| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/core/SkArenaAlloc.h" |
| #include "src/core/SkBitmapController.h" |
| #include "src/core/SkColorSpacePriv.h" |
| #include "src/core/SkColorSpaceXformSteps.h" |
| #include "src/core/SkOpts.h" |
| #include "src/core/SkRasterPipeline.h" |
| #include "src/core/SkReadBuffer.h" |
| #include "src/core/SkVM.h" |
| #include "src/core/SkWriteBuffer.h" |
| #include "src/image/SkImage_Base.h" |
| #include "src/shaders/SkBitmapProcShader.h" |
| #include "src/shaders/SkEmptyShader.h" |
| #include "src/shaders/SkImageShader.h" |
| |
| /** |
| * We are faster in clamp, so always use that tiling when we can. |
| */ |
| static SkTileMode optimize(SkTileMode tm, int dimension) { |
| SkASSERT(dimension > 0); |
| #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK |
| // need to update frameworks/base/libs/hwui/tests/unit/SkiaBehaviorTests.cpp:55 to allow |
| // for transforming to clamp. |
| return tm; |
| #else |
| return dimension == 1 ? SkTileMode::kClamp : tm; |
| #endif |
| } |
| |
| SkImageShader::SkImageShader(sk_sp<SkImage> img, |
| SkTileMode tmx, SkTileMode tmy, |
| const SkMatrix* localMatrix, |
| bool clampAsIfUnpremul) |
| : INHERITED(localMatrix) |
| , fImage(std::move(img)) |
| , fTileModeX(optimize(tmx, fImage->width())) |
| , fTileModeY(optimize(tmy, fImage->height())) |
| , fClampAsIfUnpremul(clampAsIfUnpremul) |
| {} |
| |
| // fClampAsIfUnpremul is always false when constructed through public APIs, |
| // so there's no need to read or write it here. |
| |
| sk_sp<SkFlattenable> SkImageShader::CreateProc(SkReadBuffer& buffer) { |
| auto tmx = buffer.read32LE<SkTileMode>(SkTileMode::kLastTileMode); |
| auto tmy = buffer.read32LE<SkTileMode>(SkTileMode::kLastTileMode); |
| SkMatrix localMatrix; |
| buffer.readMatrix(&localMatrix); |
| sk_sp<SkImage> img = buffer.readImage(); |
| if (!img) { |
| return nullptr; |
| } |
| return SkImageShader::Make(std::move(img), tmx, tmy, &localMatrix); |
| } |
| |
| void SkImageShader::flatten(SkWriteBuffer& buffer) const { |
| buffer.writeUInt((unsigned)fTileModeX); |
| buffer.writeUInt((unsigned)fTileModeY); |
| buffer.writeMatrix(this->getLocalMatrix()); |
| buffer.writeImage(fImage.get()); |
| SkASSERT(fClampAsIfUnpremul == false); |
| } |
| |
| bool SkImageShader::isOpaque() const { |
| return fImage->isOpaque() && |
| fTileModeX != SkTileMode::kDecal && fTileModeY != SkTileMode::kDecal; |
| } |
| |
| #ifdef SK_ENABLE_LEGACY_SHADERCONTEXT |
| static bool legacy_shader_can_handle(const SkMatrix& inv) { |
| if (inv.hasPerspective()) { |
| return false; |
| } |
| |
| // Scale+translate methods are always present, but affine might not be. |
| if (!SkOpts::S32_alpha_D32_filter_DXDY && !inv.isScaleTranslate()) { |
| return false; |
| } |
| |
| // legacy code uses SkFixed 32.32, so ensure the inverse doesn't map device coordinates |
| // out of range. |
| const SkScalar max_dev_coord = 32767.0f; |
| const SkRect src = inv.mapRect(SkRect::MakeWH(max_dev_coord, max_dev_coord)); |
| |
| // take 1/4 of max signed 32bits so we have room to subtract local values |
| const SkScalar max_fixed32dot32 = float(SK_MaxS32) * 0.25f; |
| if (!SkRect::MakeLTRB(-max_fixed32dot32, -max_fixed32dot32, |
| +max_fixed32dot32, +max_fixed32dot32).contains(src)) { |
| return false; |
| } |
| |
| // legacy shader impl should be able to handle these matrices |
| return true; |
| } |
| |
| SkShaderBase::Context* SkImageShader::onMakeContext(const ContextRec& rec, |
| SkArenaAlloc* alloc) const { |
| if (fImage->alphaType() == kUnpremul_SkAlphaType) { |
| return nullptr; |
| } |
| if (fImage->colorType() != kN32_SkColorType) { |
| return nullptr; |
| } |
| #if !defined(SK_SUPPORT_LEGACY_TILED_BITMAPS) |
| if (fTileModeX != fTileModeY) { |
| return nullptr; |
| } |
| #endif |
| if (fTileModeX == SkTileMode::kDecal || fTileModeY == SkTileMode::kDecal) { |
| return nullptr; |
| } |
| |
| // SkBitmapProcShader stores bitmap coordinates in a 16bit buffer, |
| // so it can't handle bitmaps larger than 65535. |
| // |
| // We back off another bit to 32767 to make small amounts of |
| // intermediate math safe, e.g. in |
| // |
| // SkFixed fx = ...; |
| // fx = tile(fx + SK_Fixed1); |
