| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkNx_neon_DEFINED |
| #define SkNx_neon_DEFINED |
| |
| #include <arm_neon.h> |
| |
| namespace { |
| |
| // ARMv8 has vrndmq_f32 to floor 4 floats. Here we emulate it: |
| // - roundtrip through integers via truncation |
| // - subtract 1 if that's too big (possible for negative values). |
| // This restricts the domain of our inputs to a maximum somehwere around 2^31. Seems plenty big. |
| AI static float32x4_t armv7_vrndmq_f32(float32x4_t v) { |
| auto roundtrip = vcvtq_f32_s32(vcvtq_s32_f32(v)); |
| auto too_big = vcgtq_f32(roundtrip, v); |
| return vsubq_f32(roundtrip, (float32x4_t)vandq_u32(too_big, (uint32x4_t)vdupq_n_f32(1))); |
| } |
| |
| template <> |
| class SkNx<2, float> { |
| public: |
| AI SkNx(float32x2_t vec) : fVec(vec) {} |
| |
| AI SkNx() {} |
| AI SkNx(float val) : fVec(vdup_n_f32(val)) {} |
| AI SkNx(float a, float b) { fVec = (float32x2_t) { a, b }; } |
| |
| AI static SkNx Load(const void* ptr) { return vld1_f32((const float*)ptr); } |
| AI void store(void* ptr) const { vst1_f32((float*)ptr, fVec); } |
| |
| AI SkNx invert() const { |
| float32x2_t est0 = vrecpe_f32(fVec), |
| est1 = vmul_f32(vrecps_f32(est0, fVec), est0); |
| return est1; |
| } |
| |
| AI SkNx operator + (const SkNx& o) const { return vadd_f32(fVec, o.fVec); } |
| AI SkNx operator - (const SkNx& o) const { return vsub_f32(fVec, o.fVec); } |
| AI SkNx operator * (const SkNx& o) const { return vmul_f32(fVec, o.fVec); } |
| AI SkNx operator / (const SkNx& o) const { |
| #if defined(SK_CPU_ARM64) |
| return vdiv_f32(fVec, o.fVec); |
| #else |
| float32x2_t est0 = vrecpe_f32(o.fVec), |
| est1 = vmul_f32(vrecps_f32(est0, o.fVec), est0), |
| est2 = vmul_f32(vrecps_f32(est1, o.fVec), est1); |
| return vmul_f32(fVec, est2); |
| #endif |
| } |
| |
| AI SkNx operator==(const SkNx& o) const { return vreinterpret_f32_u32(vceq_f32(fVec, o.fVec)); } |
| AI SkNx operator <(const SkNx& o) const { return vreinterpret_f32_u32(vclt_f32(fVec, o.fVec)); } |
| AI SkNx operator >(const SkNx& o) const { return vreinterpret_f32_u32(vcgt_f32(fVec, o.fVec)); } |
| AI SkNx operator<=(const SkNx& o) const { return vreinterpret_f32_u32(vcle_f32(fVec, o.fVec)); } |
| AI SkNx operator>=(const SkNx& o) const { return vreinterpret_f32_u32(vcge_f32(fVec, o.fVec)); } |
| AI SkNx operator!=(const SkNx& o) const { |
| return vreinterpret_f32_u32(vmvn_u32(vceq_f32(fVec, o.fVec))); |
| } |
| |
| AI static SkNx Min(const SkNx& l, const SkNx& r) { return vmin_f32(l.fVec, r.fVec); } |
| AI static SkNx Max(const SkNx& l, const SkNx& r) { return vmax_f32(l.fVec, r.fVec); } |
| |
| AI SkNx rsqrt() const { |
| float32x2_t est0 = vrsqrte_f32(fVec); |
| return vmul_f32(vrsqrts_f32(fVec, vmul_f32(est0, est0)), est0); |
| } |
| |
| AI SkNx sqrt() const { |
| #if defined(SK_CPU_ARM64) |
