| /* |
| * Copyright 2017 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkTypes.h" |
| |
| #ifdef SK_HAS_HEIF_LIBRARY |
| #include "SkCodec.h" |
| #include "SkCodecPriv.h" |
| #include "SkColorData.h" |
| #include "SkEndian.h" |
| #include "SkStream.h" |
| #include "SkHeifCodec.h" |
| |
| #define FOURCC(c1, c2, c3, c4) \ |
| ((c1) << 24 | (c2) << 16 | (c3) << 8 | (c4)) |
| |
| bool SkHeifCodec::IsHeif(const void* buffer, size_t bytesRead) { |
| // Parse the ftyp box up to bytesRead to determine if this is HEIF. |
| // Any valid ftyp box should have at least 8 bytes. |
| if (bytesRead < 8) { |
| return false; |
| } |
| |
| uint32_t* ptr = (uint32_t*)buffer; |
| uint64_t chunkSize = SkEndian_SwapBE32(ptr[0]); |
| uint32_t chunkType = SkEndian_SwapBE32(ptr[1]); |
| |
| if (chunkType != FOURCC('f', 't', 'y', 'p')) { |
| return false; |
| } |
| |
| int64_t offset = 8; |
| if (chunkSize == 1) { |
| // This indicates that the next 8 bytes represent the chunk size, |
| // and chunk data comes after that. |
| if (bytesRead < 16) { |
| return false; |
| } |
| auto* chunkSizePtr = SkTAddOffset<const uint64_t>(buffer, offset); |
| chunkSize = SkEndian_SwapBE64(*chunkSizePtr); |
| if (chunkSize < 16) { |
| // The smallest valid chunk is 16 bytes long in this case. |
| return false; |
| } |
| offset += 8; |
| } else if (chunkSize < 8) { |
| // The smallest valid chunk is 8 bytes long. |
| return false; |
| } |
| |
| if (chunkSize > bytesRead) { |
| chunkSize = bytesRead; |
| } |
| int64_t chunkDataSize = chunkSize - offset; |
| // It should at least have major brand (4-byte) and minor version (4-bytes). |
| // The rest of the chunk (if any) is a list of (4-byte) compatible brands. |
| if (chunkDataSize < 8) { |
| return false; |
| } |
| |
| uint32_t numCompatibleBrands = (chunkDataSize - 8) / 4; |
| for (size_t i = 0; i < numCompatibleBrands + 2; ++i) { |
| if (i == 1) { |
| // Skip this index, it refers to the minorVersion, |
| // not a brand. |
| continue; |
| } |
| auto* brandPtr = SkTAddOffset<const uint32_t>(buffer, offset + 4 * i); |
| uint32_t brand = SkEndian_SwapBE32(*brandPtr); |
| if (brand == FOURCC('m', 'i', 'f', '1') || brand == FOURCC('h', 'e', 'i', 'c') |
| || brand == FOURCC('m', 's', 'f', '1') || brand == FOURCC('h', 'e', 'v', 'c')) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static SkEncodedOrigin get_orientation(const HeifFrameInfo& frameInfo) { |
| switch (frameInfo.mRotationAngle) { |
| case 0: return kTopLeft_SkEncodedOrigin; |
| case 90: return kRightTop_SkEncodedOrigin; |
| case 180: return kBottomRight_SkEncodedOrigin; |
| case 270: return kLeftBottom_SkEncodedOrigin; |
| } |
| return kDefault_SkEncodedOrigin; |
| } |
| |
| struct SkHeifStreamWrapper : public HeifStream { |
| SkHeifStreamWrapper(SkStream* stream) : fStream(stream) {} |
| |
| ~SkHeifStreamWrapper() override {} |
| |
| size_t read(void* buffer, size_t size) override { |
| return fStream->read(buffer, size); |
| } |
| |
| bool rewind() override { |
| return fStream->rewind(); |
| } |
| |
| bool seek(size_t position) override { |
| return fStream->seek(position); |
| } |
| |
| bool hasLength() const override { |
| return fStream->hasLength(); |
| } |
| |
| size_t getLength() const override { |
| return fStream->getLength(); |
| } |
| |
| private: |
| std::unique_ptr<SkStream> fStream; |
| }; |
| |
| std::unique_ptr<SkCodec> SkHeifCodec::MakeFromStream( |
| std::unique_ptr<SkStream> stream, Result* result) { |
| std::unique_ptr<HeifDecoder> heifDecoder(createHeifDecoder()); |
| if (heifDecoder.get() == nullptr) { |
| *result = kInternalError; |
| return nullptr; |
| } |
| |
| HeifFrameInfo frameInfo; |
| if (!heifDecoder->init(new SkHeifStreamWrapper(stream.release()), |
| &frameInfo)) { |
| *result = kInvalidInput; |
| return nullptr; |
| } |
| |
| SkEncodedInfo info = SkEncodedInfo::Make( |
| SkEncodedInfo::kYUV_Color, SkEncodedInfo::kOpaque_Alpha, 8); |
| |
| SkEncodedOrigin orientation = get_orientation(frameInfo); |
| |