| // |
| // we want to make sure (fx + SK_Fixed1) never overflows. |
| if (fImage-> width() > 32767 || |
| fImage->height() > 32767) { |
| return nullptr; |
| } |
| |
| SkMatrix inv; |
| if (!this->computeTotalInverse(*rec.fMatrix, rec.fLocalMatrix, &inv) || |
| !legacy_shader_can_handle(inv)) { |
| return nullptr; |
| } |
| |
| if (!rec.isLegacyCompatible(fImage->colorSpace())) { |
| return nullptr; |
| } |
| |
| return SkBitmapProcLegacyShader::MakeContext(*this, fTileModeX, fTileModeY, |
| as_IB(fImage.get()), rec, alloc); |
| } |
| #endif |
| |
| SkImage* SkImageShader::onIsAImage(SkMatrix* texM, SkTileMode xy[]) const { |
| if (texM) { |
| *texM = this->getLocalMatrix(); |
| } |
| if (xy) { |
| xy[0] = fTileModeX; |
| xy[1] = fTileModeY; |
| } |
| return const_cast<SkImage*>(fImage.get()); |
| } |
| |
| sk_sp<SkShader> SkImageShader::Make(sk_sp<SkImage> image, |
| SkTileMode tmx, SkTileMode tmy, |
| const SkMatrix* localMatrix, |
| bool clampAsIfUnpremul) { |
| if (!image) { |
| return sk_make_sp<SkEmptyShader>(); |
| } |
| return sk_sp<SkShader>{ new SkImageShader(image, tmx, tmy, localMatrix, clampAsIfUnpremul) }; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| #if SK_SUPPORT_GPU |
| |
| #include "include/private/GrRecordingContext.h" |
| #include "src/gpu/GrCaps.h" |
| #include "src/gpu/GrColorInfo.h" |
| #include "src/gpu/GrRecordingContextPriv.h" |
| #include "src/gpu/SkGr.h" |
| #include "src/gpu/effects/GrBicubicEffect.h" |
| #include "src/gpu/effects/GrTextureEffect.h" |
| |
| static GrSamplerState::WrapMode tile_mode_to_wrap_mode(const SkTileMode tileMode) { |
| switch (tileMode) { |
| case SkTileMode::kClamp: |
| return GrSamplerState::WrapMode::kClamp; |
| case SkTileMode::kRepeat: |
| return GrSamplerState::WrapMode::kRepeat; |
| case SkTileMode::kMirror: |
| return GrSamplerState::WrapMode::kMirrorRepeat; |
| case SkTileMode::kDecal: |
| return GrSamplerState::WrapMode::kClampToBorder; |
| } |
| SK_ABORT("Unknown tile mode."); |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> SkImageShader::asFragmentProcessor( |
| const GrFPArgs& args) const { |
| const auto lm = this->totalLocalMatrix(args.fPreLocalMatrix, args.fPostLocalMatrix); |
| SkMatrix lmInverse; |
| if (!lm->invert(&lmInverse)) { |
| return nullptr; |
| } |
| |
| GrSamplerState::WrapMode wmX = tile_mode_to_wrap_mode(fTileModeX), |
| wmY = tile_mode_to_wrap_mode(fTileModeY); |
| |
| // Must set wrap and filter on the sampler before requesting a texture. In two places below |
| // we check the matrix scale factors to determine how to interpret the filter quality setting. |
| // This completely ignores the complexity of the drawVertices case where explicit local coords |
| // are provided by the caller. |
| bool doBicubic; |
| GrSamplerState::Filter textureFilterMode = GrSkFilterQualityToGrFilterMode( |
| fImage->width(), fImage->height(), args.fFilterQuality, *args.fViewMatrix, *lm, |
| args.fContext->priv().options().fSharpenMipmappedTextures, &doBicubic); |
| GrMipMapped mipMapped = GrMipMapped::kNo; |
| if (textureFilterMode == GrSamplerState::Filter::kMipMap) { |
| mipMapped = GrMipMapped::kYes; |
| } |
| GrSurfaceProxyView view = as_IB(fImage)->refView(args.fContext, mipMapped); |
| if (!view) { |
| return nullptr; |
| } |
| |
| SkAlphaType srcAlphaType = fImage->alphaType(); |
| |
| const auto& caps = *args.fContext->priv().caps(); |
| |
| std::unique_ptr<GrFragmentProcessor> inner; |
| if (doBicubic) { |
| static constexpr auto kDir = GrBicubicEffect::Direction::kXY; |
| inner = GrBicubicEffect::Make(std::move(view), srcAlphaType, lmInverse, wmX, wmY, kDir, |
| caps); |
| } else { |
| GrSamplerState samplerState(wmX, wmY, textureFilterMode); |
| inner = GrTextureEffect::Make(std::move(view), srcAlphaType, lmInverse, samplerState, caps); |
| } |
| inner = GrColorSpaceXformEffect::Make(std::move(inner), fImage->colorSpace(), srcAlphaType, |
| args.fDstColorInfo->colorSpace()); |
| |
| bool isAlphaOnly = SkColorTypeIsAlphaOnly(fImage->colorType()); |
| if (isAlphaOnly) { |
| return inner; |
| } else if (args.fInputColorIsOpaque) { |
| return GrFragmentProcessor::OverrideInput(std::move(inner), SK_PMColor4fWHITE, false); |