| return vsqrt_f32(fVec); |
| #else |
| float32x2_t est0 = vrsqrte_f32(fVec), |
| est1 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est0, est0)), est0), |
| est2 = vmul_f32(vrsqrts_f32(fVec, vmul_f32(est1, est1)), est1); |
| return vmul_f32(fVec, est2); |
| #endif |
| } |
| |
| AI float operator[](int k) const { |
| SkASSERT(0 <= k && k < 2); |
| union { float32x2_t v; float fs[2]; } pun = {fVec}; |
| return pun.fs[k&1]; |
| } |
| |
| AI bool allTrue() const { |
| auto v = vreinterpret_u32_f32(fVec); |
| return vget_lane_u32(v,0) && vget_lane_u32(v,1); |
| } |
| AI bool anyTrue() const { |
| auto v = vreinterpret_u32_f32(fVec); |
| return vget_lane_u32(v,0) || vget_lane_u32(v,1); |
| } |
| |
| float32x2_t fVec; |
| }; |
| |
| template <> |
| class SkNx<4, float> { |
| public: |
| AI SkNx(float32x4_t vec) : fVec(vec) {} |
| |
| AI SkNx() {} |
| AI SkNx(float val) : fVec(vdupq_n_f32(val)) {} |
| AI SkNx(float a, float b, float c, float d) { fVec = (float32x4_t) { a, b, c, d }; } |
| |
| AI static SkNx Load(const void* ptr) { return vld1q_f32((const float*)ptr); } |
| AI void store(void* ptr) const { vst1q_f32((float*)ptr, fVec); } |
| |
| AI static void Load4(const void* ptr, SkNx* r, SkNx* g, SkNx* b, SkNx* a) { |
| float32x4x4_t rgba = vld4q_f32((const float*) ptr); |
| *r = rgba.val[0]; |
| *g = rgba.val[1]; |
| *b = rgba.val[2]; |
| *a = rgba.val[3]; |
| } |
| AI static void Store4(void* dst, const SkNx& r, const SkNx& g, const SkNx& b, const SkNx& a) { |
| float32x4x4_t rgba = {{ |
| r.fVec, |
| g.fVec, |
| b.fVec, |
| a.fVec, |
| }}; |
| vst4q_f32((float*) dst, rgba); |
| } |
| |
| AI SkNx invert() const { |
| float32x4_t est0 = vrecpeq_f32(fVec), |
| est1 = vmulq_f32(vrecpsq_f32(est0, fVec), est0); |
| return est1; |
| } |
| |
| AI SkNx operator + (const SkNx& o) const { return vaddq_f32(fVec, o.fVec); } |
| AI SkNx operator - (const SkNx& o) const { return vsubq_f32(fVec, o.fVec); } |
| AI SkNx operator * (const SkNx& o) const { return vmulq_f32(fVec, o.fVec); } |
| AI SkNx operator / (const SkNx& o) const { |
| #if defined(SK_CPU_ARM64) |
| return vdivq_f32(fVec, o.fVec); |
| #else |
| float32x4_t est0 = vrecpeq_f32(o.fVec), |
| est1 = vmulq_f32(vrecpsq_f32(est0, o.fVec), est0), |
| est2 = vmulq_f32(vrecpsq_f32(est1, o.fVec), est1); |
| return vmulq_f32(fVec, est2); |
| #endif |
| } |
| |
| AI SkNx operator==(const SkNx& o) const {return vreinterpretq_f32_u32(vceqq_f32(fVec, o.fVec));} |
| AI SkNx operator <(const SkNx& o) const {return vreinterpretq_f32_u32(vcltq_f32(fVec, o.fVec));} |
| AI SkNx operator >(const SkNx& o) const {return vreinterpretq_f32_u32(vcgtq_f32(fVec, o.fVec));} |
| AI SkNx operator<=(const SkNx& o) const {return vreinterpretq_f32_u32(vcleq_f32(fVec, o.fVec));} |
| AI SkNx operator>=(const SkNx& o) const {return vreinterpretq_f32_u32(vcgeq_f32(fVec, o.fVec));} |
