blob: eae8ce867cc5775cd8e96d59c9758459ee01a45f [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkGpuDevice.h"
#include "effects/GrTextureDomainEffect.h"
#include "GrContext.h"
#include "GrTextContext.h"
#include "SkGrTexturePixelRef.h"
#include "SkColorFilter.h"
#include "SkDeviceImageFilterProxy.h"
#include "SkDrawProcs.h"
#include "SkGlyphCache.h"
#include "SkImageFilter.h"
#include "SkUtils.h"
#define CACHE_COMPATIBLE_DEVICE_TEXTURES 1
#if 0
extern bool (*gShouldDrawProc)();
#define CHECK_SHOULD_DRAW(draw, forceI) \
do { \
if (gShouldDrawProc && !gShouldDrawProc()) return; \
this->prepareDraw(draw, forceI); \
} while (0)
#else
#define CHECK_SHOULD_DRAW(draw, forceI) this->prepareDraw(draw, forceI)
#endif
// we use the same texture slot on GrPaint for bitmaps and shaders
// (since drawBitmap, drawSprite, and drawDevice ignore skia's shader)
enum {
kBitmapTextureIdx = 0,
kShaderTextureIdx = 0,
kColorFilterTextureIdx = 1
};
#define MAX_BLUR_SIGMA 4.0f
// FIXME: This value comes from from SkBlurMaskFilter.cpp.
// Should probably be put in a common header someplace.
#define MAX_BLUR_RADIUS SkIntToScalar(128)
// This constant approximates the scaling done in the software path's
// "high quality" mode, in SkBlurMask::Blur() (1 / sqrt(3)).
// IMHO, it actually should be 1: we blur "less" than we should do
// according to the CSS and canvas specs, simply because Safari does the same.
// Firefox used to do the same too, until 4.0 where they fixed it. So at some
// point we should probably get rid of these scaling constants and rebaseline
// all the blur tests.
#define BLUR_SIGMA_SCALE 0.6f
// This constant represents the screen alignment criterion in texels for
// requiring texture domain clamping to prevent color bleeding when drawing
// a sub region of a larger source image.
#define COLOR_BLEED_TOLERANCE SkFloatToScalar(0.001f)
#define DO_DEFERRED_CLEAR() \
do { \
if (fNeedClear) { \
this->clear(0x0); \
} \
} while (false) \
///////////////////////////////////////////////////////////////////////////////
#define CHECK_FOR_NODRAW_ANNOTATION(paint) \
do { if (paint.isNoDrawAnnotation()) { return; } } while (0)
///////////////////////////////////////////////////////////////////////////////
class SkGpuDevice::SkAutoCachedTexture : public ::SkNoncopyable {
public:
SkAutoCachedTexture()
: fDevice(NULL)
, fTexture(NULL) {
}
SkAutoCachedTexture(SkGpuDevice* device,
const SkBitmap& bitmap,
const GrTextureParams* params,
GrTexture** texture)
: fDevice(NULL)
, fTexture(NULL) {
GrAssert(NULL != texture);
*texture = this->set(device, bitmap, params);
}
~SkAutoCachedTexture() {
if (NULL != fTexture) {
GrUnlockCachedBitmapTexture(fTexture);
}
}
GrTexture* set(SkGpuDevice* device,
const SkBitmap& bitmap,
const GrTextureParams* params) {
if (NULL != fTexture) {
GrUnlockCachedBitmapTexture(fTexture);
fTexture = NULL;
}
fDevice = device;
GrTexture* result = (GrTexture*)bitmap.getTexture();
if (NULL == result) {
// Cannot return the native texture so look it up in our cache
fTexture = GrLockCachedBitmapTexture(device->context(), bitmap, params);
result = fTexture;
}
return result;
}
private:
SkGpuDevice* fDevice;
GrTexture* fTexture;
};
///////////////////////////////////////////////////////////////////////////////
struct GrSkDrawProcs : public SkDrawProcs {
public:
GrContext* fContext;
GrTextContext* fTextContext;
GrFontScaler* fFontScaler; // cached in the skia glyphcache
};
///////////////////////////////////////////////////////////////////////////////
static SkBitmap::Config grConfig2skConfig(GrPixelConfig config, bool* isOpaque) {
switch (config) {
case kAlpha_8_GrPixelConfig:
*isOpaque = false;
return SkBitmap::kA8_Config;
case kRGB_565_GrPixelConfig:
*isOpaque = true;
return SkBitmap::kRGB_565_Config;
case kRGBA_4444_GrPixelConfig:
*isOpaque = false;
return SkBitmap::kARGB_4444_Config;
case kSkia8888_PM_GrPixelConfig:
// we don't currently have a way of knowing whether
// a 8888 is opaque based on the config.
*isOpaque = false;
return SkBitmap::kARGB_8888_Config;
default:
*isOpaque = false;
return SkBitmap::kNo_Config;
}
}
static SkBitmap make_bitmap(GrContext* context, GrRenderTarget* renderTarget) {
GrPixelConfig config = renderTarget->config();
bool isOpaque;
SkBitmap bitmap;
bitmap.setConfig(grConfig2skConfig(config, &isOpaque),
renderTarget->width(), renderTarget->height());
bitmap.setIsOpaque(isOpaque);
return bitmap;
}
SkGpuDevice::SkGpuDevice(GrContext* context, GrTexture* texture)
: SkDevice(make_bitmap(context, texture->asRenderTarget())) {
this->initFromRenderTarget(context, texture->asRenderTarget(), false);
}
SkGpuDevice::SkGpuDevice(GrContext* context, GrRenderTarget* renderTarget)
: SkDevice(make_bitmap(context, renderTarget)) {
this->initFromRenderTarget(context, renderTarget, false);
}
void SkGpuDevice::initFromRenderTarget(GrContext* context,
GrRenderTarget* renderTarget,
bool cached) {
fDrawProcs = NULL;
fContext = context;
fContext->ref();
fRenderTarget = NULL;
fNeedClear = false;
GrAssert(NULL != renderTarget);
fRenderTarget = renderTarget;
fRenderTarget->ref();
// Hold onto to the texture in the pixel ref (if there is one) because the texture holds a ref
// on the RT but not vice-versa.
// TODO: Remove this trickery once we figure out how to make SkGrPixelRef do this without
// busting chrome (for a currently unknown reason).