| } |
| return GrFragmentProcessor::MulChildByInputAlpha(std::move(inner)); |
| } |
| |
| #endif |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| #include "src/core/SkImagePriv.h" |
| |
| sk_sp<SkShader> SkMakeBitmapShader(const SkBitmap& src, SkTileMode tmx, SkTileMode tmy, |
| const SkMatrix* localMatrix, SkCopyPixelsMode cpm) { |
| return SkImageShader::Make(SkMakeImageFromRasterBitmap(src, cpm), |
| tmx, tmy, localMatrix); |
| } |
| |
| sk_sp<SkShader> SkMakeBitmapShaderForPaint(const SkPaint& paint, const SkBitmap& src, |
| SkTileMode tmx, SkTileMode tmy, |
| const SkMatrix* localMatrix, SkCopyPixelsMode mode) { |
| auto s = SkMakeBitmapShader(src, tmx, tmy, localMatrix, mode); |
| if (!s) { |
| return nullptr; |
| } |
| if (src.colorType() == kAlpha_8_SkColorType && paint.getShader()) { |
| // Compose the image shader with the paint's shader. Alpha images+shaders should output the |
| // texture's alpha multiplied by the shader's color. DstIn (d*sa) will achieve this with |
| // the source image and dst shader (MakeBlend takes dst first, src second). |
| s = SkShaders::Blend(SkBlendMode::kDstIn, paint.refShader(), std::move(s)); |
| } |
| return s; |
| } |
| |
| void SkShaderBase::RegisterFlattenables() { SK_REGISTER_FLATTENABLE(SkImageShader); } |
| |
| class SkImageStageUpdater : public SkStageUpdater { |
| public: |
| SkImageStageUpdater(const SkImageShader* shader, bool usePersp) |
| : fShader(shader) |
| , fUsePersp(usePersp || as_SB(shader)->getLocalMatrix().hasPerspective()) |
| {} |
| |
| const SkImageShader* fShader; |
| const bool fUsePersp; // else use affine |
| |
| // large enough for perspective, though often we just use 2x3 |
| float fMatrixStorage[9]; |
| |
| #if 0 // TODO: when we support mipmaps |
| SkRasterPipeline_GatherCtx* fGather; |
| SkRasterPipeline_TileCtx* fLimitX; |
| SkRasterPipeline_TileCtx* fLimitY; |
| SkRasterPipeline_DecalTileCtx* fDecal; |
| #endif |
| |
| void append_matrix_stage(SkRasterPipeline* p) { |
| if (fUsePersp) { |
| p->append(SkRasterPipeline::matrix_perspective, fMatrixStorage); |
| } else { |
| p->append(SkRasterPipeline::matrix_2x3, fMatrixStorage); |
| } |
| } |
| |
| bool update(const SkMatrix& ctm, const SkMatrix* localM) override { |
| SkMatrix matrix; |
| if (fShader->computeTotalInverse(ctm, localM, &matrix)) { |
| if (fUsePersp) { |
| matrix.get9(fMatrixStorage); |
| } else { |
| // if we get here, matrix should be affine. If it isn't, then defensively we |
| // won't draw (by returning false), but we should work to never let this |
| // happen (i.e. better preflight by the caller to know ahead of time that we |
| // may encounter perspective, either in the CTM, or in the localM). |
| // |
| // See https://bugs.chromium.org/p/skia/issues/detail?id=10004 |
| // |
| if (!matrix.asAffine(fMatrixStorage)) { |
| SkASSERT(false); |
| return false; |
| } |
| } |
| return true; |
| } |
| return false; |
| } |
| }; |
| |
| static void tweak_quality_and_inv_matrix(SkFilterQuality* quality, SkMatrix* matrix) { |
| // When the matrix is just an integer translate, bilerp == nearest neighbor. |
| if (*quality == kLow_SkFilterQuality && |
| matrix->getType() <= SkMatrix::kTranslate_Mask && |
| matrix->getTranslateX() == (int)matrix->getTranslateX() && |
| matrix->getTranslateY() == (int)matrix->getTranslateY()) { |
| *quality = kNone_SkFilterQuality; |
| } |
| |
| // See skia:4649 and the GM image_scale_aligned. |
| if (*quality == kNone_SkFilterQuality) { |
| if (matrix->getScaleX() >= 0) { |
| matrix->setTranslateX(nextafterf(matrix->getTranslateX(), |
| floorf(matrix->getTranslateX()))); |
| } |
| if (matrix->getScaleY() >= 0) { |
| matrix->setTranslateY(nextafterf(matrix->getTranslateY(), |
| floorf(matrix->getTranslateY()))); |
| } |
| } |
| } |
| |
| bool SkImageShader::doStages(const SkStageRec& rec, SkImageStageUpdater* updater) const { |
| if (updater && rec.fPaint.getFilterQuality() == kMedium_SkFilterQuality) { |
| // TODO: medium: recall RequestBitmap and update width/height accordingly |
| return false; |
| } |
| |
| SkRasterPipeline* p = rec.fPipeline; |
| SkArenaAlloc* alloc = rec.fAlloc; |
| auto quality = rec.fPaint.getFilterQuality(); |
| |