| AI SkNx operator!=(const SkNx& o) const { |
| return vreinterpretq_f32_u32(vmvnq_u32(vceqq_f32(fVec, o.fVec))); |
| } |
| |
| AI static SkNx Min(const SkNx& l, const SkNx& r) { return vminq_f32(l.fVec, r.fVec); } |
| AI static SkNx Max(const SkNx& l, const SkNx& r) { return vmaxq_f32(l.fVec, r.fVec); } |
| |
| AI SkNx abs() const { return vabsq_f32(fVec); } |
| AI SkNx floor() const { |
| #if defined(SK_CPU_ARM64) |
| return vrndmq_f32(fVec); |
| #else |
| return armv7_vrndmq_f32(fVec); |
| #endif |
| } |
| |
| |
| AI SkNx rsqrt() const { |
| float32x4_t est0 = vrsqrteq_f32(fVec); |
| return vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est0, est0)), est0); |
| } |
| |
| AI SkNx sqrt() const { |
| #if defined(SK_CPU_ARM64) |
| return vsqrtq_f32(fVec); |
| #else |
| float32x4_t est0 = vrsqrteq_f32(fVec), |
| est1 = vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est0, est0)), est0), |
| est2 = vmulq_f32(vrsqrtsq_f32(fVec, vmulq_f32(est1, est1)), est1); |
| return vmulq_f32(fVec, est2); |
| #endif |
| } |
| |
| AI float operator[](int k) const { |
| SkASSERT(0 <= k && k < 4); |
| union { float32x4_t v; float fs[4]; } pun = {fVec}; |
| return pun.fs[k&3]; |
| } |
| |
| AI bool allTrue() const { |
| auto v = vreinterpretq_u32_f32(fVec); |
| return vgetq_lane_u32(v,0) && vgetq_lane_u32(v,1) |
| && vgetq_lane_u32(v,2) && vgetq_lane_u32(v,3); |
| } |
| AI bool anyTrue() const { |
| auto v = vreinterpretq_u32_f32(fVec); |
| return vgetq_lane_u32(v,0) || vgetq_lane_u32(v,1) |
| || vgetq_lane_u32(v,2) || vgetq_lane_u32(v,3); |
| } |
| |
| AI SkNx thenElse(const SkNx& t, const SkNx& e) const { |
| return vbslq_f32(vreinterpretq_u32_f32(fVec), t.fVec, e.fVec); |
| } |
| |
| float32x4_t fVec; |
| }; |
| |
| #if defined(SK_CPU_ARM64) |
| AI static Sk4f SkNx_fma(const Sk4f& f, const Sk4f& m, const Sk4f& a) { |
| return vfmaq_f32(a.fVec, f.fVec, m.fVec); |
| } |
| #endif |
| |
| // It's possible that for our current use cases, representing this as |
| // half a uint16x8_t might be better than representing it as a uint16x4_t. |
| // It'd make conversion to Sk4b one step simpler. |
| template <> |
| class SkNx<4, uint16_t> { |
| public: |
| AI SkNx(const uint16x4_t& vec) : fVec(vec) {} |
| |
| AI SkNx() {} |
| AI SkNx(uint16_t val) : fVec(vdup_n_u16(val)) {} |
| AI SkNx(uint16_t a, uint16_t b, uint16_t c, uint16_t d) { |
| fVec = (uint16x4_t) { a,b,c,d }; |
| } |
| |
| AI static SkNx Load(const void* ptr) { return vld1_u16((const uint16_t*)ptr); } |
| AI void store(void* ptr) const { vst1_u16((uint16_t*)ptr, fVec); } |
| |
| AI static void Load4(const void* ptr, SkNx* r, SkNx* g, SkNx* b, SkNx* a) { |
| uint16x4x4_t rgba = vld4_u16((const uint16_t*)ptr); |
| *r = rgba.val[0]; |
| *g = rgba.val[1]; |
| *b = rgba.val[2]; |
| *a = rgba.val[3]; |
| } |
| AI static void Load3(const void* ptr, SkNx* r, SkNx* g, SkNx* b) { |
