileY, ctx->height, ctx->invHeight);
switch (ctx->ct) {
default: *r = *g = *b = *a = 0; // TODO
break;
case kRGBA_8888_SkColorType:
case kBGRA_8888_SkColorType: {
const uint32_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, x,y);
from_8888(gather(ptr, ix), r,g,b,a);
if (ctx->ct == kBGRA_8888_SkColorType) {
std::swap(*r,*b);
}
} break;
}
}
template <int D>
SI void sampler(const SkRasterPipeline_SamplerCtx2* ctx,
F cx, F cy, const F (&wx)[D], const F (&wy)[D],
F* r, F* g, F* b, F* a) {
float start = -0.5f*(D-1);
*r = *g = *b = *a = 0;
F y = cy + start;
for (int j = 0; j < D; j++, y += 1.0f) {
F x = cx + start;
for (int i = 0; i < D; i++, x += 1.0f) {
F R,G,B,A;
sample(ctx, x,y, &R,&G,&B,&A);
F w = wx[i] * wy[j];
*r = mad(w,R,*r);
*g = mad(w,G,*g);
*b = mad(w,B,*b);
*a = mad(w,A,*a);
}
}
}
STAGE(bilinear, const SkRasterPipeline_SamplerCtx2* ctx) {
F x = r, fx = fract(x + 0.5f),
y = g, fy = fract(y + 0.5f);
const F wx[] = {1.0f - fx, fx};
const F wy[] = {1.0f - fy, fy};
sampler(ctx, x,y, wx,wy, &r,&g,&b,&a);
}
STAGE(bicubic, SkRasterPipeline_SamplerCtx2* ctx) {
F x = r, fx = fract(x + 0.5f),
y = g, fy = fract(y + 0.5f);
const F wx[] = { bicubic_far(1-fx), bicubic_near(1-fx), bicubic_near(fx), bicubic_far(fx) };
const F wy[] = { bicubic_far(1-fy), bicubic_near(1-fy), bicubic_near(fy), bicubic_far(fy) };
sampler(ctx, x,y, wx,wy, &r,&g,&b,&a);
}
// A specialized fused image shader for clamp-x, clamp-y, non-sRGB sampling.
STAGE(bilerp_clamp_8888, const SkRasterPipeline_GatherCtx* ctx) {
// (cx,cy) are the center of our sample.
F cx = r,
cy = g;
// All sample points are at the same fractional offset (fx,fy).
// They're the 4 corners of a logical 1x1 pixel surrounding (x,y) at (0.5,0.5) offsets.
F fx = fract(cx + 0.5f),
fy = fract(cy + 0.5f);
// We'll accumulate the color of all four samples into {r,g,b,a} directly.
r = g = b = a = 0;
for (float dy = -0.5f; dy <= +0.5f; dy += 1.0f)
for (float dx = -0.5f; dx <= +0.5f; dx += 1.0f) {
// (x,y) are the coordinates of this sample point.
F x = cx + dx,
y = cy + dy;
// ix_and_ptr() will clamp to the image's bounds for us.
const uint32_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, x,y);
F sr,sg,sb,sa;
from_8888(gather(ptr, ix), &sr,&sg,&sb,&sa);
// In bilinear interpolation, the 4 pixels at +/- 0.5 offsets from the sample pixel center
// are combined in direct proportion to their area overlapping that logical query pixel.
// At positive offsets, the x-axis contribution to that rectangle is fx,
// or (1-fx) at negative x. Same deal for y.
F sx = (dx > 0) ? fx : 1.0f - fx,
sy = (dy > 0) ? fy : 1.0f - fy,
area = sx * sy;
r += sr * area;
g += sg * area;
b += sb * area;
a += sa * area;
}
}
// A specialized fused image shader for clamp-x, clamp-y, non-sRGB sampling.
STAGE(bicubic_clamp_8888, const SkRasterPipeline_GatherCtx* ctx) {
// (cx,cy) are the center of our sample.
F cx = r,
cy = g;
// All sample points are at the same fractional offset (fx,fy).
// They're the 4 corners of a logical 1x1 pixel surrounding (x,y) at (0.5,0.5) offsets.
F fx = fract(cx + 0.5f),
fy = fract(cy + 0.5f);
// We'll accumulate the color of all four samples into {r,g,b,a} directly.
r = g = b = a = 0;
const F scaley[4] = {
bicubic_far (1.0f - fy), bicubic_near(1.0f - fy),
bicubic_near( fy), bicubic_far ( fy),
};
const F scalex[4] = {
bicubic_far (1.0f - fx), bicubic_near(1.0f - fx),
bicubic_near( fx), bicubic_far ( fx),
};
F sample_y = cy - 1.5f;
for (int yy = 0; yy <= 3; ++yy) {
F sample_x = cx - 1.5f;
for (int xx = 0; xx <= 3; ++xx) {
F scale = scalex[xx] * scaley[yy];
// ix_and_ptr() will clamp to the image's bounds for us.
const uint32_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, sample_x, sample_y);
F sr,sg,sb,sa;
from_8888(gather(ptr, ix), &sr,&sg,&sb,&sa);
r = mad(scale, sr, r);
g = mad(scale, sg, g);
b = mad(scale, sb, b);
a = mad(scale, sa, a);
sample_x += 1;
}
sample_y += 1;
}
}
// ~~~~~~ GrSwizzle stage ~~~~~~ //
STAGE(swizzle, void* ctx) {
auto ir = r, ig = g, ib = b, ia = a;
F* o[] = {&r, &g, &b, &a};
char swiz[4];
memcpy(swiz, &ctx, sizeof(swiz));
for (int i = 0; i < 4; ++i) {
switch (swiz[i]) {
case 'r': *o[i] = ir; break;
case 'g': *o[i] = ig; break;
case 'b': *o[i] = ib; break;
case 'a': *o[i] = ia; break;
case '0': *o[i] = F(0); break;
case '1': *o[i] = F(1); break;
default: break;
}
}
}
namespace lowp {
#if defined(JUMPER_IS_SCALAR) || defined(SK_DISABLE_LOWP_RASTER_PIPELINE)
// If we're not compiled by Clang, or otherwise switched into scalar mode (old Clang, manually),
// we don't generate lowp stages. All these nullptrs will tell SkJumper.cpp to always use the
// highp float pipeline.
#define M(st) static void (*st)(void) = nullptr;
SK_RASTER_PIPELINE_STAGES(M)
#undef M
static void (*just_return)(void) = nullptr;
static void start_pipeline(size_t,size_t,size_t,size_t, void**) {}
#else // We are compiling vector code with Clang... let's make some lowp stages!
#if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_AVX512)
using U8 = uint8_t __attribute__((ext_vector_type(16)));
using U16 = uint16_t __attribute__((ext_vector_type(16)));
using I16 = int16_t __attribute__((ext_vector_type(16)));
using I32 = int32_t __attribute__((ext_vector_type(16)));
using U32 = uint32_t __attribute__((ext_vector_type(16)));
using F = float __attribute__((ext_vector_type(16)));
#else
using U8 = uint8_t __attribute__((ext_vector_type(8)));
using U16 = uint16_t __attribute__((ext_vector_type(8)));
using I16 = int16_t __attribute__((ext_vector_type(8)));
using I32 = int32_t __attribute__((ext_vector_type(8)));
using U32 = uint32_t __attribute__((ext_vector_type(8)));
using F = float __attribute__((ext_vector_type(8)));
#endif
static const size_t N = sizeof(U16) / sizeof(uint16_t);
// Once again, some platforms benefit from a restricted Stage calling convention,
// but others can pass tons and tons of registers and we're happy to exploit that.
// It's exactly the same decision and implementation strategy as the F stages above.