| SkMatrix matrix; |
| if (!this->computeTotalInverse(rec.fCTM, rec.fLocalM, &matrix)) { |
| return false; |
| } |
| |
| const auto* state = SkBitmapController::RequestBitmap(as_IB(fImage.get()), |
| matrix, quality, alloc); |
| if (!state) { |
| return false; |
| } |
| |
| const SkPixmap& pm = state->pixmap(); |
| matrix = state->invMatrix(); |
| quality = state->quality(); |
| auto info = pm.info(); |
| |
| p->append(SkRasterPipeline::seed_shader); |
| |
| if (updater) { |
| updater->append_matrix_stage(p); |
| } else { |
| tweak_quality_and_inv_matrix(&quality, &matrix); |
| p->append_matrix(alloc, matrix); |
| } |
| |
| auto gather = alloc->make<SkRasterPipeline_GatherCtx>(); |
| gather->pixels = pm.addr(); |
| gather->stride = pm.rowBytesAsPixels(); |
| gather->width = pm.width(); |
| gather->height = pm.height(); |
| |
| auto limit_x = alloc->make<SkRasterPipeline_TileCtx>(), |
| limit_y = alloc->make<SkRasterPipeline_TileCtx>(); |
| limit_x->scale = pm.width(); |
| limit_x->invScale = 1.0f / pm.width(); |
| limit_y->scale = pm.height(); |
| limit_y->invScale = 1.0f / pm.height(); |
| |
| SkRasterPipeline_DecalTileCtx* decal_ctx = nullptr; |
| bool decal_x_and_y = fTileModeX == SkTileMode::kDecal && fTileModeY == SkTileMode::kDecal; |
| if (fTileModeX == SkTileMode::kDecal || fTileModeY == SkTileMode::kDecal) { |
| decal_ctx = alloc->make<SkRasterPipeline_DecalTileCtx>(); |
| decal_ctx->limit_x = limit_x->scale; |
| decal_ctx->limit_y = limit_y->scale; |
| } |
| |
| #if 0 // TODO: when we support kMedium |
| if (updator && (quality == kMedium_SkFilterQuality)) { |
| // if we change levels in mipmap, we need to update the scales (and invScales) |
| updator->fGather = gather; |
| updator->fLimitX = limit_x; |
| updator->fLimitY = limit_y; |
| updator->fDecal = decal_ctx; |
| } |
| #endif |
| |
| auto append_tiling_and_gather = [&] { |
| if (decal_x_and_y) { |
| p->append(SkRasterPipeline::decal_x_and_y, decal_ctx); |
| } else { |
| switch (fTileModeX) { |
| case SkTileMode::kClamp: /* The gather_xxx stage will clamp for us. */ break; |
| case SkTileMode::kMirror: p->append(SkRasterPipeline::mirror_x, limit_x); break; |
| case SkTileMode::kRepeat: p->append(SkRasterPipeline::repeat_x, limit_x); break; |
| case SkTileMode::kDecal: p->append(SkRasterPipeline::decal_x, decal_ctx); break; |
| } |
| switch (fTileModeY) { |
| case SkTileMode::kClamp: /* The gather_xxx stage will clamp for us. */ break; |
| case SkTileMode::kMirror: p->append(SkRasterPipeline::mirror_y, limit_y); break; |
| case SkTileMode::kRepeat: p->append(SkRasterPipeline::repeat_y, limit_y); break; |
| case SkTileMode::kDecal: p->append(SkRasterPipeline::decal_y, decal_ctx); break; |
| } |
| } |
| |
| void* ctx = gather; |
| switch (info.colorType()) { |
| case kAlpha_8_SkColorType: p->append(SkRasterPipeline::gather_a8, ctx); break; |
| case kA16_unorm_SkColorType: p->append(SkRasterPipeline::gather_a16, ctx); break; |
| case kA16_float_SkColorType: p->append(SkRasterPipeline::gather_af16, ctx); break; |
| case kRGB_565_SkColorType: p->append(SkRasterPipeline::gather_565, ctx); break; |
| case kARGB_4444_SkColorType: p->append(SkRasterPipeline::gather_4444, ctx); break; |
| case kR8G8_unorm_SkColorType: p->append(SkRasterPipeline::gather_rg88, ctx); break; |
| case kR16G16_unorm_SkColorType: p->append(SkRasterPipeline::gather_rg1616, ctx); break; |
| case kR16G16_float_SkColorType: p->append(SkRasterPipeline::gather_rgf16, ctx); break; |
| case kRGBA_8888_SkColorType: p->append(SkRasterPipeline::gather_8888, ctx); break; |
| case kRGBA_1010102_SkColorType: p->append(SkRasterPipeline::gather_1010102, ctx); break; |
| case kR16G16B16A16_unorm_SkColorType: |
| p->append(SkRasterPipeline::gather_16161616,ctx); break; |
| case kRGBA_F16Norm_SkColorType: |
| case kRGBA_F16_SkColorType: p->append(SkRasterPipeline::gather_f16, ctx); break; |
| case kRGBA_F32_SkColorType: p->append(SkRasterPipeline::gather_f32, ctx); break; |
| |
| case kGray_8_SkColorType: p->append(SkRasterPipeline::gather_a8, ctx); |
| p->append(SkRasterPipeline::alpha_to_gray ); break; |
| |
| case kRGB_888x_SkColorType: p->append(SkRasterPipeline::gather_8888, ctx); |
| p->append(SkRasterPipeline::force_opaque ); break; |