GrSurface* surface = fRenderTarget->asTexture();
if (NULL == surface) {
surface = fRenderTarget;
}
SkPixelRef* pr = SkNEW_ARGS(SkGrPixelRef, (surface, cached));
this->setPixelRef(pr, 0)->unref();
}
SkGpuDevice::SkGpuDevice(GrContext* context,
SkBitmap::Config config,
int width,
int height)
: SkDevice(config, width, height, false /*isOpaque*/) {
fDrawProcs = NULL;
fContext = context;
fContext->ref();
fRenderTarget = NULL;
fNeedClear = false;
if (config != SkBitmap::kRGB_565_Config) {
config = SkBitmap::kARGB_8888_Config;
}
SkBitmap bm;
bm.setConfig(config, width, height);
GrTextureDesc desc;
desc.fFlags = kRenderTarget_GrTextureFlagBit;
desc.fWidth = width;
desc.fHeight = height;
desc.fConfig = SkBitmapConfig2GrPixelConfig(bm.config());
SkAutoTUnref<GrTexture> texture(fContext->createUncachedTexture(desc, NULL, 0));
if (NULL != texture) {
fRenderTarget = texture->asRenderTarget();
fRenderTarget->ref();
GrAssert(NULL != fRenderTarget);
// wrap the bitmap with a pixelref to expose our texture
SkGrPixelRef* pr = SkNEW_ARGS(SkGrPixelRef, (texture));
this->setPixelRef(pr, 0)->unref();
} else {
GrPrintf("--- failed to create gpu-offscreen [%d %d]\n",
width, height);
GrAssert(false);
}
}
SkGpuDevice::~SkGpuDevice() {
if (fDrawProcs) {
delete fDrawProcs;
}
// The GrContext takes a ref on the target. We don't want to cause the render
// target to be unnecessarily kept alive.
if (fContext->getRenderTarget() == fRenderTarget) {
fContext->setRenderTarget(NULL);
}
if (fContext->getClip() == &fClipData) {
fContext->setClip(NULL);
}
SkSafeUnref(fRenderTarget);
fContext->unref();
}
///////////////////////////////////////////////////////////////////////////////
void SkGpuDevice::makeRenderTargetCurrent() {
DO_DEFERRED_CLEAR();
fContext->setRenderTarget(fRenderTarget);
}
///////////////////////////////////////////////////////////////////////////////
namespace {
GrPixelConfig config8888_to_grconfig_and_flags(SkCanvas::Config8888 config8888, uint32_t* flags) {
switch (config8888) {
case SkCanvas::kNative_Premul_Config8888:
*flags = 0;
return kSkia8888_GrPixelConfig;
case SkCanvas::kNative_Unpremul_Config8888:
*flags = GrContext::kUnpremul_PixelOpsFlag;
return kSkia8888_PM_GrPixelConfig;
case SkCanvas::kBGRA_Premul_Config8888:
*flags = 0;
return kBGRA_8888_GrPixelConfig;
case SkCanvas::kBGRA_Unpremul_Config8888:
*flags = GrContext::kUnpremul_PixelOpsFlag;
return kBGRA_8888_GrPixelConfig;
case SkCanvas::kRGBA_Premul_Config8888:
*flags = 0;
return kRGBA_8888_GrPixelConfig;
case SkCanvas::kRGBA_Unpremul_Config8888:
*flags = GrContext::kUnpremul_PixelOpsFlag;
return kRGBA_8888_GrPixelConfig;
default:
GrCrash("Unexpected Config8888.");
*flags = 0; // suppress warning
return kSkia8888_PM_GrPixelConfig;
}
}
}
bool SkGpuDevice::onReadPixels(const SkBitmap& bitmap,
int x, int y,
SkCanvas::Config8888 config8888) {
DO_DEFERRED_CLEAR();
SkASSERT(SkBitmap::kARGB_8888_Config == bitmap.config());
SkASSERT(!bitmap.isNull());
SkASSERT(SkIRect::MakeWH(this->width(), this->height()).contains(SkIRect::MakeXYWH(x, y, bitmap.width(), bitmap.height())));
SkAutoLockPixels alp(bitmap);
GrPixelConfig config;
uint32_t flags;
config = config8888_to_grconfig_and_flags(config8888, &flags);
return fContext->readRenderTargetPixels(fRenderTarget,
x, y,
bitmap.width(),
bitmap.height(),
config,
bitmap.getPixels(),
bitmap.rowBytes(),
flags);
}
void SkGpuDevice::writePixels(const SkBitmap& bitmap, int x, int y,
SkCanvas::Config8888 config8888) {
SkAutoLockPixels alp(bitmap);
if (!bitmap.readyToDraw()) {
return;
}
GrPixelConfig config;
uint32_t flags;
if (SkBitmap::kARGB_8888_Config == bitmap.config()) {
config = config8888_to_grconfig_and_flags(config8888, &flags);
} else {
flags = 0;
config= SkBitmapConfig2GrPixelConfig(bitmap.config());
}
fRenderTarget->writePixels(x, y, bitmap.width(), bitmap.height(),
config, bitmap.getPixels(), bitmap.rowBytes(), flags);
}
namespace {
void purgeClipCB(int genID, void* data) {
GrContext* context = (GrContext*) data;
if (SkClipStack::kInvalidGenID == genID ||
SkClipStack::kEmptyGenID == genID ||
SkClipStack::kWideOpenGenID == genID) {
// none of these cases will have a cached clip mask
return;
}
}
};
void SkGpuDevice::onAttachToCanvas(SkCanvas* canvas) {
INHERITED::onAttachToCanvas(canvas);
// Canvas promises that this ptr is valid until onDetachFromCanvas is called
fClipData.fClipStack = canvas->getClipStack();
fClipData.fClipStack->addPurgeClipCallback(purgeClipCB, fContext);
}
void SkGpuDevice::onDetachFromCanvas() {
INHERITED::onDetachFromCanvas();
// TODO: iterate through the clip stack and clean up any cached clip masks
fClipData.fClipStack->removePurgeClipCallback(purgeClipCB, fContext);
fClipData.fClipStack = NULL;
}
#ifdef SK_DEBUG
static void check_bounds(const GrClipData& clipData,
const SkRegion& clipRegion,
int renderTargetWidth,
int renderTargetHeight) {
SkIRect devBound;
devBound.setLTRB(0, 0, renderTargetWidth, renderTargetHeight);
SkClipStack::BoundsType boundType;
SkRect canvTemp;
clipData.fClipStack->getBounds(&canvTemp, &boundType);
if (SkClipStack::kNormal_BoundsType == boundType) {
SkIRect devTemp;
canvTemp.roundOut(&devTemp);
devTemp.offset(-clipData.fOrigin.fX, -clipData.fOrigin.fY);
if (!devBound.intersect(devTemp)) {
devBound.setEmpty();
}
}
GrAssert(devBound.contains(clipRegion.getBounds()));
}
#endif
///////////////////////////////////////////////////////////////////////////////
// call this every draw call, to ensure that the context reflects our state,
// and not the state from some other canvas/device
