blob: dd69a0c48e7a2d7deb1d5af6c94a0113d086275b [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
// This is a GPU-backend specific test.
#include "include/core/SkTypes.h"
#include "include/private/SkChecksum.h"
#include "include/utils/SkRandom.h"
#include "src/gpu/GrAutoLocaleSetter.h"
#include "src/gpu/GrContextPriv.h"
#include "src/gpu/GrDrawOpTest.h"
#include "src/gpu/GrDrawingManager.h"
#include "src/gpu/GrPipeline.h"
#include "src/gpu/GrRenderTargetContextPriv.h"
#include "src/gpu/GrXferProcessor.h"
#include "tests/Test.h"
#include "tools/gpu/GrContextFactory.h"
#include "src/gpu/ops/GrDrawOp.h"
#include "src/gpu/effects/GrPorterDuffXferProcessor.h"
#include "src/gpu/effects/GrXfermodeFragmentProcessor.h"
#include "src/gpu/effects/generated/GrConfigConversionEffect.h"
#include "src/gpu/gl/GrGLGpu.h"
#include "src/gpu/glsl/GrGLSLFragmentProcessor.h"
#include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
#include "src/gpu/glsl/GrGLSLProgramBuilder.h"
/*
* A dummy processor which just tries to insert a massive key and verify that it can retrieve the
* whole thing correctly
*/
static const uint32_t kMaxKeySize = 1024;
class GLBigKeyProcessor : public GrGLSLFragmentProcessor {
public:
void emitCode(EmitArgs& args) override {
// pass through
GrGLSLFragmentBuilder* fragBuilder = args.fFragBuilder;
if (args.fInputColor) {
fragBuilder->codeAppendf("%s = %s;\n", args.fOutputColor, args.fInputColor);
} else {
fragBuilder->codeAppendf("%s = vec4(1.0);\n", args.fOutputColor);
}
}
static void GenKey(const GrProcessor&, const GrShaderCaps&, GrProcessorKeyBuilder* b) {
for (uint32_t i = 0; i < kMaxKeySize; i++) {
b->add32(i);
}
}
private:
typedef GrGLSLFragmentProcessor INHERITED;
};
class BigKeyProcessor : public GrFragmentProcessor {
public:
static std::unique_ptr<GrFragmentProcessor> Make() {
return std::unique_ptr<GrFragmentProcessor>(new BigKeyProcessor);
}
const char* name() const override { return "Big Ole Key"; }
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override {
return new GLBigKeyProcessor;
}
std::unique_ptr<GrFragmentProcessor> clone() const override { return Make(); }
private:
BigKeyProcessor() : INHERITED(kBigKeyProcessor_ClassID, kNone_OptimizationFlags) { }
virtual void onGetGLSLProcessorKey(const GrShaderCaps& caps,
GrProcessorKeyBuilder* b) const override {
GLBigKeyProcessor::GenKey(*this, caps, b);
}
bool onIsEqual(const GrFragmentProcessor&) const override { return true; }
GR_DECLARE_FRAGMENT_PROCESSOR_TEST
typedef GrFragmentProcessor INHERITED;
};
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(BigKeyProcessor);
#if GR_TEST_UTILS
std::unique_ptr<GrFragmentProcessor> BigKeyProcessor::TestCreate(GrProcessorTestData*) {
return BigKeyProcessor::Make();
}
#endif
//////////////////////////////////////////////////////////////////////////////
class BlockInputFragmentProcessor : public GrFragmentProcessor {
public:
static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> fp) {
return std::unique_ptr<GrFragmentProcessor>(new BlockInputFragmentProcessor(std::move(fp)));
}
const char* name() const override { return "Block Input"; }
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override { return new GLFP; }
std::unique_ptr<GrFragmentProcessor> clone() const override {
return Make(this->childProcessor(0).clone());
}
private:
class GLFP : public GrGLSLFragmentProcessor {
public:
void emitCode(EmitArgs& args) override {
SkString temp = this->invokeChild(0, args);
args.fFragBuilder->codeAppendf("%s = %s;", args.fOutputColor, temp.c_str());
}
private:
typedef GrGLSLFragmentProcessor INHERITED;
};
BlockInputFragmentProcessor(std::unique_ptr<GrFragmentProcessor> child)
: INHERITED(kBlockInputFragmentProcessor_ClassID, kNone_OptimizationFlags) {
this->registerChildProcessor(std::move(child));
}
void onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override {}
bool onIsEqual(const GrFragmentProcessor&) const override { return true; }
typedef GrFragmentProcessor INHERITED;
};
//////////////////////////////////////////////////////////////////////////////
/*
* Begin test code
*/
static const int kRenderTargetHeight = 1;
static const int kRenderTargetWidth = 1;
static std::unique_ptr<GrRenderTargetContext> random_render_target_context(GrContext* context,
SkRandom* random,
const GrCaps* caps) {
GrSurfaceOrigin origin = random->nextBool() ? kTopLeft_GrSurfaceOrigin
: kBottomLeft_GrSurfaceOrigin;
GrColorType ct = GrColorType::kRGBA_8888;
const GrBackendFormat format = caps->getDefaultBackendFormat(ct, GrRenderable::kYes);
int sampleCnt = random->nextBool() ? caps->getRenderTargetSampleCount(2, format) : 1;
// Above could be 0 if msaa isn't supported.