| |
| case kBGRA_1010102_SkColorType: p->append(SkRasterPipeline::gather_1010102, ctx); |
| p->append(SkRasterPipeline::swap_rb ); break; |
| |
| case kRGB_101010x_SkColorType: p->append(SkRasterPipeline::gather_1010102, ctx); |
| p->append(SkRasterPipeline::force_opaque ); break; |
| |
| case kBGR_101010x_SkColorType: p->append(SkRasterPipeline::gather_1010102, ctx); |
| p->append(SkRasterPipeline::force_opaque ); |
| p->append(SkRasterPipeline::swap_rb ); break; |
| |
| case kBGRA_8888_SkColorType: p->append(SkRasterPipeline::gather_8888, ctx); |
| p->append(SkRasterPipeline::swap_rb ); break; |
| |
| case kUnknown_SkColorType: SkASSERT(false); |
| } |
| if (decal_ctx) { |
| p->append(SkRasterPipeline::check_decal_mask, decal_ctx); |
| } |
| }; |
| |
| auto append_misc = [&] { |
| // This is an inessential optimization... it's logically safe to set this to false. |
| // But if... |
| // - we know the image is definitely normalized, and |
| // - we're doing some color space conversion, and |
| // - sRGB curves are involved, |
| // then we can use slightly faster math that doesn't work well outside [0,1]. |
| bool src_is_normalized = SkColorTypeIsNormalized(info.colorType()); |
| |
| SkColorSpace* cs = info.colorSpace(); |
| SkAlphaType at = info.alphaType(); |
| |
| // Color for A8 images comes from the paint. TODO: all alpha images? none? |
| if (info.colorType() == kAlpha_8_SkColorType) { |
| SkColor4f rgb = rec.fPaint.getColor4f(); |
| p->append_set_rgb(alloc, rgb); |
| |
| src_is_normalized = rgb.fitsInBytes(); |
| cs = sk_srgb_singleton(); |
| at = kUnpremul_SkAlphaType; |
| } |
| |
| // Bicubic filtering naturally produces out of range values on both sides of [0,1]. |
| if (quality == kHigh_SkFilterQuality) { |
| p->append(SkRasterPipeline::clamp_0); |
| p->append(at == kUnpremul_SkAlphaType || fClampAsIfUnpremul |
| ? SkRasterPipeline::clamp_1 |
| : SkRasterPipeline::clamp_a); |
| src_is_normalized = true; |
| } |
| |
| // Transform color space and alpha type to match shader convention (dst CS, premul alpha). |
| alloc->make<SkColorSpaceXformSteps>(cs, at, |
| rec.fDstCS, kPremul_SkAlphaType) |
| ->apply(p, src_is_normalized); |
| |
| return true; |
| }; |
| |
| // Check for fast-path stages. |
| auto ct = info.colorType(); |
| if (true |
| && (ct == kRGBA_8888_SkColorType || ct == kBGRA_8888_SkColorType) |
| && quality == kLow_SkFilterQuality |
| && fTileModeX == SkTileMode::kClamp && fTileModeY == SkTileMode::kClamp) { |
| |
| p->append(SkRasterPipeline::bilerp_clamp_8888, gather); |
| if (ct == kBGRA_8888_SkColorType) { |
| p->append(SkRasterPipeline::swap_rb); |
| } |
| return append_misc(); |
| } |
| if (true |
| && (ct == kRGBA_8888_SkColorType || ct == kBGRA_8888_SkColorType) // TODO: all formats |
| && quality == kLow_SkFilterQuality |
| && fTileModeX != SkTileMode::kDecal // TODO decal too? |
| && fTileModeY != SkTileMode::kDecal) { |
| |
| auto ctx = alloc->make<SkRasterPipeline_SamplerCtx2>(); |
| *(SkRasterPipeline_GatherCtx*)(ctx) = *gather; |
| ctx->ct = ct; |
| ctx->tileX = fTileModeX; |
| ctx->tileY = fTileModeY; |
| ctx->invWidth = 1.0f / ctx->width; |
| ctx->invHeight = 1.0f / ctx->height; |
| p->append(SkRasterPipeline::bilinear, ctx); |
| return append_misc(); |
| } |
| if (true |
| && (ct == kRGBA_8888_SkColorType || ct == kBGRA_8888_SkColorType) |
| && quality == kHigh_SkFilterQuality |
| && fTileModeX == SkTileMode::kClamp && fTileModeY == SkTileMode::kClamp) { |
| |
| p->append(SkRasterPipeline::bicubic_clamp_8888, gather); |
| if (ct == kBGRA_8888_SkColorType) { |
| p->append(SkRasterPipeline::swap_rb); |
| } |
| return append_misc(); |
| } |
| if (true |
| && (ct == kRGBA_8888_SkColorType || ct == kBGRA_8888_SkColorType) // TODO: all formats |
| && quality == kHigh_SkFilterQuality |
| && fTileModeX != SkTileMode::kDecal // TODO decal too? |
| && fTileModeY != SkTileMode::kDecal) { |
| |
| auto ctx = alloc->make<SkRasterPipeline_SamplerCtx2>(); |
| *(SkRasterPipeline_GatherCtx*)(ctx) = *gather; |
| ctx->ct = ct; |
| ctx->tileX = fTileModeX; |
| ctx->tileY = fTileModeY; |
| ctx->invWidth = 1.0f / ctx->width; |
| ctx->invHeight = 1.0f / ctx->height; |