| sk_sp<SkColorSpace> colorSpace = nullptr; |
| if ((frameInfo.mIccSize > 0) && (frameInfo.mIccData != nullptr)) { |
| colorSpace = SkColorSpace::MakeICC(frameInfo.mIccData.get(), |
| frameInfo.mIccSize); |
| } |
| if (!colorSpace || colorSpace->type() != SkColorSpace::kRGB_Type) { |
| colorSpace = SkColorSpace::MakeSRGB(); |
| } |
| |
| *result = kSuccess; |
| return std::unique_ptr<SkCodec>(new SkHeifCodec(frameInfo.mWidth, frameInfo.mHeight, |
| info, heifDecoder.release(), std::move(colorSpace), orientation)); |
| } |
| |
| SkHeifCodec::SkHeifCodec(int width, int height, const SkEncodedInfo& info, |
| HeifDecoder* heifDecoder, sk_sp<SkColorSpace> colorSpace, SkEncodedOrigin origin) |
| : INHERITED(width, height, info, SkColorSpaceXform::kRGBA_8888_ColorFormat, |
| nullptr, std::move(colorSpace), origin) |
| , fHeifDecoder(heifDecoder) |
| , fSwizzleSrcRow(nullptr) |
| , fColorXformSrcRow(nullptr) |
| {} |
| |
| /* |
| * Checks if the conversion between the input image and the requested output |
| * image has been implemented |
| * Sets the output color format |
| */ |
| bool SkHeifCodec::setOutputColorFormat(const SkImageInfo& dstInfo) { |
| if (kUnknown_SkAlphaType == dstInfo.alphaType()) { |
| return false; |
| } |
| |
| if (kOpaque_SkAlphaType != dstInfo.alphaType()) { |
| SkCodecPrintf("Warning: an opaque image should be decoded as opaque " |
| "- it is being decoded as non-opaque, which will draw slower\n"); |
| } |
| |
| switch (dstInfo.colorType()) { |
| case kRGBA_8888_SkColorType: |
| return fHeifDecoder->setOutputColor(kHeifColorFormat_RGBA_8888); |
| |
| case kBGRA_8888_SkColorType: |
| return fHeifDecoder->setOutputColor(kHeifColorFormat_BGRA_8888); |
| |
| case kRGB_565_SkColorType: |
| if (this->colorXform()) { |
| return fHeifDecoder->setOutputColor(kHeifColorFormat_RGBA_8888); |
| } else { |
| return fHeifDecoder->setOutputColor(kHeifColorFormat_RGB565); |
| } |
| |
| case kRGBA_F16_SkColorType: |
| SkASSERT(this->colorXform()); |
| return fHeifDecoder->setOutputColor(kHeifColorFormat_RGBA_8888); |
| |
| default: |
| return false; |
| } |
| } |
| |
| int SkHeifCodec::readRows(const SkImageInfo& dstInfo, void* dst, size_t rowBytes, int count, |
| const Options& opts) { |
| // When fSwizzleSrcRow is non-null, it means that we need to swizzle. In this case, |
| // we will always decode into fSwizzlerSrcRow before swizzling into the next buffer. |
| // We can never swizzle "in place" because the swizzler may perform sampling and/or |
| // subsetting. |
| // When fColorXformSrcRow is non-null, it means that we need to color xform and that |
| // we cannot color xform "in place" (many times we can, but not when the dst is F16). |
| // In this case, we will color xform from fColorXformSrcRow into the dst. |
| uint8_t* decodeDst = (uint8_t*) dst; |
| uint32_t* swizzleDst = (uint32_t*) dst; |
| size_t decodeDstRowBytes = rowBytes; |
| size_t swizzleDstRowBytes = rowBytes; |
| int dstWidth = opts.fSubset ? opts.fSubset->width() : dstInfo.width(); |
| if (fSwizzleSrcRow && fColorXformSrcRow) { |
| decodeDst = fSwizzleSrcRow; |
| swizzleDst = fColorXformSrcRow; |
| decodeDstRowBytes = 0; |
| swizzleDstRowBytes = 0; |
| dstWidth = fSwizzler->swizzleWidth(); |
| } else if (fColorXformSrcRow) { |
| decodeDst = (uint8_t*) fColorXformSrcRow; |
| swizzleDst = fColorXformSrcRow; |
| decodeDstRowBytes = 0; |
| swizzleDstRowBytes = 0; |
| } else if (fSwizzleSrcRow) { |
| decodeDst = fSwizzleSrcRow; |
| decodeDstRowBytes = 0; |
| dstWidth = fSwizzler->swizzleWidth(); |
| } |
| |
| for (int y = 0; y < count; y++) { |
| if (!fHeifDecoder->getScanline(decodeDst)) { |
| return y; |
| } |
| |
| if (fSwizzler) { |
| fSwizzler->swizzle(swizzleDst, decodeDst); |
| } |
| |
| if (this->colorXform()) { |
| this->applyColorXform(dst, swizzleDst, dstWidth, kOpaque_SkAlphaType); |
| dst = SkTAddOffset<void>(dst, rowBytes); |
| } |
| |
| decodeDst = SkTAddOffset<uint8_t>(decodeDst, decodeDstRowBytes); |