sampleCnt = std::max(1, sampleCnt);
return GrRenderTargetContext::Make(
context, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kExact,
{kRenderTargetWidth, kRenderTargetHeight}, sampleCnt, GrMipMapped::kNo,
GrProtected::kNo, origin);
}
#if GR_TEST_UTILS
static void set_random_xpf(GrPaint* paint, GrProcessorTestData* d) {
paint->setXPFactory(GrXPFactoryTestFactory::Get(d));
}
static std::unique_ptr<GrFragmentProcessor> create_random_proc_tree(GrProcessorTestData* d,
int minLevels, int maxLevels) {
SkASSERT(1 <= minLevels);
SkASSERT(minLevels <= maxLevels);
// Return a leaf node if maxLevels is 1 or if we randomly chose to terminate.
// If returning a leaf node, make sure that it doesn't have children (e.g. another
// GrComposeEffect)
const float terminateProbability = 0.3f;
if (1 == minLevels) {
bool terminate = (1 == maxLevels) || (d->fRandom->nextF() < terminateProbability);
if (terminate) {
std::unique_ptr<GrFragmentProcessor> fp;
while (true) {
fp = GrFragmentProcessorTestFactory::Make(d);
if (!fp) {
return nullptr;
}
if (0 == fp->numChildProcessors()) {
break;
}
}
return fp;
}
}
// If we didn't terminate, choose either the left or right subtree to fulfill
// the minLevels requirement of this tree; the other child can have as few levels as it wants.
// Also choose a random xfer mode.
if (minLevels > 1) {
--minLevels;
}
auto minLevelsChild = create_random_proc_tree(d, minLevels, maxLevels - 1);
std::unique_ptr<GrFragmentProcessor> otherChild(create_random_proc_tree(d, 1, maxLevels - 1));
if (!minLevelsChild || !otherChild) {
return nullptr;
}
SkBlendMode mode = static_cast<SkBlendMode>(d->fRandom->nextRangeU(0,
(int)SkBlendMode::kLastMode));
std::unique_ptr<GrFragmentProcessor> fp;
if (d->fRandom->nextF() < 0.5f) {
fp = GrXfermodeFragmentProcessor::MakeFromTwoProcessors(std::move(minLevelsChild),
std::move(otherChild), mode);
SkASSERT(fp);
} else {
fp = GrXfermodeFragmentProcessor::MakeFromTwoProcessors(std::move(otherChild),
std::move(minLevelsChild), mode);
SkASSERT(fp);
}
return fp;
}
static void set_random_color_coverage_stages(GrPaint* paint,
GrProcessorTestData* d,
int maxStages,
int maxTreeLevels) {
// Randomly choose to either create a linear pipeline of procs or create one proc tree
const float procTreeProbability = 0.5f;
if (d->fRandom->nextF() < procTreeProbability) {
std::unique_ptr<GrFragmentProcessor> fp(create_random_proc_tree(d, 2, maxTreeLevels));
if (fp) {
paint->addColorFragmentProcessor(std::move(fp));
}
} else {
int numProcs = d->fRandom->nextULessThan(maxStages + 1);
int numColorProcs = d->fRandom->nextULessThan(numProcs + 1);
for (int s = 0; s < numProcs; ++s) {
std::unique_ptr<GrFragmentProcessor> fp(GrFragmentProcessorTestFactory::Make(d));
if (!fp) {
continue;
}
// finally add the stage to the correct pipeline in the drawstate
if (s < numColorProcs) {
paint->addColorFragmentProcessor(std::move(fp));
} else {
paint->addCoverageFragmentProcessor(std::move(fp));
}
}
}
}
#endif
#if !GR_TEST_UTILS