| p->append(SkRasterPipeline::bicubic, ctx); |
| return append_misc(); |
| } |
| |
| SkRasterPipeline_SamplerCtx* sampler = nullptr; |
| if (quality != kNone_SkFilterQuality) { |
| sampler = alloc->make<SkRasterPipeline_SamplerCtx>(); |
| } |
| |
| auto sample = [&](SkRasterPipeline::StockStage setup_x, |
| SkRasterPipeline::StockStage setup_y) { |
| p->append(setup_x, sampler); |
| p->append(setup_y, sampler); |
| append_tiling_and_gather(); |
| p->append(SkRasterPipeline::accumulate, sampler); |
| }; |
| |
| if (quality == kNone_SkFilterQuality) { |
| append_tiling_and_gather(); |
| } else if (quality == kLow_SkFilterQuality) { |
| p->append(SkRasterPipeline::save_xy, sampler); |
| |
| sample(SkRasterPipeline::bilinear_nx, SkRasterPipeline::bilinear_ny); |
| sample(SkRasterPipeline::bilinear_px, SkRasterPipeline::bilinear_ny); |
| sample(SkRasterPipeline::bilinear_nx, SkRasterPipeline::bilinear_py); |
| sample(SkRasterPipeline::bilinear_px, SkRasterPipeline::bilinear_py); |
| |
| p->append(SkRasterPipeline::move_dst_src); |
| |
| } else { |
| SkASSERT(quality == kHigh_SkFilterQuality); |
| p->append(SkRasterPipeline::save_xy, sampler); |
| |
| sample(SkRasterPipeline::bicubic_n3x, SkRasterPipeline::bicubic_n3y); |
| sample(SkRasterPipeline::bicubic_n1x, SkRasterPipeline::bicubic_n3y); |
| sample(SkRasterPipeline::bicubic_p1x, SkRasterPipeline::bicubic_n3y); |
| sample(SkRasterPipeline::bicubic_p3x, SkRasterPipeline::bicubic_n3y); |
| |
| sample(SkRasterPipeline::bicubic_n3x, SkRasterPipeline::bicubic_n1y); |
| sample(SkRasterPipeline::bicubic_n1x, SkRasterPipeline::bicubic_n1y); |
| sample(SkRasterPipeline::bicubic_p1x, SkRasterPipeline::bicubic_n1y); |
| sample(SkRasterPipeline::bicubic_p3x, SkRasterPipeline::bicubic_n1y); |
| |
| sample(SkRasterPipeline::bicubic_n3x, SkRasterPipeline::bicubic_p1y); |
| sample(SkRasterPipeline::bicubic_n1x, SkRasterPipeline::bicubic_p1y); |
| sample(SkRasterPipeline::bicubic_p1x, SkRasterPipeline::bicubic_p1y); |
| sample(SkRasterPipeline::bicubic_p3x, SkRasterPipeline::bicubic_p1y); |
| |
| sample(SkRasterPipeline::bicubic_n3x, SkRasterPipeline::bicubic_p3y); |
| sample(SkRasterPipeline::bicubic_n1x, SkRasterPipeline::bicubic_p3y); |
| sample(SkRasterPipeline::bicubic_p1x, SkRasterPipeline::bicubic_p3y); |
| sample(SkRasterPipeline::bicubic_p3x, SkRasterPipeline::bicubic_p3y); |
| |
| p->append(SkRasterPipeline::move_dst_src); |
| } |
| |
| return append_misc(); |
| } |
| |
| bool SkImageShader::onAppendStages(const SkStageRec& rec) const { |
| return this->doStages(rec, nullptr); |
| } |
| |
| SkStageUpdater* SkImageShader::onAppendUpdatableStages(const SkStageRec& rec) const { |
| bool usePersp = rec.fCTM.hasPerspective(); |
| auto updater = rec.fAlloc->make<SkImageStageUpdater>(this, usePersp); |
| return this->doStages(rec, updater) ? updater : nullptr; |
| } |
| |
| bool SkImageShader::onProgram(skvm::Builder* p, |
| const SkMatrix& ctm, const SkMatrix* localM, |
| SkFilterQuality quality, SkColorSpace* dstCS, |
| skvm::Uniforms* uniforms, SkArenaAlloc* alloc, |
| skvm::F32 x, skvm::F32 y, |
| skvm::F32* r, skvm::F32* g, skvm::F32* b, skvm::F32* a) const { |
| SkMatrix inv; |
| if (!this->computeTotalInverse(ctm, localM, &inv)) { |
| return false; |
| } |
| |
| // We use RequestBitmap() to make sure our SkBitmapController::State lives in the alloc. |
| // This lets the SkVMBlitter hang on to this state and keep our image alive. |
| auto state = SkBitmapController::RequestBitmap(as_IB(fImage.get()), inv, quality, alloc); |
| if (!state) { |
| return false; |
| } |
| const SkPixmap& pm = state->pixmap(); |
| inv = state->invMatrix(); |
| quality = state->quality(); |
| tweak_quality_and_inv_matrix(&quality, &inv); |
| inv.normalizePerspective(); |
| |
| // Apply matrix to convert dst coords to sample center coords. |
| SkShaderBase::ApplyMatrix(p, inv, &x,&y,uniforms); |
| |
| // Bail out if sample() can't yet handle our image's color type. |
| switch (pm.colorType()) { |
| default: return false; |
| case kRGB_565_SkColorType: |
| case kRGB_888x_SkColorType: |
| case kRGBA_8888_SkColorType: |
| case kBGRA_8888_SkColorType: |
| case kRGBA_1010102_SkColorType: |
| case kBGRA_1010102_SkColorType: |