#if JUMPER_NARROW_STAGES
struct Params {
size_t dx, dy, tail;
U16 dr,dg,db,da;
};
using Stage = void(ABI*)(Params*, void** program, U16 r, U16 g, U16 b, U16 a);
#else
// We pass program as the second argument so that load_and_inc() will find it in %rsi on x86-64.
using Stage = void (ABI*)(size_t tail, void** program, size_t dx, size_t dy,
U16 r, U16 g, U16 b, U16 a,
U16 dr, U16 dg, U16 db, U16 da);
#endif
static void start_pipeline(const size_t x0, const size_t y0,
const size_t xlimit, const size_t ylimit, void** program) {
auto start = (Stage)load_and_inc(program);
for (size_t dy = y0; dy < ylimit; dy++) {
#if JUMPER_NARROW_STAGES
Params params = { x0,dy,0, 0,0,0,0 };
for (; params.dx + N <= xlimit; params.dx += N) {
start(&params,program, 0,0,0,0);
}
if (size_t tail = xlimit - params.dx) {
params.tail = tail;
start(&params,program, 0,0,0,0);
}
#else
size_t dx = x0;
for (; dx + N <= xlimit; dx += N) {
start( 0,program,dx,dy, 0,0,0,0, 0,0,0,0);
}
if (size_t tail = xlimit - dx) {
start(tail,program,dx,dy, 0,0,0,0, 0,0,0,0);
}
#endif
}
}
#if JUMPER_NARROW_STAGES
static void ABI just_return(Params*, void**, U16,U16,U16,U16) {}
#else
static void ABI just_return(size_t,void**,size_t,size_t, U16,U16,U16,U16, U16,U16,U16,U16) {}
#endif
// All stages use the same function call ABI to chain into each other, but there are three types:
// GG: geometry in, geometry out -- think, a matrix
// GP: geometry in, pixels out. -- think, a memory gather
// PP: pixels in, pixels out. -- think, a blend mode
//
// (Some stages ignore their inputs or produce no logical output. That's perfectly fine.)
//
// These three STAGE_ macros let you define each type of stage,
// and will have (x,y) geometry and/or (r,g,b,a, dr,dg,db,da) pixel arguments as appropriate.
#if JUMPER_NARROW_STAGES
#define STAGE_GG(name, ...) \
SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, F& x, F& y); \
static void ABI name(Params* params, void** program, U16 r, U16 g, U16 b, U16 a) { \
auto x = join<F>(r,g), \
y = join<F>(b,a); \
name##_k(Ctx{program}, params->dx,params->dy,params->tail, x,y); \
split(x, &r,&g); \
split(y, &b,&a); \
auto next = (Stage)load_and_inc(program); \
next(params,program, r,g,b,a); \
} \
SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, F& x, F& y)
#define STAGE_GP(name, ...) \
SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, F x, F y, \
U16& r, U16& g, U16& b, U16& a, \
U16& dr, U16& dg, U16& db, U16& da); \
static void ABI name(Params* params, void** program, U16 r, U16 g, U16 b, U16 a) { \
auto x = join<F>(r,g), \
y = join<F>(b,a); \
name##_k(Ctx{program}, params->dx,params->dy,params->tail, x,y, r,g,b,a, \
params->dr,params->dg,params->db,params->da); \
auto next = (Stage)load_and_inc(program); \
next(params,program, r,g,b,a); \
} \
SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, F x, F y, \
U16& r, U16& g, U16& b, U16& a, \
U16& dr, U16& dg, U16& db, U16& da)
#define STAGE_PP(name, ...) \
SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
U16& r, U16& g, U16& b, U16& a, \
U16& dr, U16& dg, U16& db, U16& da); \
static void ABI name(Params* params, void** program, U16 r, U16 g, U16 b, U16 a) { \
name##_k(Ctx{program}, params->dx,params->dy,params->tail, r,g,b,a, \
params->dr,params->dg,params->db,params->da); \
auto next = (Stage)load_and_inc(program); \
next(params,program, r,g,b,a); \
} \
SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
U16& r, U16& g, U16& b, U16& a, \
U16& dr, U16& dg, U16& db, U16& da)
#else
#define STAGE_GG(name, ...) \
SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, F& x, F& y); \
static void ABI name(size_t tail, void** program, size_t dx, size_t dy, \
U16 r, U16 g, U16 b, U16 a, \
U16 dr, U16 dg, U16 db, U16 da) { \
auto x = join<F>(r,g), \
y = join<F>(b,a); \
name##_k(Ctx{program}, dx,dy,tail, x,y); \
split(x, &r,&g); \
split(y, &b,&a); \
auto next = (Stage)load_and_inc(program); \
next(tail,program,dx,dy, r,g,b,a, dr,dg,db,da); \
} \
SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, F& x, F& y)
#define STAGE_GP(name, ...) \
SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, F x, F y, \
U16& r, U16& g, U16& b, U16& a, \
U16& dr, U16& dg, U16& db, U16& da); \
static void ABI name(size_t tail, void** program, size_t dx, size_t dy, \
U16 r, U16 g, U16 b, U16 a, \
U16 dr, U16 dg, U16 db, U16 da) { \
auto x = join<F>(r,g), \
y = join<F>(b,a); \
name##_k(Ctx{program}, dx,dy,tail, x,y, r,g,b,a, dr,dg,db,da); \
auto next = (Stage)load_and_inc(program); \
next(tail,program,dx,dy, r,g,b,a, dr,dg,db,da); \
} \
SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, F x, F y, \
U16& r, U16& g, U16& b, U16& a, \
U16& dr, U16& dg, U16& db, U16& da)
#define STAGE_PP(name, ...) \
SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
U16& r, U16& g, U16& b, U16& a, \
U16& dr, U16& dg, U16& db, U16& da); \
static void ABI name(size_t tail, void** program, size_t dx, size_t dy, \
U16 r, U16 g, U16 b, U16 a, \
U16 dr, U16 dg, U16 db, U16 da) { \
name##_k(Ctx{program}, dx,dy,tail, r,g,b,a, dr,dg,db,da); \
auto next = (Stage)load_and_inc(program); \
next(tail,program,dx,dy, r,g,b,a, dr,dg,db,da); \
} \
SI void name##_k(__VA_ARGS__, size_t dx, size_t dy, size_t tail, \
U16& r, U16& g, U16& b, U16& a, \
U16& dr, U16& dg, U16& db, U16& da)
#endif
// ~~~~~~ Commonly used helper functions ~~~~~~ //
SI U16 div255(U16 v) {
#if 0
return (v+127)/255; // The ideal rounding divide by 255.
#elif 1 && defined(JUMPER_IS_NEON)
// With NEON we can compute (v+127)/255 as (v + ((v+128)>>8) + 128)>>8
// just as fast as we can do the approximation below, so might as well be correct!
// First we compute v + ((v+128)>>8), then one more round of (...+128)>>8 to finish up.
return vrshrq_n_u16(vrsraq_n_u16(v, v, 8), 8);
#else
return (v+255)/256; // A good approximation of (v+127)/255.