void SkGpuDevice::prepareDraw(const SkDraw& draw, bool forceIdentity) {
GrAssert(NULL != fClipData.fClipStack);
fContext->setRenderTarget(fRenderTarget);
SkASSERT(draw.fClipStack && draw.fClipStack == fClipData.fClipStack);
if (forceIdentity) {
fContext->setIdentityMatrix();
} else {
fContext->setMatrix(*draw.fMatrix);
}
fClipData.fOrigin = this->getOrigin();
#ifdef SK_DEBUG
check_bounds(fClipData, *draw.fClip, fRenderTarget->width(), fRenderTarget->height());
#endif
fContext->setClip(&fClipData);
DO_DEFERRED_CLEAR();
}
SkGpuRenderTarget* SkGpuDevice::accessRenderTarget() {
DO_DEFERRED_CLEAR();
return (SkGpuRenderTarget*)fRenderTarget;
}
bool SkGpuDevice::bindDeviceAsTexture(GrPaint* paint) {
GrTexture* texture = fRenderTarget->asTexture();
if (NULL != texture) {
paint->colorSampler(kBitmapTextureIdx)->setEffect(
SkNEW_ARGS(GrSingleTextureEffect, (texture)))->unref();
return true;
}
return false;
}
///////////////////////////////////////////////////////////////////////////////
SK_COMPILE_ASSERT(SkShader::kNone_BitmapType == 0, shader_type_mismatch);
SK_COMPILE_ASSERT(SkShader::kDefault_BitmapType == 1, shader_type_mismatch);
SK_COMPILE_ASSERT(SkShader::kRadial_BitmapType == 2, shader_type_mismatch);
SK_COMPILE_ASSERT(SkShader::kSweep_BitmapType == 3, shader_type_mismatch);
SK_COMPILE_ASSERT(SkShader::kTwoPointRadial_BitmapType == 4,
shader_type_mismatch);
SK_COMPILE_ASSERT(SkShader::kTwoPointConical_BitmapType == 5,
shader_type_mismatch);
SK_COMPILE_ASSERT(SkShader::kLinear_BitmapType == 6, shader_type_mismatch);
SK_COMPILE_ASSERT(SkShader::kLast_BitmapType == 6, shader_type_mismatch);
namespace {
// converts a SkPaint to a GrPaint, ignoring the skPaint's shader
// justAlpha indicates that skPaint's alpha should be used rather than the color
// Callers may subsequently modify the GrPaint. Setting constantColor indicates
// that the final paint will draw the same color at every pixel. This allows
// an optimization where the the color filter can be applied to the skPaint's
// color once while converting to GrPaint and then ignored.
inline bool skPaint2GrPaintNoShader(SkGpuDevice* dev,
const SkPaint& skPaint,
bool justAlpha,
bool constantColor,
SkGpuDevice::SkAutoCachedTexture* act,
GrPaint* grPaint) {
grPaint->setDither(skPaint.isDither());
grPaint->setAntiAlias(skPaint.isAntiAlias());
SkXfermode::Coeff sm = SkXfermode::kOne_Coeff;
SkXfermode::Coeff dm = SkXfermode::kISA_Coeff;
SkXfermode* mode = skPaint.getXfermode();
if (mode) {
if (!mode->asCoeff(&sm, &dm)) {
//SkDEBUGCODE(SkDebugf("Unsupported xfer mode.\n");)
#if 0
return false;
#endif
}
}
grPaint->setBlendFunc(sk_blend_to_grblend(sm), sk_blend_to_grblend(dm));
if (justAlpha) {
uint8_t alpha = skPaint.getAlpha();
grPaint->setColor(GrColorPackRGBA(alpha, alpha, alpha, alpha));
// justAlpha is currently set to true only if there is a texture,
// so constantColor should not also be true.
GrAssert(!constantColor);
} else {
grPaint->setColor(SkColor2GrColor(skPaint.getColor()));
GrAssert(!grPaint->isColorStageEnabled(kShaderTextureIdx));
}
SkColorFilter* colorFilter = skPaint.getColorFilter();
if (NULL != colorFilter) {
// if the source color is a constant then apply the filter here once rather than per pixel
// in a shader.
if (constantColor) {
SkColor filtered = colorFilter->filterColor(skPaint.getColor());
grPaint->setColor(SkColor2GrColor(filtered));
} else {
SkAutoTUnref<GrEffect> stage(colorFilter->asNewCustomStage(dev->context()));
if (NULL != stage.get()) {
grPaint->colorSampler(kColorFilterTextureIdx)->setEffect(stage);
} else {
// TODO: rewrite this using asNewCustomStage()
SkColor color;
SkXfermode::Mode filterMode;
if (colorFilter->asColorMode(&color, &filterMode)) {
grPaint->setXfermodeColorFilter(filterMode, SkColor2GrColor(color));
}
}
}
}
return true;
}
// This function is similar to skPaint2GrPaintNoShader but also converts
// skPaint's shader to a GrTexture/GrSamplerState if possible. The texture to
// be used is set on grPaint and returned in param act. constantColor has the
// same meaning as in skPaint2GrPaintNoShader.
inline bool skPaint2GrPaintShader(SkGpuDevice* dev,
const SkPaint& skPaint,
bool constantColor,
SkGpuDevice::SkAutoCachedTexture textures[GrPaint::kMaxColorStages],
GrPaint* grPaint) {
SkShader* shader = skPaint.getShader();
if (NULL == shader) {
return skPaint2GrPaintNoShader(dev,
skPaint,
false,
constantColor,
&textures[kColorFilterTextureIdx],
grPaint);
} else if (!skPaint2GrPaintNoShader(dev, skPaint, true, false,
&textures[kColorFilterTextureIdx], grPaint)) {
return false;
}
GrSamplerState* sampler = grPaint->colorSampler(kShaderTextureIdx);
if (shader->asNewCustomStage(dev->context(), sampler)) {
return true;
}
SkBitmap bitmap;
SkMatrix matrix;
SkShader::TileMode tileModes[2];
SkShader::BitmapType bmptype = shader->asABitmap(&bitmap, &matrix, tileModes);
if (SkShader::kNone_BitmapType == bmptype) {
SkShader::GradientInfo info;
SkColor color;
info.fColors = &color;
info.fColorOffsets = NULL;
info.fColorCount = 1;
if (SkShader::kColor_GradientType == shader->asAGradient(&info)) {
SkPaint copy(skPaint);
copy.setShader(NULL);
// modulate the paint alpha by the shader's solid color alpha
U8CPU newA = SkMulDiv255Round(SkColorGetA(color), copy.getAlpha());
copy.setColor(SkColorSetA(color, newA));
return skPaint2GrPaintNoShader(dev,
copy,
false,
constantColor,
&textures[kColorFilterTextureIdx],
grPaint);
}
return false;
}
// Must set wrap and filter on the sampler before requesting a texture.