| case kRGB_101010x_SkColorType: |
| case kBGR_101010x_SkColorType: break; |
| } |
| |
| // We can exploit image opacity to skip work unpacking alpha channels. |
| const bool input_is_opaque = SkAlphaTypeIsOpaque(pm.alphaType()) |
| || SkColorTypeIsAlwaysOpaque(pm.colorType()); |
| |
| // Each call to sample() will try to rewrite the same uniforms over and over, |
| // so remember where we start and reset back there each time. That way each |
| // sample() call uses the same uniform offsets. |
| const size_t uniforms_before_sample = uniforms->buf.size(); |
| |
| auto sample = [&](skvm::F32 sx, skvm::F32 sy) -> skvm::Color { |
| uniforms->buf.resize(uniforms_before_sample); |
| |
| // repeat() and mirror() are written assuming they'll be followed by a [0,scale) clamp. |
| auto repeat = [&](skvm::F32 v, float scale) { |
| skvm::F32 S = p->uniformF(uniforms->pushF( scale)), |
| I = p->uniformF(uniforms->pushF(1.0f/scale)); |
| // v - floor(v/scale)*scale |
| return p->sub(v, p->mul(p->floor(p->mul(v,I)), S)); |
| }; |
| auto mirror = [&](skvm::F32 v, float scale) { |
| skvm::F32 S = p->uniformF(uniforms->pushF( scale)), |
| I2 = p->uniformF(uniforms->pushF(0.5f/scale)); |
| // abs( (v-scale) - (2*scale)*floor((v-scale)*(0.5f/scale)) - scale ) |
| // {---A---} {------------------B------------------} |
| skvm::F32 A = p->sub(v,S), |
| B = p->mul(p->add(S,S), p->floor(p->mul(A,I2))); |
| return p->abs(p->sub(p->sub(A,B), S)); |
| }; |
| switch (fTileModeX) { |
| case SkTileMode::kDecal: /* handled after gather */ break; |
| case SkTileMode::kClamp: /* we always clamp */ break; |
| case SkTileMode::kRepeat: sx = repeat(sx, pm.width()); break; |
| case SkTileMode::kMirror: sx = mirror(sx, pm.width()); break; |
| } |
| switch (fTileModeY) { |
| case SkTileMode::kDecal: /* handled after gather */ break; |
| case SkTileMode::kClamp: /* we always clamp */ break; |
| case SkTileMode::kRepeat: sy = repeat(sy, pm.height()); break; |
| case SkTileMode::kMirror: sy = mirror(sy, pm.height()); break; |
| } |
| |
| // Always clamp sample coordinates to [0,width), [0,height), both for memory |
| // safety and to handle the clamps still needed by kClamp, kRepeat, and kMirror. |
| auto clamp = [&](skvm::F32 v, float limit) { |
| // Subtract an ulp so the upper clamp limit excludes limit itself. |
| int bits; |
| memcpy(&bits, &limit, 4); |
| return p->clamp(v, p->splat(0.0f), p->uniformF(uniforms->push(bits-1))); |
| }; |
| skvm::F32 clamped_x = clamp(sx, pm. width()), |
| clamped_y = clamp(sy, pm.height()); |
| |
| // Load pixels from pm.addr()[(int)sx + (int)sy*stride]. |
| skvm::Builder::Uniform img = uniforms->pushPtr(pm.addr()); |
| skvm::I32 index = p->add(p->trunc(clamped_x), |
| p->mul(p->trunc(clamped_y), |
| p->uniform32(uniforms->push(pm.rowBytesAsPixels())))); |
| skvm::Color c; |
| switch (pm.colorType()) { |
| default: SkUNREACHABLE; |
| case kRGB_565_SkColorType: c = p->unpack_565 (p->gather16(img, index)); break; |
| |
| case kRGB_888x_SkColorType: [[fallthrough]]; |
| case kRGBA_8888_SkColorType: c = p->unpack_8888(p->gather32(img, index)); |
| break; |
| case kBGRA_8888_SkColorType: c = p->unpack_8888(p->gather32(img, index)); |
| std::swap(c.r, c.b); |
| break; |
| |
| case kRGB_101010x_SkColorType: [[fallthrough]]; |
| case kRGBA_1010102_SkColorType: c = p->unpack_1010102(p->gather32(img, index)); |
| break; |
| |
| case kBGR_101010x_SkColorType: [[fallthrough]]; |
| case kBGRA_1010102_SkColorType: c = p->unpack_1010102(p->gather32(img, index)); |
| std::swap(c.r, c.b); |
| break; |
| } |
| // If we know the image is opaque, jump right to alpha = 1.0f, skipping work to unpack it. |
| if (input_is_opaque) { |
| c.a = p->splat(1.0f); |
| } |
| |
| // Mask away any pixels that we tried to sample outside the bounds in kDecal. |
| if (fTileModeX == SkTileMode::kDecal || fTileModeY == SkTileMode::kDecal) { |
| skvm::I32 mask = p->splat(~0); |
| if (fTileModeX == SkTileMode::kDecal) { mask = p->bit_and(mask, p->eq(sx, clamped_x)); } |
| if (fTileModeY == SkTileMode::kDecal) { mask = p->bit_and(mask, p->eq(sy, clamped_y)); } |
| c.r = p->bit_cast(p->bit_and(mask, p->bit_cast(c.r))); |
| c.g = p->bit_cast(p->bit_and(mask, p->bit_cast(c.g))); |