#endif
}
SI U16 inv(U16 v) { return 255-v; }
SI U16 if_then_else(I16 c, U16 t, U16 e) { return (t & c) | (e & ~c); }
SI U32 if_then_else(I32 c, U32 t, U32 e) { return (t & c) | (e & ~c); }
SI U16 max(U16 x, U16 y) { return if_then_else(x < y, y, x); }
SI U16 min(U16 x, U16 y) { return if_then_else(x < y, x, y); }
SI U16 from_float(float f) { return f * 255.0f + 0.5f; }
SI U16 lerp(U16 from, U16 to, U16 t) { return div255( from*inv(t) + to*t ); }
template <typename D, typename S>
SI D cast(S src) {
return __builtin_convertvector(src, D);
}
template <typename D, typename S>
SI void split(S v, D* lo, D* hi) {
static_assert(2*sizeof(D) == sizeof(S), "");
memcpy(lo, (const char*)&v + 0*sizeof(D), sizeof(D));
memcpy(hi, (const char*)&v + 1*sizeof(D), sizeof(D));
}
template <typename D, typename S>
SI D join(S lo, S hi) {
static_assert(sizeof(D) == 2*sizeof(S), "");
D v;
memcpy((char*)&v + 0*sizeof(S), &lo, sizeof(S));
memcpy((char*)&v + 1*sizeof(S), &hi, sizeof(S));
return v;
}
SI F if_then_else(I32 c, F t, F e) {
return bit_cast<F>( (bit_cast<I32>(t) & c) | (bit_cast<I32>(e) & ~c) );
}
SI F max(F x, F y) { return if_then_else(x < y, y, x); }
SI F min(F x, F y) { return if_then_else(x < y, x, y); }
SI F mad(F f, F m, F a) { return f*m+a; }
SI U32 trunc_(F x) { return (U32)cast<I32>(x); }
SI F rcp(F x) {
#if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_AVX512)
__m256 lo,hi;
split(x, &lo,&hi);
return join<F>(_mm256_rcp_ps(lo), _mm256_rcp_ps(hi));
#elif defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
__m128 lo,hi;
split(x, &lo,&hi);
return join<F>(_mm_rcp_ps(lo), _mm_rcp_ps(hi));
#elif defined(JUMPER_IS_NEON)
auto rcp = [](float32x4_t v) {
auto est = vrecpeq_f32(v);
return vrecpsq_f32(v,est)*est;
};
float32x4_t lo,hi;
split(x, &lo,&hi);
return join<F>(rcp(lo), rcp(hi));
#else
return 1.0f / x;
#endif
}
SI F sqrt_(F x) {
#if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_AVX512)
__m256 lo,hi;
split(x, &lo,&hi);
return join<F>(_mm256_sqrt_ps(lo), _mm256_sqrt_ps(hi));
#elif defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
__m128 lo,hi;
split(x, &lo,&hi);
return join<F>(_mm_sqrt_ps(lo), _mm_sqrt_ps(hi));
#elif defined(SK_CPU_ARM64)
float32x4_t lo,hi;
split(x, &lo,&hi);
return join<F>(vsqrtq_f32(lo), vsqrtq_f32(hi));
#elif defined(JUMPER_IS_NEON)
auto sqrt = [](float32x4_t v) {
auto est = vrsqrteq_f32(v); // Estimate and two refinement steps for est = rsqrt(v).
est *= vrsqrtsq_f32(v,est*est);
est *= vrsqrtsq_f32(v,est*est);
return v*est; // sqrt(v) == v*rsqrt(v).
};
float32x4_t lo,hi;
split(x, &lo,&hi);
return join<F>(sqrt(lo), sqrt(hi));
#else
return F{
sqrtf(x[0]), sqrtf(x[1]), sqrtf(x[2]), sqrtf(x[3]),
sqrtf(x[4]), sqrtf(x[5]), sqrtf(x[6]), sqrtf(x[7]),
};
#endif
}
SI F floor_(F x) {
#if defined(SK_CPU_ARM64)
float32x4_t lo,hi;
split(x, &lo,&hi);
return join<F>(vrndmq_f32(lo), vrndmq_f32(hi));
#elif defined(JUMPER_IS_HSW) || defined(JUMPER_IS_AVX512)
__m256 lo,hi;
split(x, &lo,&hi);
return join<F>(_mm256_floor_ps(lo), _mm256_floor_ps(hi));
#elif defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX)
__m128 lo,hi;
split(x, &lo,&hi);
return join<F>(_mm_floor_ps(lo), _mm_floor_ps(hi));
#else
F roundtrip = cast<F>(cast<I32>(x));
return roundtrip - if_then_else(roundtrip > x, F(1), F(0));
#endif
}
SI F fract(F x) { return x - floor_(x); }
SI F abs_(F x) { return bit_cast<F>( bit_cast<I32>(x) & 0x7fffffff ); }
// ~~~~~~ Basic / misc. stages ~~~~~~ //
STAGE_GG(seed_shader, Ctx::None) {
static const float iota[] = {
0.5f, 1.5f, 2.5f, 3.5f, 4.5f, 5.5f, 6.5f, 7.5f,
8.5f, 9.5f,10.5f,11.5f,12.5f,13.5f,14.5f,15.5f,
};
x = cast<F>(I32(dx)) + sk_unaligned_load<F>(iota);
y = cast<F>(I32(dy)) + 0.5f;
}
STAGE_GG(matrix_translate, const float* m) {
x += m[0];
y += m[1];
}
STAGE_GG(matrix_scale_translate, const float* m) {
x = mad(x,m[0], m[2]);
y = mad(y,m[1], m[3]);
}
STAGE_GG(matrix_2x3, const float* m) {
auto X = mad(x,m[0], mad(y,m[2], m[4])),
Y = mad(x,m[1], mad(y,m[3], m[5]));
x = X;
y = Y;
}
STAGE_GG(matrix_perspective, const float* m) {
// N.B. Unlike the other matrix_ stages, this matrix is row-major.
auto X = mad(x,m[0], mad(y,m[1], m[2])),
Y = mad(x,m[3], mad(y,m[4], m[5])),
Z = mad(x,m[6], mad(y,m[7], m[8]));
x = X * rcp(Z);
y = Y * rcp(Z);
}
STAGE_PP(uniform_color, const SkRasterPipeline_UniformColorCtx* c) {
r = c->rgba[0];
g = c->rgba[1];
b = c->rgba[2];
a = c->rgba[3];
}
STAGE_PP(uniform_color_dst, const SkRasterPipeline_UniformColorCtx* c) {
dr = c->rgba[0];
dg = c->rgba[1];
db = c->rgba[2];
da = c->rgba[3];
}
STAGE_PP(black_color, Ctx::None) { r = g = b = 0; a = 255; }
STAGE_PP(white_color, Ctx::None) { r = g = b = 255; a = 255; }
STAGE_PP(set_rgb, const float rgb[3]) {
r = from_float(rgb[0]);
g = from_float(rgb[1]);
b = from_float(rgb[2]);
}
STAGE_PP(clamp_0, Ctx::None) { /*definitely a noop*/ }
STAGE_PP(clamp_1, Ctx::None) { /*_should_ be a noop*/ }
STAGE_PP(clamp_a, Ctx::None) {
r = min(r, a);
g = min(g, a);
b = min(b, a);
}
STAGE_PP(clamp_gamut, Ctx::None) {
// It shouldn't be possible to get out-of-gamut
// colors when working in lowp.
}
STAGE_PP(premul, Ctx::None) {
r = div255(r * a);
g = div255(g * a);
b = div255(b * a);
}
STAGE_PP(premul_dst, Ctx::None) {
dr = div255(dr * da);
dg = div255(dg * da);
db = div255(db * da);
}
STAGE_PP(force_opaque , Ctx::None) { a = 255; }
STAGE_PP(force_opaque_dst, Ctx::None) { da = 255; }
STAGE_PP(swap_rb, Ctx::None) {
auto tmp = r;
r = b;
b = tmp;
}
STAGE_PP(swap_rb_dst, Ctx::None) {
auto tmp = dr;
dr = db;
db = tmp;
}
STAGE_PP(move_src_dst, Ctx::None) {
dr = r;
dg = g;
db = b;
da = a;
}
STAGE_PP(move_dst_src, Ctx::None) {
r = dr;
g = dg;
b = db;
a = da;
}
// ~~~~~~ Blend modes ~~~~~~ //
// The same logic applied to all 4 channels.
#define BLEND_MODE(name) \
SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da); \
STAGE_PP(name, Ctx::None) { \
r = name##_channel(r,dr,a,da); \
g = name##_channel(g,dg,a,da); \
b = name##_channel(b,db,a,da); \
a = name##_channel(a,da,a,da); \
} \
SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da)
BLEND_MODE(clear) { return 0; }
BLEND_MODE(srcatop) { return div255( s*da + d*inv(sa) ); }
BLEND_MODE(dstatop) { return div255( d*sa + s*inv(da) ); }
BLEND_MODE(srcin) { return div255( s*da ); }
BLEND_MODE(dstin) { return div255( d*sa ); }
BLEND_MODE(srcout) { return div255( s*inv(da) ); }
BLEND_MODE(dstout) { return div255( d*inv(sa) ); }
BLEND_MODE(srcover) { return s + div255( d*inv(sa) ); }
BLEND_MODE(dstover) { return d + div255( s*inv(da) ); }
BLEND_MODE(modulate) { return div255( s*d ); }
BLEND_MODE(multiply) { return div255( s*inv(da) + d*inv(sa) + s*d ); }
BLEND_MODE(plus_) { return min(s+d, 255); }
BLEND_MODE(screen) { return s + d - div255( s*d ); }
BLEND_MODE(xor_) { return div255( s*inv(da) + d*inv(sa) ); }
#undef BLEND_MODE
// The same logic applied to color, and srcover for alpha.