| uint16x4x3_t rgba = vld3_u16((const uint16_t*)ptr); |
| *r = rgba.val[0]; |
| *g = rgba.val[1]; |
| *b = rgba.val[2]; |
| } |
| AI static void Store4(void* dst, const SkNx& r, const SkNx& g, const SkNx& b, const SkNx& a) { |
| uint16x4x4_t rgba = {{ |
| r.fVec, |
| g.fVec, |
| b.fVec, |
| a.fVec, |
| }}; |
| vst4_u16((uint16_t*) dst, rgba); |
| } |
| |
| AI SkNx operator + (const SkNx& o) const { return vadd_u16(fVec, o.fVec); } |
| AI SkNx operator - (const SkNx& o) const { return vsub_u16(fVec, o.fVec); } |
| AI SkNx operator * (const SkNx& o) const { return vmul_u16(fVec, o.fVec); } |
| AI SkNx operator & (const SkNx& o) const { return vand_u16(fVec, o.fVec); } |
| AI SkNx operator | (const SkNx& o) const { return vorr_u16(fVec, o.fVec); } |
| |
| AI SkNx operator << (int bits) const { return fVec << SkNx(bits).fVec; } |
| AI SkNx operator >> (int bits) const { return fVec >> SkNx(bits).fVec; } |
| |
| AI static SkNx Min(const SkNx& a, const SkNx& b) { return vmin_u16(a.fVec, b.fVec); } |
| |
| AI uint16_t operator[](int k) const { |
| SkASSERT(0 <= k && k < 4); |
| union { uint16x4_t v; uint16_t us[4]; } pun = {fVec}; |
| return pun.us[k&3]; |
| } |
| |
| AI SkNx thenElse(const SkNx& t, const SkNx& e) const { |
| return vbsl_u16(fVec, t.fVec, e.fVec); |
| } |
| |
| uint16x4_t fVec; |
| }; |
| |
| template <> |
| class SkNx<8, uint16_t> { |
| public: |
| AI SkNx(const uint16x8_t& vec) : fVec(vec) {} |
| |
| AI SkNx() {} |
| AI SkNx(uint16_t val) : fVec(vdupq_n_u16(val)) {} |
| AI static SkNx Load(const void* ptr) { return vld1q_u16((const uint16_t*)ptr); } |
| |
| AI SkNx(uint16_t a, uint16_t b, uint16_t c, uint16_t d, |
| uint16_t e, uint16_t f, uint16_t g, uint16_t h) { |
| fVec = (uint16x8_t) { a,b,c,d, e,f,g,h }; |
| } |
| |
| AI void store(void* ptr) const { vst1q_u16((uint16_t*)ptr, fVec); } |
| |
| AI SkNx operator + (const SkNx& o) const { return vaddq_u16(fVec, o.fVec); } |
| AI SkNx operator - (const SkNx& o) const { return vsubq_u16(fVec, o.fVec); } |
| AI SkNx operator * (const SkNx& o) const { return vmulq_u16(fVec, o.fVec); } |
| AI SkNx operator & (const SkNx& o) const { return vandq_u16(fVec, o.fVec); } |
| AI SkNx operator | (const SkNx& o) const { return vorrq_u16(fVec, o.fVec); } |
| |
| AI SkNx operator << (int bits) const { return fVec << SkNx(bits).fVec; } |
| AI SkNx operator >> (int bits) const { return fVec >> SkNx(bits).fVec; } |
| |
| AI static SkNx Min(const SkNx& a, const SkNx& b) { return vminq_u16(a.fVec, b.fVec); } |
| |
| AI uint16_t operator[](int k) const { |
| SkASSERT(0 <= k && k < 8); |
| union { uint16x8_t v; uint16_t us[8]; } pun = {fVec}; |
| return pun.us[k&7]; |
| } |
| |
| AI SkNx thenElse(const SkNx& t, const SkNx& e) const { |
| return vbslq_u16(fVec, t.fVec, e.fVec); |
| } |
| |
| uint16x8_t fVec; |
| }; |