bool GrDrawingManager::ProgramUnitTest(GrContext*, int) { return true; }
#else
bool GrDrawingManager::ProgramUnitTest(GrContext* context, int maxStages, int maxLevels) {
GrDrawingManager* drawingManager = context->priv().drawingManager();
GrProxyProvider* proxyProvider = context->priv().proxyProvider();
GrProcessorTestData::ViewInfo views[2];
// setup dummy textures
GrMipMapped mipMapped = GrMipMapped(context->priv().caps()->mipMapSupport());
{
static constexpr SkISize kDummyDims = {34, 18};
const GrBackendFormat format =
context->priv().caps()->getDefaultBackendFormat(GrColorType::kRGBA_8888,
GrRenderable::kYes);
GrSwizzle swizzle = context->priv().caps()->getReadSwizzle(format, GrColorType::kRGBA_8888);
auto proxy = proxyProvider->createProxy(format, kDummyDims, swizzle, GrRenderable::kYes, 1,
mipMapped, SkBackingFit::kExact, SkBudgeted::kNo,
GrProtected::kNo, GrInternalSurfaceFlags::kNone);
views[0] = {{std::move(proxy), kBottomLeft_GrSurfaceOrigin, swizzle},
GrColorType::kRGBA_8888, kPremul_SkAlphaType};
}
{
static constexpr SkISize kDummyDims = {16, 22};
const GrBackendFormat format =
context->priv().caps()->getDefaultBackendFormat(GrColorType::kAlpha_8,
GrRenderable::kNo);
GrSwizzle swizzle = context->priv().caps()->getReadSwizzle(format, GrColorType::kAlpha_8);
auto proxy = proxyProvider->createProxy(format, kDummyDims, swizzle, GrRenderable::kNo, 1,
mipMapped, SkBackingFit::kExact, SkBudgeted::kNo,
GrProtected::kNo, GrInternalSurfaceFlags::kNone);
views[1] = {{std::move(proxy), kTopLeft_GrSurfaceOrigin, swizzle},
GrColorType::kAlpha_8, kPremul_SkAlphaType};
}
if (!std::get<0>(views[0]) || !std::get<0>(views[1])) {
SkDebugf("Could not allocate dummy textures");
return false;
}
SkRandom random;
static const int NUM_TESTS = 1024;
for (int t = 0; t < NUM_TESTS; t++) {
// setup random render target(can fail)
auto renderTargetContext =
random_render_target_context(context, &random, context->priv().caps());
if (!renderTargetContext) {
SkDebugf("Could not allocate renderTargetContext");
return false;
}
GrPaint paint;
GrProcessorTestData ptd(&random, context, 2, views);
set_random_color_coverage_stages(&paint, &ptd, maxStages, maxLevels);
set_random_xpf(&paint, &ptd);
GrDrawRandomOp(&random, renderTargetContext.get(), std::move(paint));
}
// Flush everything, test passes if flush is successful(ie, no asserts are hit, no crashes)
drawingManager->flush(nullptr, 0, SkSurface::BackendSurfaceAccess::kNoAccess, GrFlushInfo(),
GrPrepareForExternalIORequests());
// Validate that GrFPs work correctly without an input.
auto renderTargetContext = GrRenderTargetContext::Make(
context, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kExact,
{kRenderTargetWidth, kRenderTargetHeight});
if (!renderTargetContext) {
SkDebugf("Could not allocate a renderTargetContext");
return false;
}
int fpFactoryCnt = GrFragmentProcessorTestFactory::Count();
for (int i = 0; i < fpFactoryCnt; ++i) {
// Since FP factories internally randomize, call each 10 times.