#define BLEND_MODE(name) \
SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da); \
STAGE_PP(name, Ctx::None) { \
r = name##_channel(r,dr,a,da); \
g = name##_channel(g,dg,a,da); \
b = name##_channel(b,db,a,da); \
a = a + div255( da*inv(a) ); \
} \
SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da)
BLEND_MODE(darken) { return s + d - div255( max(s*da, d*sa) ); }
BLEND_MODE(lighten) { return s + d - div255( min(s*da, d*sa) ); }
BLEND_MODE(difference) { return s + d - 2*div255( min(s*da, d*sa) ); }
BLEND_MODE(exclusion) { return s + d - 2*div255( s*d ); }
BLEND_MODE(hardlight) {
return div255( s*inv(da) + d*inv(sa) +
if_then_else(2*s <= sa, 2*s*d, sa*da - 2*(sa-s)*(da-d)) );
}
BLEND_MODE(overlay) {
return div255( s*inv(da) + d*inv(sa) +
if_then_else(2*d <= da, 2*s*d, sa*da - 2*(sa-s)*(da-d)) );
}
#undef BLEND_MODE
// ~~~~~~ Helpers for interacting with memory ~~~~~~ //
template <typename T>
SI T* ptr_at_xy(const SkRasterPipeline_MemoryCtx* ctx, size_t dx, size_t dy) {
return (T*)ctx->pixels + dy*ctx->stride + dx;
}
template <typename T>
SI U32 ix_and_ptr(T** ptr, const SkRasterPipeline_GatherCtx* ctx, F x, F y) {
auto clamp = [](F v, F limit) {
limit = bit_cast<F>( bit_cast<U32>(limit) - 1 ); // Exclusive -> inclusive.
return min(max(0, v), limit);
};
x = clamp(x, ctx->width);
y = clamp(y, ctx->height);
*ptr = (const T*)ctx->pixels;
return trunc_(y)*ctx->stride + trunc_(x);
}
template <typename V, typename T>
SI V load(const T* ptr, size_t tail) {
V v = 0;
switch (tail & (N-1)) {
case 0: memcpy(&v, ptr, sizeof(v)); break;
#if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_AVX512)
case 15: v[14] = ptr[14];
case 14: v[13] = ptr[13];
case 13: v[12] = ptr[12];
case 12: memcpy(&v, ptr, 12*sizeof(T)); break;
case 11: v[10] = ptr[10];
case 10: v[ 9] = ptr[ 9];
case 9: v[ 8] = ptr[ 8];
case 8: memcpy(&v, ptr, 8*sizeof(T)); break;
#endif
case 7: v[ 6] = ptr[ 6];
case 6: v[ 5] = ptr[ 5];
case 5: v[ 4] = ptr[ 4];
case 4: memcpy(&v, ptr, 4*sizeof(T)); break;
case 3: v[ 2] = ptr[ 2];
case 2: memcpy(&v, ptr, 2*sizeof(T)); break;
case 1: v[ 0] = ptr[ 0];
}
return v;
}
template <typename V, typename T>
SI void store(T* ptr, size_t tail, V v) {
switch (tail & (N-1)) {
case 0: memcpy(ptr, &v, sizeof(v)); break;
#if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_AVX512)
case 15: ptr[14] = v[14];
case 14: ptr[13] = v[13];
case 13: ptr[12] = v[12];
case 12: memcpy(ptr, &v, 12*sizeof(T)); break;
case 11: ptr[10] = v[10];
case 10: ptr[ 9] = v[ 9];
case 9: ptr[ 8] = v[ 8];
case 8: memcpy(ptr, &v, 8*sizeof(T)); break;
#endif
case 7: ptr[ 6] = v[ 6];
case 6: ptr[ 5] = v[ 5];
case 5: ptr[ 4] = v[ 4];
case 4: memcpy(ptr, &v, 4*sizeof(T)); break;
case 3: ptr[ 2] = v[ 2];
case 2: memcpy(ptr, &v, 2*sizeof(T)); break;
case 1: ptr[ 0] = v[ 0];
}
}
#if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_AVX512)
template <typename V, typename T>
SI V gather(const T* ptr, U32 ix) {
return V{ ptr[ix[ 0]], ptr[ix[ 1]], ptr[ix[ 2]], ptr[ix[ 3]],
ptr[ix[ 4]], ptr[ix[ 5]], ptr[ix[ 6]], ptr[ix[ 7]],
ptr[ix[ 8]], ptr[ix[ 9]], ptr[ix[10]], ptr[ix[11]],
ptr[ix[12]], ptr[ix[13]], ptr[ix[14]], ptr[ix[15]], };
}
template<>
F gather(const float* ptr, U32 ix) {
__m256i lo, hi;
split(ix, &lo, &hi);
return join<F>(_mm256_i32gather_ps(ptr, lo, 4),
_mm256_i32gather_ps(ptr, hi, 4));
}
template<>
U32 gather(const uint32_t* ptr, U32 ix) {
__m256i lo, hi;
split(ix, &lo, &hi);
return join<U32>(_mm256_i32gather_epi32(ptr, lo, 4),
_mm256_i32gather_epi32(ptr, hi, 4));
}
#else
template <typename V, typename T>
SI V gather(const T* ptr, U32 ix) {
return V{ ptr[ix[ 0]], ptr[ix[ 1]], ptr[ix[ 2]], ptr[ix[ 3]],
ptr[ix[ 4]], ptr[ix[ 5]], ptr[ix[ 6]], ptr[ix[ 7]], };
}
#endif
// ~~~~~~ 32-bit memory loads and stores ~~~~~~ //
SI void from_8888(U32 rgba, U16* r, U16* g, U16* b, U16* a) {
#if 1 && defined(JUMPER_IS_HSW) || defined(JUMPER_IS_AVX512)
// Swap the middle 128-bit lanes to make _mm256_packus_epi32() in cast_U16() work out nicely.