| |
| template <> |
| class SkNx<4, uint8_t> { |
| public: |
| typedef uint32_t __attribute__((aligned(1))) unaligned_uint32_t; |
| |
| AI SkNx(const uint8x8_t& vec) : fVec(vec) {} |
| |
| AI SkNx() {} |
| AI SkNx(uint8_t a, uint8_t b, uint8_t c, uint8_t d) { |
| fVec = (uint8x8_t){a,b,c,d, 0,0,0,0}; |
| } |
| AI static SkNx Load(const void* ptr) { |
| return (uint8x8_t)vld1_dup_u32((const unaligned_uint32_t*)ptr); |
| } |
| AI void store(void* ptr) const { |
| return vst1_lane_u32((unaligned_uint32_t*)ptr, (uint32x2_t)fVec, 0); |
| } |
| AI uint8_t operator[](int k) const { |
| SkASSERT(0 <= k && k < 4); |
| union { uint8x8_t v; uint8_t us[8]; } pun = {fVec}; |
| return pun.us[k&3]; |
| } |
| |
| // TODO as needed |
| |
| uint8x8_t fVec; |
| }; |
| |
| template <> |
| class SkNx<16, uint8_t> { |
| public: |
| AI SkNx(const uint8x16_t& vec) : fVec(vec) {} |
| |
| AI SkNx() {} |
| AI SkNx(uint8_t val) : fVec(vdupq_n_u8(val)) {} |
| AI SkNx(uint8_t a, uint8_t b, uint8_t c, uint8_t d, |
| uint8_t e, uint8_t f, uint8_t g, uint8_t h, |
| uint8_t i, uint8_t j, uint8_t k, uint8_t l, |
| uint8_t m, uint8_t n, uint8_t o, uint8_t p) { |
| fVec = (uint8x16_t) { a,b,c,d, e,f,g,h, i,j,k,l, m,n,o,p }; |
| } |
| |
| AI static SkNx Load(const void* ptr) { return vld1q_u8((const uint8_t*)ptr); } |
| AI void store(void* ptr) const { vst1q_u8((uint8_t*)ptr, fVec); } |
| |
| AI SkNx saturatedAdd(const SkNx& o) const { return vqaddq_u8(fVec, o.fVec); } |
| |
| AI SkNx operator + (const SkNx& o) const { return vaddq_u8(fVec, o.fVec); } |
| AI SkNx operator - (const SkNx& o) const { return vsubq_u8(fVec, o.fVec); } |
| |
| AI static SkNx Min(const SkNx& a, const SkNx& b) { return vminq_u8(a.fVec, b.fVec); } |
| AI SkNx operator < (const SkNx& o) const { return vcltq_u8(fVec, o.fVec); } |
| |
| AI uint8_t operator[](int k) const { |
| SkASSERT(0 <= k && k < 16); |
| union { uint8x16_t v; uint8_t us[16]; } pun = {fVec}; |
| return pun.us[k&15]; |
| } |
| |
| AI SkNx thenElse(const SkNx& t, const SkNx& e) const { |
| return vbslq_u8(fVec, t.fVec, e.fVec); |
| } |
| |
| uint8x16_t fVec; |
| }; |
| |
| template <> |
| class SkNx<4, int32_t> { |
| public: |
| AI SkNx(const int32x4_t& vec) : fVec(vec) {} |
| |
| AI SkNx() {} |
| AI SkNx(int32_t v) { |
| fVec = vdupq_n_s32(v); |
| } |
| AI SkNx(int32_t a, int32_t b, int32_t c, int32_t d) { |
| fVec = (int32x4_t){a,b,c,d}; |
| } |
| AI static SkNx Load(const void* ptr) { |
| return vld1q_s32((const int32_t*)ptr); |
| } |
| AI void store(void* ptr) const { |
| return vst1q_s32((int32_t*)ptr, fVec); |
| } |
| AI int32_t operator[](int k) const { |
| SkASSERT(0 <= k && k < 4); |
| union { int32x4_t v; int32_t is[4]; } pun = {fVec}; |
| return pun.is[k&3]; |
| } |
| |
| AI SkNx operator + (const SkNx& o) const { return vaddq_s32(fVec, o.fVec); } |