| swizzleDst = SkTAddOffset<uint32_t>(swizzleDst, swizzleDstRowBytes); |
| } |
| |
| return count; |
| } |
| |
| /* |
| * Performs the heif decode |
| */ |
| SkCodec::Result SkHeifCodec::onGetPixels(const SkImageInfo& dstInfo, |
| void* dst, size_t dstRowBytes, |
| const Options& options, |
| int* rowsDecoded) { |
| if (options.fSubset) { |
| // Not supporting subsets on this path for now. |
| // TODO: if the heif has tiles, we can support subset here, but |
| // need to retrieve tile config from metadata retriever first. |
| return kUnimplemented; |
| } |
| |
| // Check if we can decode to the requested destination and set the output color space |
| if (!this->setOutputColorFormat(dstInfo)) { |
| return kInvalidConversion; |
| } |
| |
| if (!fHeifDecoder->decode(&fFrameInfo)) { |
| return kInvalidInput; |
| } |
| |
| fSwizzler.reset(nullptr); |
| this->allocateStorage(dstInfo); |
| |
| int rows = this->readRows(dstInfo, dst, dstRowBytes, dstInfo.height(), options); |
| if (rows < dstInfo.height()) { |
| *rowsDecoded = rows; |
| return kIncompleteInput; |
| } |
| |
| return kSuccess; |
| } |
| |
| void SkHeifCodec::allocateStorage(const SkImageInfo& dstInfo) { |
| int dstWidth = dstInfo.width(); |
| |
| size_t swizzleBytes = 0; |
| if (fSwizzler) { |
| swizzleBytes = fFrameInfo.mBytesPerPixel * fFrameInfo.mWidth; |
| dstWidth = fSwizzler->swizzleWidth(); |
| SkASSERT(!this->colorXform() || SkIsAlign4(swizzleBytes)); |
| } |
| |
| size_t xformBytes = 0; |
| if (this->colorXform() && (kRGBA_F16_SkColorType == dstInfo.colorType() || |
| kRGB_565_SkColorType == dstInfo.colorType())) { |
| xformBytes = dstWidth * sizeof(uint32_t); |
| } |
| |
| size_t totalBytes = swizzleBytes + xformBytes; |
| fStorage.reset(totalBytes); |
| if (totalBytes > 0) { |
| fSwizzleSrcRow = (swizzleBytes > 0) ? fStorage.get() : nullptr; |
| fColorXformSrcRow = (xformBytes > 0) ? |
| SkTAddOffset<uint32_t>(fStorage.get(), swizzleBytes) : nullptr; |
| } |
| } |
| |
| void SkHeifCodec::initializeSwizzler( |
| const SkImageInfo& dstInfo, const Options& options) { |
| SkEncodedInfo swizzlerInfo = this->getEncodedInfo(); |
| |
| SkImageInfo swizzlerDstInfo = dstInfo; |
| if (this->colorXform()) { |
| // The color xform will be expecting RGBA 8888 input. |
| swizzlerDstInfo = swizzlerDstInfo.makeColorType(kRGBA_8888_SkColorType); |
| } |
| |
| fSwizzler.reset(SkSwizzler::CreateSwizzler(swizzlerInfo, nullptr, |
| swizzlerDstInfo, options, nullptr, true)); |
| SkASSERT(fSwizzler); |
| } |
| |
| SkSampler* SkHeifCodec::getSampler(bool createIfNecessary) { |
| if (!createIfNecessary || fSwizzler) { |
| SkASSERT(!fSwizzler || (fSwizzleSrcRow && fStorage.get() == fSwizzleSrcRow)); |
| return fSwizzler.get(); |
| } |
| |
| this->initializeSwizzler(this->dstInfo(), this->options()); |
| this->allocateStorage(this->dstInfo()); |
| return fSwizzler.get(); |
| } |
| |
| SkCodec::Result SkHeifCodec::onStartScanlineDecode( |
| const SkImageInfo& dstInfo, const Options& options) { |
| // Check if we can decode to the requested destination and set the output color space |
| if (!this->setOutputColorFormat(dstInfo)) { |
| return kInvalidConversion; |
| } |
| |
| // TODO: For now, just decode the whole thing even when there is a subset. |
| // If the heif image has tiles, we could potentially do this much faster, |
| // but the tile configuration needs to be retrieved from the metadata. |
| if (!fHeifDecoder->decode(&fFrameInfo)) { |
| return kInvalidInput; |
| } |
| |
| if (options.fSubset) { |
| this->initializeSwizzler(dstInfo, options); |
| } else { |
| fSwizzler.reset(nullptr); |
| } |
| |
| this->allocateStorage(dstInfo); |
| |
| return kSuccess; |
| } |
| |
| int SkHeifCodec::onGetScanlines(void* dst, int count, size_t dstRowBytes) { |
| return this->readRows(this->dstInfo(), dst, dstRowBytes, count, this->options()); |
| } |
| |
| bool SkHeifCodec::onSkipScanlines(int count) { |
| return count == (int) fHeifDecoder->skipScanlines(count); |
| } |
| |
| #endif // SK_HAS_HEIF_LIBRARY |