__m256i _01,_23;
split(rgba, &_01, &_23);
__m256i _02 = _mm256_permute2x128_si256(_01,_23, 0x20),
_13 = _mm256_permute2x128_si256(_01,_23, 0x31);
rgba = join<U32>(_02, _13);
auto cast_U16 = [](U32 v) -> U16 {
__m256i _02,_13;
split(v, &_02,&_13);
return _mm256_packus_epi32(_02,_13);
};
#else
auto cast_U16 = [](U32 v) -> U16 {
return cast<U16>(v);
};
#endif
*r = cast_U16(rgba & 65535) & 255;
*g = cast_U16(rgba & 65535) >> 8;
*b = cast_U16(rgba >> 16) & 255;
*a = cast_U16(rgba >> 16) >> 8;
}
SI void load_8888_(const uint32_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
#if 1 && defined(JUMPER_IS_NEON)
uint8x8x4_t rgba;
switch (tail & (N-1)) {
case 0: rgba = vld4_u8 ((const uint8_t*)(ptr+0) ); break;
case 7: rgba = vld4_lane_u8((const uint8_t*)(ptr+6), rgba, 6);
case 6: rgba = vld4_lane_u8((const uint8_t*)(ptr+5), rgba, 5);
case 5: rgba = vld4_lane_u8((const uint8_t*)(ptr+4), rgba, 4);
case 4: rgba = vld4_lane_u8((const uint8_t*)(ptr+3), rgba, 3);
case 3: rgba = vld4_lane_u8((const uint8_t*)(ptr+2), rgba, 2);
case 2: rgba = vld4_lane_u8((const uint8_t*)(ptr+1), rgba, 1);
case 1: rgba = vld4_lane_u8((const uint8_t*)(ptr+0), rgba, 0);
}
*r = cast<U16>(rgba.val[0]);
*g = cast<U16>(rgba.val[1]);
*b = cast<U16>(rgba.val[2]);
*a = cast<U16>(rgba.val[3]);
#else
from_8888(load<U32>(ptr, tail), r,g,b,a);
#endif
}
SI void store_8888_(uint32_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
#if 1 && defined(JUMPER_IS_NEON)
uint8x8x4_t rgba = {{
cast<U8>(r),
cast<U8>(g),
cast<U8>(b),
cast<U8>(a),
}};
switch (tail & (N-1)) {
case 0: vst4_u8 ((uint8_t*)(ptr+0), rgba ); break;
case 7: vst4_lane_u8((uint8_t*)(ptr+6), rgba, 6);
case 6: vst4_lane_u8((uint8_t*)(ptr+5), rgba, 5);
case 5: vst4_lane_u8((uint8_t*)(ptr+4), rgba, 4);
case 4: vst4_lane_u8((uint8_t*)(ptr+3), rgba, 3);
case 3: vst4_lane_u8((uint8_t*)(ptr+2), rgba, 2);
case 2: vst4_lane_u8((uint8_t*)(ptr+1), rgba, 1);
case 1: vst4_lane_u8((uint8_t*)(ptr+0), rgba, 0);
}
#else
store(ptr, tail, cast<U32>(r | (g<<8)) << 0
| cast<U32>(b | (a<<8)) << 16);
#endif
}
STAGE_PP(load_8888, const SkRasterPipeline_MemoryCtx* ctx) {
load_8888_(ptr_at_xy<const uint32_t>(ctx, dx,dy), tail, &r,&g,&b,&a);
}
STAGE_PP(load_8888_dst, const SkRasterPipeline_MemoryCtx* ctx) {
load_8888_(ptr_at_xy<const uint32_t>(ctx, dx,dy), tail, &dr,&dg,&db,&da);
}
STAGE_PP(store_8888, const SkRasterPipeline_MemoryCtx* ctx) {
store_8888_(ptr_at_xy<uint32_t>(ctx, dx,dy), tail, r,g,b,a);
}
STAGE_GP(gather_8888, const SkRasterPipeline_GatherCtx* ctx) {
const uint32_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, x,y);
from_8888(gather<U32>(ptr, ix), &r, &g, &b, &a);
}
// ~~~~~~ 16-bit memory loads and stores ~~~~~~ //
SI void from_565(U16 rgb, U16* r, U16* g, U16* b) {
// Format for 565 buffers: 15|rrrrr gggggg bbbbb|0
U16 R = (rgb >> 11) & 31,
G = (rgb >> 5) & 63,
B = (rgb >> 0) & 31;
// These bit replications are the same as multiplying by 255/31 or 255/63 to scale to 8-bit.
*r = (R << 3) | (R >> 2);
*g = (G << 2) | (G >> 4);
*b = (B << 3) | (B >> 2);
}
SI void load_565_(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) {
from_565(load<U16>(ptr, tail), r,g,b);
}
SI void store_565_(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b) {
// Round from [0,255] to [0,31] or [0,63], as if x * (31/255.0f) + 0.5f.
// (Don't feel like you need to find some fundamental truth in these...
// they were brute-force searched.)
U16 R = (r * 9 + 36) / 74, // 9/74 ≈ 31/255, plus 36/74, about half.
G = (g * 21 + 42) / 85, // 21/85 = 63/255 exactly.
B = (b * 9 + 36) / 74;
// Pack them back into 15|rrrrr gggggg bbbbb|0.
store(ptr, tail, R << 11
| G << 5
| B << 0);
}
STAGE_PP(load_565, const SkRasterPipeline_MemoryCtx* ctx) {
load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &r,&g,&b);
a = 255;
}
STAGE_PP(load_565_dst, const SkRasterPipeline_MemoryCtx* ctx) {
load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &dr,&dg,&db);
da = 255;
}
STAGE_PP(store_565, const SkRasterPipeline_MemoryCtx* ctx) {
store_565_(ptr_at_xy<uint16_t>(ctx, dx,dy), tail, r,g,b);
}
STAGE_GP(gather_565, const SkRasterPipeline_GatherCtx* ctx) {
const uint16_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, x,y);
from_565(gather<U16>(ptr, ix), &r, &g, &b);
a = 255;
}
SI void from_4444(U16 rgba, U16* r, U16* g, U16* b, U16* a) {
// Format for 4444 buffers: 15|rrrr gggg bbbb aaaa|0.
U16 R = (rgba >> 12) & 15,
G = (rgba >> 8) & 15,
B = (rgba >> 4) & 15,
A = (rgba >> 0) & 15;
// Scale [0,15] to [0,255].
*r = (R << 4) | R;
*g = (G << 4) | G;
*b = (B << 4) | B;
*a = (A << 4) | A;
}
SI void load_4444_(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) {
from_4444(load<U16>(ptr, tail), r,g,b,a);
}
SI void store_4444_(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) {
// Round from [0,255] to [0,15], producing the same value as (x*(15/255.0f) + 0.5f).
U16 R = (r + 8) / 17,
G = (g + 8) / 17,
B = (b + 8) / 17,
A = (a + 8) / 17;
// Pack them back into 15|rrrr gggg bbbb aaaa|0.
store(ptr, tail, R << 12
| G << 8
| B << 4
| A << 0);
}
STAGE_PP(load_4444, const SkRasterPipeline_MemoryCtx* ctx) {
load_4444_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &r,&g,&b,&a);
}
STAGE_PP(load_4444_dst, const SkRasterPipeline_MemoryCtx* ctx) {
load_4444_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &dr,&dg,&db,&da);
}
STAGE_PP(store_4444, const SkRasterPipeline_MemoryCtx* ctx) {
store_4444_(ptr_at_xy<uint16_t>(ctx, dx,dy), tail, r,g,b,a);
}
STAGE_GP(gather_4444, const SkRasterPipeline_GatherCtx* ctx) {
const uint16_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, x,y);
from_4444(gather<U16>(ptr, ix), &r,&g,&b,&a);
}
SI void from_88(U16 rg, U16* r, U16* g) {
*r = (rg & 0xFF);
*g = (rg >> 8);
}
SI void load_88_(const uint16_t* ptr, size_t tail, U16* r, U16* g) {
#if 1 && defined(JUMPER_IS_NEON)
uint8x8x2_t rg;
switch (tail & (N-1)) {
case 0: rg = vld2_u8 ((const uint8_t*)(ptr+0) ); break;
case 7: rg = vld2_lane_u8((const uint8_t*)(ptr+6), rg, 6);
case 6: rg = vld2_lane_u8((const uint8_t*)(ptr+5), rg, 5);
case 5: rg = vld2_lane_u8((const uint8_t*)(ptr+4), rg, 4);
case 4: rg = vld2_lane_u8((const uint8_t*)(ptr+3), rg, 3);
case 3: rg = vld2_lane_u8((const uint8_t*)(ptr+2), rg, 2);
case 2: rg = vld2_lane_u8((const uint8_t*)(ptr+1), rg, 1);
case 1: rg = vld2_lane_u8((const uint8_t*)(ptr+0), rg, 0);
}
*r = cast<U16>(rg.val[0]);
*g = cast<U16>(rg.val[1]);
#else
from_88(load<U16>(ptr, tail), r,g);
#endif
}
SI void store_88_(uint16_t* ptr, size_t tail, U16 r, U16 g) {
#if 1 && defined(JUMPER_IS_NEON)
uint8x8x2_t rg = {{
cast<U8>(r),
cast<U8>(g),
}};
switch (tail & (N-1)) {
case 0: vst2_u8 ((uint8_t*)(ptr+0), rg ); break;
case 7: vst2_lane_u8((uint8_t*)(ptr+6), rg, 6);
case 6: vst2_lane_u8((uint8_t*)(ptr+5), rg, 5);
case 5: vst2_lane_u8((uint8_t*)(ptr+4), rg, 4);
case 4: vst2_lane_u8((uint8_t*)(ptr+3), rg, 3);
case 3: vst2_lane_u8((uint8_t*)(ptr+2), rg, 2);
case 2: vst2_lane_u8((uint8_t*)(ptr+1), rg, 1);
case 1: vst2_lane_u8((uint8_t*)(ptr+0), rg, 0);
}
#else
store(ptr, tail, cast<U16>(r | (g<<8)) << 0);
#endif
}
STAGE_PP(load_rg88, const SkRasterPipeline_MemoryCtx* ctx) {
load_88_(ptr_at_xy<const uint16_t>(ctx, dx, dy), tail, &r, &g);
b = 0;
a = 255;
}
STAGE_PP(load_rg88_dst, const SkRasterPipeline_MemoryCtx* ctx) {
load_88_(ptr_at_xy<const uint16_t>(ctx, dx, dy), tail, &dr, &dg);
db = 0;
da = 255;
}
STAGE_PP(store_rg88, const SkRasterPipeline_MemoryCtx* ctx) {
store_88_(ptr_at_xy<uint16_t>(ctx, dx, dy), tail, r, g);
}
STAGE_GP(gather_rg88, const SkRasterPipeline_GatherCtx* ctx) {
const uint16_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, x, y);
from_88(gather<U16>(ptr, ix), &r, &g);
b = 0;
a = 255;
}
// ~~~~~~ 8-bit memory loads and stores ~~~~~~ //
SI U16 load_8(const uint8_t* ptr, size_t tail) {
return cast<U16>(load<U8>(ptr, tail));
}
SI void store_8(uint8_t* ptr, size_t tail, U16 v) {
store(ptr, tail, cast<U8>(v));
}
STAGE_PP(load_a8, const SkRasterPipeline_MemoryCtx* ctx) {
r = g = b = 0;
a = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy), tail);
}
STAGE_PP(load_a8_dst, const SkRasterPipeline_MemoryCtx* ctx) {
dr = dg = db = 0;
da = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy), tail);
}
STAGE_PP(store_a8, const SkRasterPipeline_MemoryCtx* ctx) {
store_8(ptr_at_xy<uint8_t>(ctx, dx,dy), tail, a);
}
STAGE_GP(gather_a8, const SkRasterPipeline_GatherCtx* ctx) {
const uint8_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, x,y);
r = g = b = 0;
a = cast<U16>(gather<U8>(ptr, ix));
}
STAGE_PP(alpha_to_gray, Ctx::None) {
r = g = b = a;
a = 255;
}
STAGE_PP(alpha_to_gray_dst, Ctx::None) {
dr = dg = db = da;
da = 255;
}
STAGE_PP(bt709_luminance_or_luma_to_alpha, Ctx::None) {
a = (r*54 + g*183 + b*19)/256; // 0.2126, 0.7152, 0.0722 with 256 denominator.