| AI SkNx operator - (const SkNx& o) const { return vsubq_s32(fVec, o.fVec); } |
| AI SkNx operator * (const SkNx& o) const { return vmulq_s32(fVec, o.fVec); } |
| |
| AI SkNx operator & (const SkNx& o) const { return vandq_s32(fVec, o.fVec); } |
| AI SkNx operator | (const SkNx& o) const { return vorrq_s32(fVec, o.fVec); } |
| AI SkNx operator ^ (const SkNx& o) const { return veorq_s32(fVec, o.fVec); } |
| |
| AI SkNx operator << (int bits) const { return fVec << SkNx(bits).fVec; } |
| AI SkNx operator >> (int bits) const { return fVec >> SkNx(bits).fVec; } |
| |
| AI SkNx operator == (const SkNx& o) const { |
| return vreinterpretq_s32_u32(vceqq_s32(fVec, o.fVec)); |
| } |
| AI SkNx operator < (const SkNx& o) const { |
| return vreinterpretq_s32_u32(vcltq_s32(fVec, o.fVec)); |
| } |
| AI SkNx operator > (const SkNx& o) const { |
| return vreinterpretq_s32_u32(vcgtq_s32(fVec, o.fVec)); |
| } |
| |
| AI static SkNx Min(const SkNx& a, const SkNx& b) { return vminq_s32(a.fVec, b.fVec); } |
| // TODO as needed |
| |
| AI SkNx thenElse(const SkNx& t, const SkNx& e) const { |
| return vbslq_s32(vreinterpretq_u32_s32(fVec), t.fVec, e.fVec); |
| } |
| |
| int32x4_t fVec; |
| }; |
| |
| template <> |
| class SkNx<4, uint32_t> { |
| public: |
| AI SkNx(const uint32x4_t& vec) : fVec(vec) {} |
| |
| AI SkNx() {} |
| AI SkNx(uint32_t v) { |
| fVec = vdupq_n_u32(v); |
| } |
| AI SkNx(uint32_t a, uint32_t b, uint32_t c, uint32_t d) { |
| fVec = (uint32x4_t){a,b,c,d}; |
| } |
| AI static SkNx Load(const void* ptr) { |
| return vld1q_u32((const uint32_t*)ptr); |
| } |
| AI void store(void* ptr) const { |
| return vst1q_u32((uint32_t*)ptr, fVec); |
| } |
| AI uint32_t operator[](int k) const { |
| SkASSERT(0 <= k && k < 4); |
| union { uint32x4_t v; uint32_t us[4]; } pun = {fVec}; |
| return pun.us[k&3]; |
| } |
| |
| AI SkNx operator + (const SkNx& o) const { return vaddq_u32(fVec, o.fVec); } |
| AI SkNx operator - (const SkNx& o) const { return vsubq_u32(fVec, o.fVec); } |
| AI SkNx operator * (const SkNx& o) const { return vmulq_u32(fVec, o.fVec); } |
| |
| AI SkNx operator & (const SkNx& o) const { return vandq_u32(fVec, o.fVec); } |
| AI SkNx operator | (const SkNx& o) const { return vorrq_u32(fVec, o.fVec); } |
| AI SkNx operator ^ (const SkNx& o) const { return veorq_u32(fVec, o.fVec); } |
| |
| AI SkNx operator << (int bits) const { return fVec << SkNx(bits).fVec; } |
| AI SkNx operator >> (int bits) const { return fVec >> SkNx(bits).fVec; } |
| |
| AI SkNx operator == (const SkNx& o) const { return vceqq_u32(fVec, o.fVec); } |
| AI SkNx operator < (const SkNx& o) const { return vcltq_u32(fVec, o.fVec); } |
| AI SkNx operator > (const SkNx& o) const { return vcgtq_u32(fVec, o.fVec); } |
| |
| AI static SkNx Min(const SkNx& a, const SkNx& b) { return vminq_u32(a.fVec, b.fVec); } |
| // TODO as needed |
| |