GrTextureParams params(tileModes, skPaint.isFilterBitmap());
GrTexture* texture = textures[kShaderTextureIdx].set(dev, bitmap, &params);
if (NULL == texture) {
SkDebugf("Couldn't convert bitmap to texture.\n");
return false;
}
// since our texture coords will be in local space, we whack the texture
// matrix to map them back into 0...1 before we load it
SkMatrix localM;
if (shader->getLocalMatrix(&localM)) {
SkMatrix inverse;
if (localM.invert(&inverse)) {
matrix.preConcat(inverse);
}
}
if (SkShader::kDefault_BitmapType == bmptype) {
GrScalar sx = SkFloatToScalar(1.f / bitmap.width());
GrScalar sy = SkFloatToScalar(1.f / bitmap.height());
matrix.postScale(sx, sy);
}
sampler->setEffect(SkNEW_ARGS(GrSingleTextureEffect, (texture, params)), matrix)->unref();
return true;
}
}
///////////////////////////////////////////////////////////////////////////////
void SkGpuDevice::clear(SkColor color) {
fContext->clear(NULL, color, fRenderTarget);
fNeedClear = false;
}
void SkGpuDevice::drawPaint(const SkDraw& draw, const SkPaint& paint) {
CHECK_SHOULD_DRAW(draw, false);
GrPaint grPaint;
SkAutoCachedTexture textures[GrPaint::kMaxColorStages];
if (!skPaint2GrPaintShader(this,
paint,
true,
textures,
&grPaint)) {
return;
}
fContext->drawPaint(grPaint);
}
// must be in SkCanvas::PointMode order
static const GrPrimitiveType gPointMode2PrimtiveType[] = {
kPoints_GrPrimitiveType,
kLines_GrPrimitiveType,
kLineStrip_GrPrimitiveType
};
void SkGpuDevice::drawPoints(const SkDraw& draw, SkCanvas::PointMode mode,
size_t count, const SkPoint pts[], const SkPaint& paint) {
CHECK_SHOULD_DRAW(draw, false);
SkScalar width = paint.getStrokeWidth();
if (width < 0) {
return;
}
// we only handle hairlines and paints without path effects or mask filters,
// else we let the SkDraw call our drawPath()
if (width > 0 || paint.getPathEffect() || paint.getMaskFilter()) {
draw.drawPoints(mode, count, pts, paint, true);
return;
}
GrPaint grPaint;
SkAutoCachedTexture textures[GrPaint::kMaxColorStages];
if (!skPaint2GrPaintShader(this,
paint,
true,
textures,
&grPaint)) {
return;
}
fContext->drawVertices(grPaint,
gPointMode2PrimtiveType[mode],
count,
(GrPoint*)pts,
NULL,
NULL,
NULL,
0);
}
///////////////////////////////////////////////////////////////////////////////
void SkGpuDevice::drawRect(const SkDraw& draw, const SkRect& rect,
const SkPaint& paint) {
CHECK_FOR_NODRAW_ANNOTATION(paint);
CHECK_SHOULD_DRAW(draw, false);
bool doStroke = paint.getStyle() != SkPaint::kFill_Style;
SkScalar width = paint.getStrokeWidth();
/*
We have special code for hairline strokes, miter-strokes, and fills.
Anything else we just call our path code.
*/
bool usePath = doStroke && width > 0 &&
paint.getStrokeJoin() != SkPaint::kMiter_Join;
// another two reasons we might need to call drawPath...
if (paint.getMaskFilter() || paint.getPathEffect()) {
usePath = true;
}
// until we aa rotated rects...
if (!usePath && paint.isAntiAlias() && !fContext->getMatrix().rectStaysRect()) {
usePath = true;
}
// small miter limit means right angles show bevel...
if (SkPaint::kMiter_Join == paint.getStrokeJoin() &&
paint.getStrokeMiter() < SK_ScalarSqrt2)
{
usePath = true;
}
// until we can both stroke and fill rectangles
if (paint.getStyle() == SkPaint::kStrokeAndFill_Style) {
usePath = true;
}
if (usePath) {
SkPath path;
path.addRect(rect);
this->drawPath(draw, path, paint, NULL, true);
return;
}
GrPaint grPaint;
SkAutoCachedTexture textures[GrPaint::kMaxColorStages];
if (!skPaint2GrPaintShader(this,
paint,
true,
textures,
&grPaint)) {
return;
}
fContext->drawRect(grPaint, rect, doStroke ? width : -1);
}
#include "SkMaskFilter.h"
#include "SkBounder.h"
///////////////////////////////////////////////////////////////////////////////
// helpers for applying mask filters
namespace {
GrPathFill skToGrFillType(SkPath::FillType fillType) {
switch (fillType) {
case SkPath::kWinding_FillType:
return kWinding_GrPathFill;
case SkPath::kEvenOdd_FillType:
return kEvenOdd_GrPathFill;
case SkPath::kInverseWinding_FillType:
return kInverseWinding_GrPathFill;
case SkPath::kInverseEvenOdd_FillType:
return kInverseEvenOdd_GrPathFill;
default:
SkDebugf("Unsupported path fill type\n");
return kHairLine_GrPathFill;
}
}
// We prefer to blur small rect with small radius via CPU.