r = g = b = 0;
}
// ~~~~~~ Coverage scales / lerps ~~~~~~ //
STAGE_PP(load_src, const uint16_t* ptr) {
r = sk_unaligned_load<U16>(ptr + 0*N);
g = sk_unaligned_load<U16>(ptr + 1*N);
b = sk_unaligned_load<U16>(ptr + 2*N);
a = sk_unaligned_load<U16>(ptr + 3*N);
}
STAGE_PP(store_src, uint16_t* ptr) {
sk_unaligned_store(ptr + 0*N, r);
sk_unaligned_store(ptr + 1*N, g);
sk_unaligned_store(ptr + 2*N, b);
sk_unaligned_store(ptr + 3*N, a);
}
STAGE_PP(load_dst, const uint16_t* ptr) {
dr = sk_unaligned_load<U16>(ptr + 0*N);
dg = sk_unaligned_load<U16>(ptr + 1*N);
db = sk_unaligned_load<U16>(ptr + 2*N);
da = sk_unaligned_load<U16>(ptr + 3*N);
}
STAGE_PP(store_dst, uint16_t* ptr) {
sk_unaligned_store(ptr + 0*N, dr);
sk_unaligned_store(ptr + 1*N, dg);
sk_unaligned_store(ptr + 2*N, db);
sk_unaligned_store(ptr + 3*N, da);
}
// ~~~~~~ Coverage scales / lerps ~~~~~~ //
STAGE_PP(scale_1_float, const float* f) {
U16 c = from_float(*f);
r = div255( r * c );
g = div255( g * c );
b = div255( b * c );
a = div255( a * c );
}
STAGE_PP(lerp_1_float, const float* f) {
U16 c = from_float(*f);
r = lerp(dr, r, c);
g = lerp(dg, g, c);
b = lerp(db, b, c);
a = lerp(da, a, c);
}
STAGE_PP(lerp_native, const uint16_t scales[]) {
auto c = sk_unaligned_load<U16>(scales);
r = lerp(dr, r, c);
g = lerp(dg, g, c);
b = lerp(db, b, c);
a = lerp(da, a, c);
}
STAGE_PP(scale_u8, const SkRasterPipeline_MemoryCtx* ctx) {
U16 c = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy), tail);
r = div255( r * c );
g = div255( g * c );
b = div255( b * c );
a = div255( a * c );
}
STAGE_PP(lerp_u8, const SkRasterPipeline_MemoryCtx* ctx) {
U16 c = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy), tail);
r = lerp(dr, r, c);
g = lerp(dg, g, c);
b = lerp(db, b, c);
a = lerp(da, a, c);
}
// Derive alpha's coverage from rgb coverage and the values of src and dst alpha.
SI U16 alpha_coverage_from_rgb_coverage(U16 a, U16 da, U16 cr, U16 cg, U16 cb) {
return if_then_else(a < da, min(cr, min(cg,cb))
, max(cr, max(cg,cb)));
}
STAGE_PP(scale_565, const SkRasterPipeline_MemoryCtx* ctx) {
U16 cr,cg,cb;
load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &cr,&cg,&cb);
U16 ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
r = div255( r * cr );
g = div255( g * cg );
b = div255( b * cb );
a = div255( a * ca );
}
STAGE_PP(lerp_565, const SkRasterPipeline_MemoryCtx* ctx) {
U16 cr,cg,cb;
load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &cr,&cg,&cb);
U16 ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb);
r = lerp(dr, r, cr);
g = lerp(dg, g, cg);
b = lerp(db, b, cb);
a = lerp(da, a, ca);
}
STAGE_PP(emboss, const SkRasterPipeline_EmbossCtx* ctx) {
U16 mul = load_8(ptr_at_xy<const uint8_t>(&ctx->mul, dx,dy), tail),
add = load_8(ptr_at_xy<const uint8_t>(&ctx->add, dx,dy), tail);
r = min(div255(r*mul) + add, a);
g = min(div255(g*mul) + add, a);
b = min(div255(b*mul) + add, a);
}
// ~~~~~~ Gradient stages ~~~~~~ //
// Clamp x to [0,1], both sides inclusive (think, gradients).
// Even repeat and mirror funnel through a clamp to handle bad inputs like +Inf, NaN.
SI F clamp_01(F v) { return min(max(0, v), 1); }
STAGE_GG(clamp_x_1 , Ctx::None) { x = clamp_01(x); }
STAGE_GG(repeat_x_1, Ctx::None) { x = clamp_01(x - floor_(x)); }
STAGE_GG(mirror_x_1, Ctx::None) {
auto two = [](F x){ return x+x; };
x = clamp_01(abs_( (x-1.0f) - two(floor_((x-1.0f)*0.5f)) - 1.0f ));
}
SI I16 cond_to_mask_16(I32 cond) { return cast<I16>(cond); }
STAGE_GG(decal_x, SkRasterPipeline_DecalTileCtx* ctx) {
auto w = ctx->limit_x;
sk_unaligned_store(ctx->mask, cond_to_mask_16((0 <= x) & (x < w)));
}
STAGE_GG(decal_y, SkRasterPipeline_DecalTileCtx* ctx) {
auto h = ctx->limit_y;
sk_unaligned_store(ctx->mask, cond_to_mask_16((0 <= y) & (y < h)));
}
STAGE_GG(decal_x_and_y, SkRasterPipeline_DecalTileCtx* ctx) {
auto w = ctx->limit_x;
auto h = ctx->limit_y;
sk_unaligned_store(ctx->mask, cond_to_mask_16((0 <= x) & (x < w) & (0 <= y) & (y < h)));
}
STAGE_PP(check_decal_mask, SkRasterPipeline_DecalTileCtx* ctx) {
auto mask = sk_unaligned_load<U16>(ctx->mask);
r = r & mask;
g = g & mask;
b = b & mask;
a = a & mask;
}
SI void round_F_to_U16(F R, F G, F B, F A, bool interpolatedInPremul,
U16* r, U16* g, U16* b, U16* a) {
auto round = [](F x) { return cast<U16>(x * 255.0f + 0.5f); };
F limit = interpolatedInPremul ? A
: 1;
*r = round(min(max(0,R), limit));
*g = round(min(max(0,G), limit));
*b = round(min(max(0,B), limit));
*a = round(A); // we assume alpha is already in [0,1].