| AI SkNx thenElse(const SkNx& t, const SkNx& e) const { |
| return vbslq_u32(fVec, t.fVec, e.fVec); |
| } |
| |
| uint32x4_t fVec; |
| }; |
| |
| template<> AI /*static*/ Sk4i SkNx_cast<int32_t, float>(const Sk4f& src) { |
| return vcvtq_s32_f32(src.fVec); |
| |
| } |
| template<> AI /*static*/ Sk4f SkNx_cast<float, int32_t>(const Sk4i& src) { |
| return vcvtq_f32_s32(src.fVec); |
| } |
| template<> AI /*static*/ Sk4f SkNx_cast<float, uint32_t>(const Sk4u& src) { |
| return SkNx_cast<float>(Sk4i::Load(&src)); |
| } |
| |
| template<> AI /*static*/ Sk4h SkNx_cast<uint16_t, float>(const Sk4f& src) { |
| return vqmovn_u32(vcvtq_u32_f32(src.fVec)); |
| } |
| |
| template<> AI /*static*/ Sk4f SkNx_cast<float, uint16_t>(const Sk4h& src) { |
| return vcvtq_f32_u32(vmovl_u16(src.fVec)); |
| } |
| |
| template<> AI /*static*/ Sk4b SkNx_cast<uint8_t, float>(const Sk4f& src) { |
| uint32x4_t _32 = vcvtq_u32_f32(src.fVec); |
| uint16x4_t _16 = vqmovn_u32(_32); |
| return vqmovn_u16(vcombine_u16(_16, _16)); |
| } |
| |
| template<> AI /*static*/ Sk4i SkNx_cast<int32_t, uint8_t>(const Sk4b& src) { |
| uint16x8_t _16 = vmovl_u8(src.fVec); |
| return vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(_16))); |
| } |
| |
| template<> AI /*static*/ Sk4f SkNx_cast<float, uint8_t>(const Sk4b& src) { |
| return vcvtq_f32_s32(SkNx_cast<int32_t>(src).fVec); |
| } |
| |
| template<> AI /*static*/ Sk16b SkNx_cast<uint8_t, float>(const Sk16f& src) { |
| Sk8f ab, cd; |
| SkNx_split(src, &ab, &cd); |
| |
| Sk4f a,b,c,d; |
| SkNx_split(ab, &a, &b); |
| SkNx_split(cd, &c, &d); |
| return vuzpq_u8(vuzpq_u8((uint8x16_t)vcvtq_u32_f32(a.fVec), |
| (uint8x16_t)vcvtq_u32_f32(b.fVec)).val[0], |
| vuzpq_u8((uint8x16_t)vcvtq_u32_f32(c.fVec), |
| (uint8x16_t)vcvtq_u32_f32(d.fVec)).val[0]).val[0]; |
| } |
| |
| template<> AI /*static*/ Sk4h SkNx_cast<uint16_t, uint8_t>(const Sk4b& src) { |
| return vget_low_u16(vmovl_u8(src.fVec)); |
| } |
| |
| template<> AI /*static*/ Sk4b SkNx_cast<uint8_t, uint16_t>(const Sk4h& src) { |
| return vmovn_u16(vcombine_u16(src.fVec, src.fVec)); |
| } |
| |
| template<> AI /*static*/ Sk4b SkNx_cast<uint8_t, int32_t>(const Sk4i& src) { |
| uint16x4_t _16 = vqmovun_s32(src.fVec); |
| return vqmovn_u16(vcombine_u16(_16, _16)); |
| } |
| |
| template<> AI /*static*/ Sk4i SkNx_cast<int32_t, uint16_t>(const Sk4h& src) { |
| return vreinterpretq_s32_u32(vmovl_u16(src.fVec)); |
| } |
| |
| template<> AI /*static*/ Sk4h SkNx_cast<uint16_t, int32_t>(const Sk4i& src) { |
| return vmovn_u32(vreinterpretq_u32_s32(src.fVec)); |
| } |
| |
| template<> AI /*static*/ Sk4i SkNx_cast<int32_t, uint32_t>(const Sk4u& src) { |
| return vreinterpretq_s32_u32(src.fVec); |
| } |
| |
| AI static Sk4i Sk4f_round(const Sk4f& x) { |
| return vcvtq_s32_f32((x + 0.5f).fVec); |
| } |
| |
| } // namespace |
| |
| #endif//SkNx_neon_DEFINED |