#define MIN_GPU_BLUR_SIZE SkIntToScalar(64)
#define MIN_GPU_BLUR_RADIUS SkIntToScalar(32)
inline bool shouldDrawBlurWithCPU(const SkRect& rect, SkScalar radius) {
if (rect.width() <= MIN_GPU_BLUR_SIZE &&
rect.height() <= MIN_GPU_BLUR_SIZE &&
radius <= MIN_GPU_BLUR_RADIUS) {
return true;
}
return false;
}
bool drawWithGPUMaskFilter(GrContext* context, const SkPath& devPath,
SkMaskFilter* filter, const SkRegion& clip,
SkBounder* bounder, GrPaint* grp, GrPathFill pathFillType) {
#ifdef SK_DISABLE_GPU_BLUR
return false;
#endif
SkMaskFilter::BlurInfo info;
SkMaskFilter::BlurType blurType = filter->asABlur(&info);
if (SkMaskFilter::kNone_BlurType == blurType) {
return false;
}
SkScalar radius = info.fIgnoreTransform ? info.fRadius
: context->getMatrix().mapRadius(info.fRadius);
radius = SkMinScalar(radius, MAX_BLUR_RADIUS);
if (radius <= 0) {
return false;
}
SkRect srcRect = devPath.getBounds();
if (shouldDrawBlurWithCPU(srcRect, radius)) {
return false;
}
float sigma = SkScalarToFloat(radius) * BLUR_SIGMA_SCALE;
float sigma3 = sigma * 3.0f;
SkRect clipRect;
clipRect.set(clip.getBounds());
// Outset srcRect and clipRect by 3 * sigma, to compute affected blur area.
srcRect.inset(SkFloatToScalar(-sigma3), SkFloatToScalar(-sigma3));
clipRect.inset(SkFloatToScalar(-sigma3), SkFloatToScalar(-sigma3));
srcRect.intersect(clipRect);
SkRect finalRect = srcRect;
SkIRect finalIRect;
finalRect.roundOut(&finalIRect);
if (clip.quickReject(finalIRect)) {
return true;
}
if (bounder && !bounder->doIRect(finalIRect)) {
return true;
}
GrPoint offset = GrPoint::Make(-srcRect.fLeft, -srcRect.fTop);
srcRect.offset(offset);
GrTextureDesc desc;
desc.fFlags = kRenderTarget_GrTextureFlagBit;
desc.fWidth = SkScalarCeilToInt(srcRect.width());
desc.fHeight = SkScalarCeilToInt(srcRect.height());
// We actually only need A8, but it often isn't supported as a
// render target so default to RGBA_8888
desc.fConfig = kRGBA_8888_GrPixelConfig;
if (context->isConfigRenderable(kAlpha_8_GrPixelConfig)) {
desc.fConfig = kAlpha_8_GrPixelConfig;
}
GrAutoScratchTexture pathEntry(context, desc);
GrTexture* pathTexture = pathEntry.texture();
if (NULL == pathTexture) {
return false;
}
SkAutoTUnref<GrTexture> blurTexture;
{
GrContext::AutoRenderTarget art(context, pathTexture->asRenderTarget());
GrContext::AutoClip ac(context, srcRect);
context->clear(NULL, 0);
GrPaint tempPaint;
if (grp->isAntiAlias()) {
tempPaint.setAntiAlias(true);
// AA uses the "coverage" stages on GrDrawTarget. Coverage with a dst
// blend coeff of zero requires dual source blending support in order
// to properly blend partially covered pixels. This means the AA
// code path may not be taken. So we use a dst blend coeff of ISA. We
// could special case AA draws to a dst surface with known alpha=0 to
// use a zero dst coeff when dual source blending isn't available.f
tempPaint.setBlendFunc(kOne_GrBlendCoeff, kISC_GrBlendCoeff);
}
GrContext::AutoMatrix am;
// Draw hard shadow to pathTexture with path top-left at origin using tempPaint.
GrMatrix translate;
translate.setTranslate(offset.fX, offset.fY);
am.set(context, translate);
context->drawPath(tempPaint, devPath, pathFillType);
// If we're doing a normal blur, we can clobber the pathTexture in the
// gaussianBlur. Otherwise, we need to save it for later compositing.
bool isNormalBlur = blurType == SkMaskFilter::kNormal_BlurType;
blurTexture.reset(context->gaussianBlur(pathTexture, isNormalBlur,
srcRect, sigma, sigma));
if (NULL == blurTexture) {
return false;
}
if (!isNormalBlur) {
context->setIdentityMatrix();
GrPaint paint;
GrMatrix matrix;
matrix.setIDiv(pathTexture->width(), pathTexture->height());
// Blend pathTexture over blurTexture.
context->setRenderTarget(blurTexture->asRenderTarget());
paint.colorSampler(0)->setEffect(SkNEW_ARGS(GrSingleTextureEffect, (pathTexture)), matrix)->unref();
if (SkMaskFilter::kInner_BlurType == blurType) {
// inner: dst = dst * src
paint.setBlendFunc(kDC_GrBlendCoeff, kZero_GrBlendCoeff);
} else if (SkMaskFilter::kSolid_BlurType == blurType) {
// solid: dst = src + dst - src * dst
// = (1 - dst) * src + 1 * dst
paint.setBlendFunc(kIDC_GrBlendCoeff, kOne_GrBlendCoeff);
} else if (SkMaskFilter::kOuter_BlurType == blurType) {
// outer: dst = dst * (1 - src)
// = 0 * src + (1 - src) * dst
paint.setBlendFunc(kZero_GrBlendCoeff, kISC_GrBlendCoeff);
}
context->drawRect(paint, srcRect);
}
}
GrContext::AutoMatrix am;
if (!am.setIdentity(context, grp)) {
return false;
}
static const int MASK_IDX = GrPaint::kMaxCoverageStages - 1;
// we assume the last mask index is available for use
GrAssert(!grp->isCoverageStageEnabled(MASK_IDX));
GrMatrix matrix;
matrix.setTranslate(-finalRect.fLeft, -finalRect.fTop);
matrix.postIDiv(blurTexture->width(), blurTexture->height());
grp->coverageSampler(MASK_IDX)->reset();
grp->coverageSampler(MASK_IDX)->setEffect(SkNEW_ARGS(GrSingleTextureEffect, (blurTexture)), matrix)->unref();
context->drawRect(*grp, finalRect);
return true;
}
bool drawWithMaskFilter(GrContext* context, const SkPath& devPath,
SkMaskFilter* filter, const SkRegion& clip, SkBounder* bounder,
GrPaint* grp, SkPaint::Style style) {
SkMask srcM, dstM;
if (!SkDraw::DrawToMask(devPath, &clip.getBounds(), filter, &context->getMatrix(), &srcM,
SkMask::kComputeBoundsAndRenderImage_CreateMode, style)) {
return false;
}
SkAutoMaskFreeImage autoSrc(srcM.fImage);
if (!filter->filterMask(&dstM, srcM, context->getMatrix(), NULL)) {
return false;
}
// this will free-up dstM when we're done (allocated in filterMask())
SkAutoMaskFreeImage autoDst(dstM.fImage);
if (clip.quickReject(dstM.fBounds)) {
return false;
}
if (bounder && !bounder->doIRect(dstM.fBounds)) {
return false;
}
// we now have a device-aligned 8bit mask in dstM, ready to be drawn using
// the current clip (and identity matrix) and GrPaint settings
GrContext::AutoMatrix am;