| c.b = p->bit_cast(p->bit_and(mask, p->bit_cast(c.b))); |
| c.a = p->bit_cast(p->bit_and(mask, p->bit_cast(c.a))); |
| // Notice that even if input_is_opaque, c.a might now be 0. |
| } |
| |
| return c; |
| }; |
| |
| if (quality == kNone_SkFilterQuality) { |
| skvm::Color c = sample(x,y); |
| *r = c.r; |
| *g = c.g; |
| *b = c.b; |
| *a = c.a; |
| } else if (quality == kLow_SkFilterQuality) { |
| // Our four sample points are the corners of a logical 1x1 pixel |
| // box surrounding (x,y) at (0.5,0.5) off-center. |
| skvm::F32 left = p->sub(x, p->splat(0.5f)), |
| top = p->sub(y, p->splat(0.5f)), |
| right = p->add(x, p->splat(0.5f)), |
| bottom = p->add(y, p->splat(0.5f)); |
| |
| // The fractional parts of right and bottom are our lerp factors in x and y respectively. |
| skvm::F32 fx = p->fract(right ), |
| fy = p->fract(bottom); |
| |
| skvm::Color c = p->lerp(p->lerp(sample(left,top ), sample(right,top ), fx), |
| p->lerp(sample(left,bottom), sample(right,bottom), fx), fy); |
| *r = c.r; |
| *g = c.g; |
| *b = c.b; |
| *a = c.a; |
| } else { |
| SkASSERT(quality == kHigh_SkFilterQuality); |
| |
| // All bicubic samples have the same fractional offset (fx,fy) from the center. |
| // They're either the 16 corners of a 3x3 grid/ surrounding (x,y) at (0.5,0.5) off-center. |
| skvm::F32 fx = p->fract(p->add(x, p->splat(0.5f))), |
| fy = p->fract(p->add(y, p->splat(0.5f))); |
| |
| // See GrCubicEffect for details of these weights. |
| // TODO: these maybe don't seem right looking at gm/bicubic and GrBicubicEffect. |
| auto near = [&](skvm::F32 t) { |
| // 1/18 + 9/18t + 27/18t^2 - 21/18t^3 == t ( t ( -21/18t + 27/18) + 9/18) + 1/18 |
| return p->mad(t, |
| p->mad(t, |
| p->mad(t, p->splat(-21/18.0f), |
| p->splat( 27/18.0f)), |
| p->splat( 9/18.0f)), |
| p->splat( 1/18.0f)); |
| }; |
| auto far = [&](skvm::F32 t) { |
| // 0/18 + 0/18*t - 6/18t^2 + 7/18t^3 == t^2 (7/18t - 6/18) |
| return p->mul(p->mul(t,t), p->mad(t, p->splat( 7/18.0f), |
| p->splat(-6/18.0f))); |
| }; |
| const skvm::F32 wx[] = { |
| far (p->sub(p->splat(1.0f), fx)), |
| near(p->sub(p->splat(1.0f), fx)), |
| near( fx ), |
| far ( fx ), |
| }; |
| const skvm::F32 wy[] = { |
| far (p->sub(p->splat(1.0f), fy)), |
| near(p->sub(p->splat(1.0f), fy)), |
| near( fy ), |
| far ( fy ), |
| }; |
| |
| *r = *g = *b = *a = p->splat(0.0f); |
| |
| skvm::F32 sy = p->add(y, p->splat(-1.5f)); |
| for (int j = 0; j < 4; j++, sy = p->add(sy, p->splat(1.0f))) { |
| skvm::F32 sx = p->add(x, p->splat(-1.5f)); |
| for (int i = 0; i < 4; i++, sx = p->add(sx, p->splat(1.0f))) { |
| skvm::Color c = sample(sx,sy); |
| skvm::F32 w = p->mul(wx[i], wy[j]); |
| |
| *r = p->mad(c.r,w, *r); |
| *g = p->mad(c.g,w, *g); |
| *b = p->mad(c.b,w, *b); |
| *a = p->mad(c.a,w, *a); |
| } |
| } |
| } |
| |
| // If the input is opaque and we're not in decal mode, that means the output is too. |
| // Forcing *a to 1.0 here will retroactively skip any work we did to interpolate sample alphas. |
| if (input_is_opaque |
| && fTileModeX != SkTileMode::kDecal |
| && fTileModeY != SkTileMode::kDecal) { |
| *a = p->splat(1.0f); |
| } |
| |
| if (quality == kHigh_SkFilterQuality) { |
| // Bicubic filtering naturally produces out of range values on both sides of [0,1]. |
| *a = p->clamp(*a, p->splat(0.0f), p->splat(1.0f)); |
| |
| skvm::F32 limit = (pm.alphaType() == kUnpremul_SkAlphaType || fClampAsIfUnpremul) |
| ? p->splat(1.0f) |
| : *a; |
| *r = p->clamp(*r, p->splat(0.0f), limit); |
| *g = p->clamp(*g, p->splat(0.0f), limit); |
| *b = p->clamp(*b, p->splat(0.0f), limit); |
| } |
| |
| // Follow SkColorSpaceXformSteps to match shader output convention (dstCS, premul). |
| // TODO: may need to extend lifetime once doing actual transforms? maybe all in uniforms. |
| auto flags = SkColorSpaceXformSteps{pm.colorSpace(), pm.alphaType(), |
| dstCS, kPremul_SkAlphaType}.flags; |
| |
| // TODO: once this all works, move it to SkColorSpaceXformSteps |
| if (flags.unpremul) { p->unpremul(r,g,b,*a); } |
| if (flags.linearize) { return false; } |
| if (flags.gamut_transform) { return false; } |
| if (flags.encode) { return false; } |
| if (flags.premul) { p->premul(r,g,b,*a); } |
| return true; |
| } |
| |