}
SI void gradient_lookup(const SkRasterPipeline_GradientCtx* c, U32 idx, F t,
U16* r, U16* g, U16* b, U16* a) {
F fr, fg, fb, fa, br, bg, bb, ba;
#if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_AVX512)
if (c->stopCount <=8) {
__m256i lo, hi;
split(idx, &lo, &hi);
fr = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), lo),
_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), hi));
br = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), lo),
_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), hi));
fg = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), lo),
_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), hi));
bg = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), lo),
_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), hi));
fb = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), lo),
_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), hi));
bb = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), lo),
_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), hi));
fa = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), lo),
_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), hi));
ba = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), lo),
_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), hi));
} else
#endif
{
fr = gather<F>(c->fs[0], idx);
fg = gather<F>(c->fs[1], idx);
fb = gather<F>(c->fs[2], idx);
fa = gather<F>(c->fs[3], idx);
br = gather<F>(c->bs[0], idx);
bg = gather<F>(c->bs[1], idx);
bb = gather<F>(c->bs[2], idx);
ba = gather<F>(c->bs[3], idx);
}
round_F_to_U16(mad(t, fr, br),
mad(t, fg, bg),
mad(t, fb, bb),
mad(t, fa, ba),
c->interpolatedInPremul,
r,g,b,a);
}
STAGE_GP(gradient, const SkRasterPipeline_GradientCtx* c) {
auto t = x;
U32 idx = 0;
// N.B. The loop starts at 1 because idx 0 is the color to use before the first stop.
for (size_t i = 1; i < c->stopCount; i++) {
idx += if_then_else(t >= c->ts[i], U32(1), U32(0));
}
gradient_lookup(c, idx, t, &r, &g, &b, &a);
}
STAGE_GP(evenly_spaced_gradient, const SkRasterPipeline_GradientCtx* c) {
auto t = x;
auto idx = trunc_(t * (c->stopCount-1));
gradient_lookup(c, idx, t, &r, &g, &b, &a);
}
STAGE_GP(evenly_spaced_2_stop_gradient, const SkRasterPipeline_EvenlySpaced2StopGradientCtx* c) {
auto t = x;
round_F_to_U16(mad(t, c->f[0], c->b[0]),
mad(t, c->f[1], c->b[1]),
mad(t, c->f[2], c->b[2]),
mad(t, c->f[3], c->b[3]),
c->interpolatedInPremul,
&r,&g,&b,&a);
}
STAGE_GG(xy_to_unit_angle, Ctx::None) {
F xabs = abs_(x),
yabs = abs_(y);
F slope = min(xabs, yabs)/max(xabs, yabs);
F s = slope * slope;
// Use a 7th degree polynomial to approximate atan.
// This was generated using sollya.gforge.inria.fr.
// A float optimized polynomial was generated using the following command.
// P1 = fpminimax((1/(2*Pi))*atan(x),[|1,3,5,7|],[|24...|],[2^(-40),1],relative);
F phi = slope
* (0.15912117063999176025390625f + s
* (-5.185396969318389892578125e-2f + s
* (2.476101927459239959716796875e-2f + s
* (-7.0547382347285747528076171875e-3f))));
phi = if_then_else(xabs < yabs, 1.0f/4.0f - phi, phi);
phi = if_then_else(x < 0.0f , 1.0f/2.0f - phi, phi);
phi = if_then_else(y < 0.0f , 1.0f - phi , phi);
phi = if_then_else(phi != phi , 0 , phi); // Check for NaN.
x = phi;
}
STAGE_GG(xy_to_radius, Ctx::None) {
x = sqrt_(x*x + y*y);
}
// ~~~~~~ Compound stages ~~~~~~ //
STAGE_PP(srcover_rgba_8888, const SkRasterPipeline_MemoryCtx* ctx) {
auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy);
load_8888_(ptr, tail, &dr,&dg,&db,&da);
r = r + div255( dr*inv(a) );
g = g + div255( dg*inv(a) );
b = b + div255( db*inv(a) );
a = a + div255( da*inv(a) );
store_8888_(ptr, tail, r,g,b,a);
}
#if defined(SK_DISABLE_LOWP_BILERP_CLAMP_CLAMP_STAGE)
static void(*bilerp_clamp_8888)(void) = nullptr;
static void(*bilinear)(void) = nullptr;
#else
STAGE_GP(bilerp_clamp_8888, const SkRasterPipeline_GatherCtx* ctx) {
// (cx,cy) are the center of our sample.
F cx = x,
cy = y;
// All sample points are at the same fractional offset (fx,fy).
// They're the 4 corners of a logical 1x1 pixel surrounding (x,y) at (0.5,0.5) offsets.
F fx = fract(cx + 0.5f),
fy = fract(cy + 0.5f);
// We'll accumulate the color of all four samples into {r,g,b,a} directly.
r = g = b = a = 0;
// The first three sample points will calculate their area using math
// just like in the float code above, but the fourth will take up all the rest.
//
// Logically this is the same as doing the math for the fourth pixel too,
// but rounding error makes this a better strategy, keeping opaque opaque, etc.
//
// We can keep up to 8 bits of fractional precision without overflowing 16-bit,
// so our "1.0" area is 256.
const uint16_t bias = 256;
U16 remaining = bias;
for (float dy = -0.5f; dy <= +0.5f; dy += 1.0f)
for (float dx = -0.5f; dx <= +0.5f; dx += 1.0f) {
// (x,y) are the coordinates of this sample point.
F x = cx + dx,
y = cy + dy;
// ix_and_ptr() will clamp to the image's bounds for us.
const uint32_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, x,y);
U16 sr,sg,sb,sa;
from_8888(gather<U32>(ptr, ix), &sr,&sg,&sb,&sa);
// In bilinear interpolation, the 4 pixels at +/- 0.5 offsets from the sample pixel center
// are combined in direct proportion to their area overlapping that logical query pixel.
// At positive offsets, the x-axis contribution to that rectangle is fx,
// or (1-fx) at negative x. Same deal for y.
F sx = (dx > 0) ? fx : 1.0f - fx,
sy = (dy > 0) ? fy : 1.0f - fy;
U16 area = (dy == 0.5f && dx == 0.5f) ? remaining
: cast<U16>(sx * sy * bias);
for (size_t i = 0; i < N; i++) {
SkASSERT(remaining[i] >= area[i]);
}
remaining -= area;
r += sr * area;
g += sg * area;
b += sb * area;
a += sa * area;
}
r = (r + bias/2) / bias;
g = (g + bias/2) / bias;
b = (b + bias/2) / bias;
a = (a + bias/2) / bias;
}
// TODO: lowp::tile() is identical to the highp tile()... share?
SI F tile(F v, SkTileMode mode, float limit, float invLimit) {
// After ix_and_ptr() will clamp the output of tile(), so we need not clamp here.