am.setIdentity(context, grp);
GrTextureDesc desc;
desc.fWidth = dstM.fBounds.width();
desc.fHeight = dstM.fBounds.height();
desc.fConfig = kAlpha_8_GrPixelConfig;
GrAutoScratchTexture ast(context, desc);
GrTexture* texture = ast.texture();
if (NULL == texture) {
return false;
}
texture->writePixels(0, 0, desc.fWidth, desc.fHeight, desc.fConfig,
dstM.fImage, dstM.fRowBytes);
static const int MASK_IDX = GrPaint::kMaxCoverageStages - 1;
// we assume the last mask index is available for use
GrAssert(!grp->isCoverageStageEnabled(MASK_IDX));
GrMatrix m;
m.setTranslate(-dstM.fBounds.fLeft*SK_Scalar1, -dstM.fBounds.fTop*SK_Scalar1);
m.postIDiv(texture->width(), texture->height());
grp->coverageSampler(MASK_IDX)->setEffect(SkNEW_ARGS(GrSingleTextureEffect, (texture)), m)->unref();
GrRect d;
d.setLTRB(GrIntToScalar(dstM.fBounds.fLeft),
GrIntToScalar(dstM.fBounds.fTop),
GrIntToScalar(dstM.fBounds.fRight),
GrIntToScalar(dstM.fBounds.fBottom));
context->drawRect(*grp, d);
return true;
}
}
///////////////////////////////////////////////////////////////////////////////
void SkGpuDevice::drawPath(const SkDraw& draw, const SkPath& origSrcPath,
const SkPaint& paint, const SkMatrix* prePathMatrix,
bool pathIsMutable) {
CHECK_FOR_NODRAW_ANNOTATION(paint);
CHECK_SHOULD_DRAW(draw, false);
bool doFill = true;
GrPaint grPaint;
SkAutoCachedTexture textures[GrPaint::kMaxColorStages];
if (!skPaint2GrPaintShader(this,
paint,
true,
textures,
&grPaint)) {
return;
}
// can we cheat, and threat a thin stroke as a hairline w/ coverage
// if we can, we draw lots faster (raster device does this same test)
SkScalar hairlineCoverage;
if (SkDrawTreatAsHairline(paint, fContext->getMatrix(), &hairlineCoverage)) {
doFill = false;
grPaint.setCoverage(SkScalarRoundToInt(hairlineCoverage * grPaint.getCoverage()));
}
// If we have a prematrix, apply it to the path, optimizing for the case
// where the original path can in fact be modified in place (even though
// its parameter type is const).
SkPath* pathPtr = const_cast<SkPath*>(&origSrcPath);
SkPath tmpPath;
if (prePathMatrix) {
SkPath* result = pathPtr;
if (!pathIsMutable) {
result = &tmpPath;
pathIsMutable = true;
}
// should I push prePathMatrix on our MV stack temporarily, instead
// of applying it here? See SkDraw.cpp
pathPtr->transform(*prePathMatrix, result);
pathPtr = result;
}
// at this point we're done with prePathMatrix
SkDEBUGCODE(prePathMatrix = (const SkMatrix*)0x50FF8001;)
if (paint.getPathEffect() ||
(doFill && paint.getStyle() != SkPaint::kFill_Style)) {
// it is safe to use tmpPath here, even if we already used it for the
// prepathmatrix, since getFillPath can take the same object for its
// input and output safely.
doFill = paint.getFillPath(*pathPtr, &tmpPath);
pathPtr = &tmpPath;
}
if (paint.getMaskFilter()) {
// avoid possibly allocating a new path in transform if we can
SkPath* devPathPtr = pathIsMutable ? pathPtr : &tmpPath;
// transform the path into device space
pathPtr->transform(fContext->getMatrix(), devPathPtr);
GrPathFill pathFillType = doFill ?
skToGrFillType(devPathPtr->getFillType()) : kHairLine_GrPathFill;
if (!drawWithGPUMaskFilter(fContext, *devPathPtr, paint.getMaskFilter(),
*draw.fClip, draw.fBounder, &grPaint, pathFillType)) {
SkPaint::Style style = doFill ? SkPaint::kFill_Style :
SkPaint::kStroke_Style;
drawWithMaskFilter(fContext, *devPathPtr, paint.getMaskFilter(),
*draw.fClip, draw.fBounder, &grPaint, style);
}
return;
}
GrPathFill fill = kHairLine_GrPathFill;
if (doFill) {
switch (pathPtr->getFillType()) {
case SkPath::kWinding_FillType:
fill = kWinding_GrPathFill;
break;
case SkPath::kEvenOdd_FillType:
fill = kEvenOdd_GrPathFill;
break;
case SkPath::kInverseWinding_FillType:
fill = kInverseWinding_GrPathFill;
break;
case SkPath::kInverseEvenOdd_FillType:
fill = kInverseEvenOdd_GrPathFill;
break;
default:
SkDebugf("Unsupported path fill type\n");
return;
}
}
fContext->drawPath(grPaint, *pathPtr, fill);
}
namespace {
inline int get_tile_count(int l, int t, int r, int b, int tileSize) {
int tilesX = (r / tileSize) - (l / tileSize) + 1;
int tilesY = (b / tileSize) - (t / tileSize) + 1;
return tilesX * tilesY;
}
inline int determine_tile_size(const SkBitmap& bitmap,
const SkRect& src,
int maxTextureSize) {
static const int kSmallTileSize = 1 << 10;
if (maxTextureSize <= kSmallTileSize) {
return maxTextureSize;
}
size_t maxTexTotalTileSize;
size_t smallTotalTileSize;
SkIRect iSrc;
src.roundOut(&iSrc);
maxTexTotalTileSize = get_tile_count(iSrc.fLeft,
iSrc.fTop,
iSrc.fRight,
iSrc.fBottom,
maxTextureSize);
smallTotalTileSize = get_tile_count(iSrc.fLeft,
iSrc.fTop,
iSrc.fRight,
iSrc.fBottom,
kSmallTileSize);
maxTexTotalTileSize *= maxTextureSize * maxTextureSize;
smallTotalTileSize *= kSmallTileSize * kSmallTileSize;
if (maxTexTotalTileSize > 2 * smallTotalTileSize) {
return kSmallTileSize;
} else {
return maxTextureSize;
}
}
}
bool SkGpuDevice::shouldTileBitmap(const SkBitmap& bitmap,
const GrTextureParams& params,
const SkRect* srcRectPtr) const {
// if bitmap is explictly texture backed then just use the texture
if (NULL != bitmap.getTexture()) {
return false;
}
// if it's larger than the max texture size, then we have no choice but
// tiling
const int maxTextureSize = fContext->getMaxTextureSize();
if (bitmap.width() > maxTextureSize ||
bitmap.height() > maxTextureSize) {
return true;
}
// if we are going to have to draw the whole thing, then don't tile
if (NULL == srcRectPtr) {
return false;
}
// if the entire texture is already in our cache then no reason to tile it
if (this->isBitmapInTextureCache(bitmap, params)) {
return false;
}
// At this point we know we could do the draw by uploading the entire bitmap
// as a texture. However, if the texture would be large compared to the
// cache size and we don't require most of it for this draw then tile to
// reduce the amount of upload and cache spill.