for (int j = 0; j < 10; ++j) {
GrProcessorTestData ptd(&random, context, 2, views);
GrPaint paint;
paint.setXPFactory(GrPorterDuffXPFactory::Get(SkBlendMode::kSrc));
auto fp = GrFragmentProcessorTestFactory::MakeIdx(i, &ptd);
auto blockFP = BlockInputFragmentProcessor::Make(std::move(fp));
paint.addColorFragmentProcessor(std::move(blockFP));
GrDrawRandomOp(&random, renderTargetContext.get(), std::move(paint));
drawingManager->flush(nullptr, 0, SkSurface::BackendSurfaceAccess::kNoAccess,
GrFlushInfo(), GrPrepareForExternalIORequests());
}
}
return true;
}
#endif
static int get_programs_max_stages(const sk_gpu_test::ContextInfo& ctxInfo) {
GrContext* context = ctxInfo.grContext();
int maxStages = 6;
if (skiatest::IsGLContextType(ctxInfo.type())) {
GrGLGpu* gpu = static_cast<GrGLGpu*>(context->priv().getGpu());
if (kGLES_GrGLStandard == gpu->glStandard()) {
// We've had issues with driver crashes and HW limits being exceeded with many effects on
// Android devices. We have passes on ARM devices with the default number of stages.
// TODO When we run ES 3.00 GLSL in more places, test again
#ifdef SK_BUILD_FOR_ANDROID
if (kARM_GrGLVendor != gpu->ctxInfo().vendor()) {
maxStages = 1;
}
#endif
// On iOS we can exceed the maximum number of varyings. http://skbug.com/6627.
#ifdef SK_BUILD_FOR_IOS
maxStages = 3;
#endif
}
if (ctxInfo.type() == sk_gpu_test::GrContextFactory::kANGLE_D3D9_ES2_ContextType ||
ctxInfo.type() == sk_gpu_test::GrContextFactory::kANGLE_D3D11_ES2_ContextType) {
// On Angle D3D we will hit a limit of out variables if we use too many stages.
maxStages = 3;
}
}
return maxStages;
}
static int get_programs_max_levels(const sk_gpu_test::ContextInfo& ctxInfo) {
// A full tree with 5 levels (31 nodes) may cause a program that exceeds shader limits
// (e.g. uniform or varying limits); maxTreeLevels should be a number from 1 to 4 inclusive.
int maxTreeLevels = 4;
if (skiatest::IsGLContextType(ctxInfo.type())) {
// On iOS we can exceed the maximum number of varyings. http://skbug.com/6627.
#ifdef SK_BUILD_FOR_IOS
maxTreeLevels = 2;
#endif
#ifdef SK_BUILD_FOR_ANDROID
GrGLGpu* gpu = static_cast<GrGLGpu*>(ctxInfo.grContext()->priv().getGpu());
// Tecno Spark 3 Pro with Power VR Rogue GE8300 will fail shader compiles with
// no message if the shader is particularly long.
if (gpu->ctxInfo().vendor() == kImagination_GrGLVendor) {
maxTreeLevels = 3;
}
#endif
if (ctxInfo.type() == sk_gpu_test::GrContextFactory::kANGLE_D3D9_ES2_ContextType ||
ctxInfo.type() == sk_gpu_test::GrContextFactory::kANGLE_D3D11_ES2_ContextType) {
// On Angle D3D we will hit a limit of out variables if we use too many stages.
maxTreeLevels = 2;
}
}
return maxTreeLevels;
}
static void test_programs(skiatest::Reporter* reporter, const sk_gpu_test::ContextInfo& ctxInfo) {
int maxStages = get_programs_max_stages(ctxInfo);
if (maxStages == 0) {
return;
}
int maxLevels = get_programs_max_levels(ctxInfo);
if (maxLevels == 0) {
return;
}
REPORTER_ASSERT(reporter, GrDrawingManager::ProgramUnitTest(ctxInfo.grContext(), maxStages,
maxLevels));
}
DEF_GPUTEST(Programs, reporter, options) {
// Set a locale that would cause shader compilation to fail because of , as decimal separator.
// skbug 3330
#ifdef SK_BUILD_FOR_WIN
GrAutoLocaleSetter als("sv-SE");
#else
GrAutoLocaleSetter als("sv_SE.UTF-8");
#endif
// We suppress prints to avoid spew
GrContextOptions opts = options;
opts.fSuppressPrints = true;
sk_gpu_test::GrContextFactory debugFactory(opts);
skiatest::RunWithGPUTestContexts(test_programs, &skiatest::IsRenderingGLOrMetalContextType,
reporter, opts);
}