switch (mode) {
case SkTileMode::kDecal: // TODO, for now fallthrough to clamp
case SkTileMode::kClamp: return v;
case SkTileMode::kRepeat: return v - floor_(v*invLimit)*limit;
case SkTileMode::kMirror:
return abs_( (v-limit) - (limit+limit)*floor_((v-limit)*(invLimit*0.5f)) - limit );
}
SkUNREACHABLE;
}
SI void sample(const SkRasterPipeline_SamplerCtx2* ctx, F x, F y,
U16* r, U16* g, U16* b, U16* a) {
x = tile(x, ctx->tileX, ctx->width , ctx->invWidth );
y = tile(y, ctx->tileY, ctx->height, ctx->invHeight);
switch (ctx->ct) {
default: *r = *g = *b = *a = 0; // TODO
break;
case kRGBA_8888_SkColorType:
case kBGRA_8888_SkColorType: {
const uint32_t* ptr;
U32 ix = ix_and_ptr(&ptr, ctx, x,y);
from_8888(gather<U32>(ptr, ix), r,g,b,a);
if (ctx->ct == kBGRA_8888_SkColorType) {
std::swap(*r,*b);
}
} break;
}
}
template <int D>
SI void sampler(const SkRasterPipeline_SamplerCtx2* ctx,
F cx, F cy, const F (&wx)[D], const F (&wy)[D],
U16* r, U16* g, U16* b, U16* a) {
float start = -0.5f*(D-1);
const uint16_t bias = 256;
U16 remaining = bias;
*r = *g = *b = *a = 0;
F y = cy + start;
for (int j = 0; j < D; j++, y += 1.0f) {
F x = cx + start;
for (int i = 0; i < D; i++, x += 1.0f) {
U16 R,G,B,A;
sample(ctx, x,y, &R,&G,&B,&A);
U16 w = (i == D-1 && j == D-1) ? remaining
: cast<U16>(wx[i]*wy[j]*bias);
remaining -= w;
*r += w*R;
*g += w*G;
*b += w*B;
*a += w*A;
}
}
*r = (*r + bias/2) / bias;
*g = (*g + bias/2) / bias;
*b = (*b + bias/2) / bias;
*a = (*a + bias/2) / bias;
}
STAGE_GP(bilinear, const SkRasterPipeline_SamplerCtx2* ctx) {
F fx = fract(x + 0.5f),
fy = fract(y + 0.5f);
const F wx[] = {1.0f - fx, fx};
const F wy[] = {1.0f - fy, fy};
sampler(ctx, x,y, wx,wy, &r,&g,&b,&a);
}
#endif
// ~~~~~~ GrSwizzle stage ~~~~~~ //
STAGE_PP(swizzle, void* ctx) {
auto ir = r, ig = g, ib = b, ia = a;
U16* o[] = {&r, &g, &b, &a};
char swiz[4];
memcpy(swiz, &ctx, sizeof(swiz));
for (int i = 0; i < 4; ++i) {
switch (swiz[i]) {
case 'r': *o[i] = ir; break;
case 'g': *o[i] = ig; break;
case 'b': *o[i] = ib; break;
case 'a': *o[i] = ia; break;
case '0': *o[i] = U16(0); break;
case '1': *o[i] = U16(255); break;
default: break;
}
}
}
// Now we'll add null stand-ins for stages we haven't implemented in lowp.
// If a pipeline uses these stages, it'll boot it out of lowp into highp.
#define NOT_IMPLEMENTED(st) static void (*st)(void) = nullptr;
NOT_IMPLEMENTED(callback)
NOT_IMPLEMENTED(interpreter)
NOT_IMPLEMENTED(unbounded_set_rgb)
NOT_IMPLEMENTED(unbounded_uniform_color)
NOT_IMPLEMENTED(unpremul)
NOT_IMPLEMENTED(dither) // TODO
NOT_IMPLEMENTED(from_srgb)
NOT_IMPLEMENTED(to_srgb)
NOT_IMPLEMENTED(load_16161616)
NOT_IMPLEMENTED(load_16161616_dst)
NOT_IMPLEMENTED(store_16161616)
NOT_IMPLEMENTED(gather_16161616)
NOT_IMPLEMENTED(load_a16)
NOT_IMPLEMENTED(load_a16_dst)
NOT_IMPLEMENTED(store_a16)
NOT_IMPLEMENTED(gather_a16)
NOT_IMPLEMENTED(load_rg1616)
NOT_IMPLEMENTED(load_rg1616_dst)
NOT_IMPLEMENTED(store_rg1616)
NOT_IMPLEMENTED(gather_rg1616)
NOT_IMPLEMENTED(load_f16)
NOT_IMPLEMENTED(load_f16_dst)
NOT_IMPLEMENTED(store_f16)
NOT_IMPLEMENTED(gather_f16)
NOT_IMPLEMENTED(load_af16)
NOT_IMPLEMENTED(load_af16_dst)
NOT_IMPLEMENTED(store_af16)
NOT_IMPLEMENTED(gather_af16)
NOT_IMPLEMENTED(load_rgf16)
NOT_IMPLEMENTED(load_rgf16_dst)
NOT_IMPLEMENTED(store_rgf16)
NOT_IMPLEMENTED(gather_rgf16)
NOT_IMPLEMENTED(load_f32)
NOT_IMPLEMENTED(load_f32_dst)
NOT_IMPLEMENTED(store_f32)
NOT_IMPLEMENTED(gather_f32)
NOT_IMPLEMENTED(load_rgf32)
NOT_IMPLEMENTED(store_rgf32)
NOT_IMPLEMENTED(load_1010102)
NOT_IMPLEMENTED(load_1010102_dst)
NOT_IMPLEMENTED(store_1010102)
NOT_IMPLEMENTED(gather_1010102)
NOT_IMPLEMENTED(store_u16_be)
NOT_IMPLEMENTED(byte_tables) // TODO
NOT_IMPLEMENTED(colorburn)
NOT_IMPLEMENTED(colordodge)
NOT_IMPLEMENTED(softlight)
NOT_IMPLEMENTED(hue)
NOT_IMPLEMENTED(saturation)
NOT_IMPLEMENTED(color)
NOT_IMPLEMENTED(luminosity)
NOT_IMPLEMENTED(matrix_3x3)
NOT_IMPLEMENTED(matrix_3x4)
NOT_IMPLEMENTED(matrix_4x5) // TODO
NOT_IMPLEMENTED(matrix_4x3) // TODO
NOT_IMPLEMENTED(parametric)
NOT_IMPLEMENTED(gamma_)
NOT_IMPLEMENTED(PQish)
NOT_IMPLEMENTED(HLGish)
NOT_IMPLEMENTED(HLGinvish)
NOT_IMPLEMENTED(rgb_to_hsl)
NOT_IMPLEMENTED(hsl_to_rgb)
NOT_IMPLEMENTED(gauss_a_to_rgba) // TODO
NOT_IMPLEMENTED(mirror_x) // TODO
NOT_IMPLEMENTED(repeat_x) // TODO
NOT_IMPLEMENTED(mirror_y) // TODO
NOT_IMPLEMENTED(repeat_y) // TODO
NOT_IMPLEMENTED(negate_x)
NOT_IMPLEMENTED(bicubic) // TODO if I can figure out negative weights
NOT_IMPLEMENTED(bicubic_clamp_8888)
NOT_IMPLEMENTED(bilinear_nx) // TODO
NOT_IMPLEMENTED(bilinear_ny) // TODO
NOT_IMPLEMENTED(bilinear_px) // TODO
NOT_IMPLEMENTED(bilinear_py) // TODO
NOT_IMPLEMENTED(bicubic_n3x) // TODO
NOT_IMPLEMENTED(bicubic_n1x) // TODO
NOT_IMPLEMENTED(bicubic_p1x) // TODO
NOT_IMPLEMENTED(bicubic_p3x) // TODO
NOT_IMPLEMENTED(bicubic_n3y) // TODO
NOT_IMPLEMENTED(bicubic_n1y) // TODO
NOT_IMPLEMENTED(bicubic_p1y) // TODO
NOT_IMPLEMENTED(bicubic_p3y) // TODO
NOT_IMPLEMENTED(save_xy) // TODO
NOT_IMPLEMENTED(accumulate) // TODO
NOT_IMPLEMENTED(xy_to_2pt_conical_well_behaved)
NOT_IMPLEMENTED(xy_to_2pt_conical_strip)
NOT_IMPLEMENTED(xy_to_2pt_conical_focal_on_circle)
NOT_IMPLEMENTED(xy_to_2pt_conical_smaller)
NOT_IMPLEMENTED(xy_to_2pt_conical_greater)
NOT_IMPLEMENTED(alter_2pt_conical_compensate_focal)
NOT_IMPLEMENTED(alter_2pt_conical_unswap)
NOT_IMPLEMENTED(mask_2pt_conical_nan)
NOT_IMPLEMENTED(mask_2pt_conical_degenerates)
NOT_IMPLEMENTED(apply_vector_mask)
#undef NOT_IMPLEMENTED
#endif//defined(JUMPER_IS_SCALAR) controlling whether we build lowp stages
} // namespace lowp
} // namespace SK_OPTS_NS
#endif//SkRasterPipeline_opts_DEFINED