// assumption here is that sw bitmap size is a good proxy for its size as
// a texture
size_t bmpSize = bitmap.getSize();
size_t cacheSize;
fContext->getTextureCacheLimits(NULL, &cacheSize);
if (bmpSize < cacheSize / 2) {
return false;
}
SkScalar fracUsed = SkScalarMul(srcRectPtr->width() / bitmap.width(),
srcRectPtr->height() / bitmap.height());
if (fracUsed <= SK_ScalarHalf) {
return true;
} else {
return false;
}
}
void SkGpuDevice::drawBitmap(const SkDraw& draw,
const SkBitmap& bitmap,
const SkIRect* srcRectPtr,
const SkMatrix& m,
const SkPaint& paint) {
SkRect tmp;
SkRect* tmpPtr = NULL;
// convert from SkIRect to SkRect
if (NULL != srcRectPtr) {
tmp.set(*srcRectPtr);
tmpPtr = &tmp;
}
// We cannot call drawBitmapRect here since 'm' could be anything
this->drawBitmapCommon(draw, bitmap, tmpPtr, m, paint);
}
void SkGpuDevice::drawBitmapCommon(const SkDraw& draw,
const SkBitmap& bitmap,
const SkRect* srcRectPtr,
const SkMatrix& m,
const SkPaint& paint) {
CHECK_SHOULD_DRAW(draw, false);
SkRect srcRect;
if (NULL == srcRectPtr) {
srcRect.set(0, 0, SkIntToScalar(bitmap.width()), SkIntToScalar(bitmap.height()));
} else {
srcRect = *srcRectPtr;
}
if (paint.getMaskFilter()){
// Convert the bitmap to a shader so that the rect can be drawn
// through drawRect, which supports mask filters.
SkMatrix newM(m);
SkBitmap tmp; // subset of bitmap, if necessary
const SkBitmap* bitmapPtr = &bitmap;
if (NULL != srcRectPtr) {
SkIRect iSrc;
srcRect.roundOut(&iSrc);
if (!bitmap.extractSubset(&tmp, iSrc)) {
return; // extraction failed
}
bitmapPtr = &tmp;
srcRect.offset(SkIntToScalar(-iSrc.fLeft), SkIntToScalar(-iSrc.fTop));
// The source rect has changed so update the matrix
newM.preTranslate(SkIntToScalar(iSrc.fLeft), SkIntToScalar(iSrc.fTop));
}
SkPaint paintWithTexture(paint);
paintWithTexture.setShader(SkShader::CreateBitmapShader(*bitmapPtr,
SkShader::kClamp_TileMode, SkShader::kClamp_TileMode))->unref();
// Transform 'newM' needs to be concatenated to the current matrix,
// rather than transforming the primitive directly, so that 'newM' will
// also affect the behavior of the mask filter.
SkMatrix drawMatrix;
drawMatrix.setConcat(fContext->getMatrix(), newM);
SkDraw transformedDraw(draw);
transformedDraw.fMatrix = &drawMatrix;
this->drawRect(transformedDraw, srcRect, paintWithTexture);
return;
}
GrPaint grPaint;
SkAutoCachedTexture colorLutTexture;
if (!skPaint2GrPaintNoShader(this, paint, true, false, &colorLutTexture, &grPaint)) {
return;
}
GrTextureParams params;
params.setBilerp(paint.isFilterBitmap());
if (!this->shouldTileBitmap(bitmap, params, srcRectPtr)) {
// take the simple case
this->internalDrawBitmap(bitmap, srcRect, m, params, &grPaint);
} else {
this->drawTiledBitmap(bitmap, srcRect, m, params, &grPaint);
}
}
// Break 'bitmap' into several tiles to draw it since it has already
// been determined to be too large to fit in VRAM
void SkGpuDevice::drawTiledBitmap(const SkBitmap& bitmap,
const SkRect& srcRect,
const SkMatrix& m,
const GrTextureParams& params,
GrPaint* grPaint) {
const int maxTextureSize = fContext->getMaxTextureSize();
int tileSize = determine_tile_size(bitmap, srcRect, maxTextureSize);
// compute clip bounds in local coordinates
SkRect clipRect;
{
const GrRenderTarget* rt = fContext->getRenderTarget();
clipRect.setWH(SkIntToScalar(rt->width()), SkIntToScalar(rt->height()));
if (!fContext->getClip()->fClipStack->intersectRectWithClip(&clipRect)) {
return;
}
SkMatrix matrix, inverse;
matrix.setConcat(fContext->getMatrix(), m);
if (!matrix.invert(&inverse)) {
return;
}
inverse.mapRect(&clipRect);
}
int nx = bitmap.width() / tileSize;
int ny = bitmap.height() / tileSize;
for (int x = 0; x <= nx; x++) {
for (int y = 0; y <= ny; y++) {
SkRect tileR;
tileR.set(SkIntToScalar(x * tileSize),
SkIntToScalar(y * tileSize),
SkIntToScalar((x + 1) * tileSize),
SkIntToScalar((y + 1) * tileSize));
if (!SkRect::Intersects(tileR, clipRect)) {
continue;
}
if (!tileR.intersect(srcRect)) {
continue;
}
SkBitmap tmpB;
SkIRect iTileR;
tileR.roundOut(&iTileR);
if (bitmap.extractSubset(&tmpB, iTileR)) {
// now offset it to make it "local" to our tmp bitmap
tileR.offset(SkIntToScalar(-iTileR.fLeft), SkIntToScalar(-iTileR.fTop));
SkMatrix tmpM(m);
tmpM.preTranslate(SkIntToScalar(iTileR.fLeft),
SkIntToScalar(iTileR.fTop));
this->internalDrawBitmap(tmpB, tileR, tmpM, params, grPaint);
}
}
}
}
namespace {
bool hasAlignedSamples(const SkRect& srcRect, const SkRect& transformedRect) {
// detect pixel disalignment
if (SkScalarAbs(SkScalarRoundToScalar(transformedRect.left()) -
transformedRect.left()) < COLOR_BLEED_TOLERANCE &&
SkScalarAbs(SkScalarRoundToScalar(transformedRect.top()) -
transformedRect.top()) < COLOR_BLEED_TOLERANCE &&
SkScalarAbs(transformedRect.width() - srcRect.width()) <
COLOR_BLEED_TOLERANCE &&
SkScalarAbs(transformedRect.height() - srcRect.height()) <
COLOR_BLEED_TOLERANCE) {
return true;
}
return false;
}
bool mayColorBleed(const SkRect& srcRect, const SkRect& transformedRect,
const SkMatrix& m) {
// Only gets called if hasAlignedSamples returned false.
// So we can assume that sampling is axis aligned but not texel aligned.
GrAssert(!hasAlignedSamples(srcRect, transformedRect));
SkRect innerSrcRect(srcRect), innerTransformedRect,
outerTransformedRect(transformedRect);
innerSrcRect.inset(SK_ScalarHalf, SK_ScalarHalf);
m.mapRect(&innerTransformedRect, innerSrcRect);
// The gap between outerTransformedRect and innerTransformedRect
// represents the projection of the source border area, which is
// problematic for color bleeding. We must check whether any
// destination pixels sample the border area.
outerTransformedRect.inset(COLOR_BLEED_TOLERANCE, COLOR_BLEED_TOLERANCE);
innerTransformedRect.outset(COLOR_BLEED_TOLERANCE, COLOR_BLEED_TOLERANCE);
SkIRect outer, inner;
outerTransformedRect.round(&outer);
innerTransformedRect.round(&inner);
// If the inner and outer rects round to the same result, it means the
// border does not overlap any pixel centers. Yay!
return inner != outer;
}
} // unnamed namespace
/*
* This is called by drawBitmap(), which has to handle images that may be too
* large to be represented by a single texture.
*
* internalDrawBitmap assumes that the specified bitmap will fit in a texture
* and that non-texture portion of the GrPaint has already been setup.
*/
void SkGpuDevice::internalDrawBitmap(const SkBitmap& bitmap,
const SkRect& srcRect,
const SkMatrix& m,
const GrTextureParams& params,
GrPaint* grPaint) {
SkASSERT(bitmap.width() <= fContext->getMaxTextureSize() &&
bitmap.height() <= fContext->getMaxTextureSize());
SkAutoLockPixels alp(bitmap, !bitmap.getTexture());
if (!bitmap.getTexture() && !bitmap.readyToDraw()) {
SkDebugf("nothing to draw\n");
return;
}
GrSamplerState* sampler = grPaint->colorSampler(kBitmapTextureIdx);
GrTexture* texture;
SkAutoCachedTexture act(this, bitmap, &params, &texture);
if (NULL == texture) {
return;
}
GrRect dstRect(srcRect);
GrRect paintRect;
SkScalar wInv = SkScalarInvert(SkIntToScalar(bitmap.width()));
SkScalar hInv = SkScalarInvert(SkIntToScalar(bitmap.height()));
paintRect.setLTRB(SkScalarMul(srcRect.fLeft, wInv),
SkScalarMul(srcRect.fTop, hInv),
SkScalarMul(srcRect.fRight, wInv),
SkScalarMul(srcRect.fBottom, hInv));
bool needsTextureDomain = false;
if (params.isBilerp()) {
// Need texture domain if drawing a sub rect.
needsTextureDomain = srcRect.width() < bitmap.width() ||
srcRect.height() < bitmap.height();
if (m.rectStaysRect() && fContext->getMatrix().rectStaysRect()) {
// sampling is axis-aligned
GrRect transformedRect;
SkMatrix srcToDeviceMatrix(m);
srcToDeviceMatrix.postConcat(fContext->getMatrix());
srcToDeviceMatrix.mapRect(&transformedRect, srcRect);
if (hasAlignedSamples(srcRect, transformedRect)) {
// We could also turn off filtering here (but we already did a cache lookup with
// params).
needsTextureDomain = false;
} else {
needsTextureDomain = needsTextureDomain &&
mayColorBleed(srcRect, transformedRect, m);
}
}
}
GrRect textureDomain = GrRect::MakeEmpty();
SkAutoTUnref<GrEffect> stage;
if (needsTextureDomain) {
// Use a constrained texture domain to avoid color bleeding
GrScalar left, top, right, bottom;
if (srcRect.width() > GR_Scalar1) {
GrScalar border = GR_ScalarHalf / bitmap.width();
left = paintRect.left() + border;
right = paintRect.right() - border;
} else {
left = right = GrScalarHalf(paintRect.left() + paintRect.right());
}
if (srcRect.height() > GR_Scalar1) {
GrScalar border = GR_ScalarHalf / bitmap.height();
top = paintRect.top() + border;
bottom = paintRect.bottom() - border;
} else {
top = bottom = GrScalarHalf(paintRect.top() + paintRect.bottom());
}
textureDomain.setLTRB(left, top, right, bottom);
stage.reset(SkNEW_ARGS(GrTextureDomainEffect, (texture, textureDomain, params)));
} else {
stage.reset(SkNEW_ARGS(GrSingleTextureEffect, (texture, params)));
}
grPaint->colorSampler(kBitmapTextureIdx)->setEffect(stage);
fContext->drawRectToRect(*grPaint, dstRect, paintRect, &m);
}
namespace {
void apply_effect(GrContext* context,
GrTexture* srcTexture,
GrTexture* dstTexture,
const GrRect& rect,
GrEffect* effect) {
SkASSERT(srcTexture && srcTexture->getContext() == context);
GrContext::AutoMatrix am;
am.setIdentity(context);
GrContext::AutoRenderTarget art(context, dstTexture->asRenderTarget());
GrContext::AutoClip acs(context, rect);
GrMatrix sampleM;
sampleM.setIDiv(srcTexture->width(), srcTexture->height());
GrPaint paint;
paint.colorSampler(0)->setEffect(effect, sampleM);
context->drawRect(paint, rect);
}
};
static GrTexture* filter_texture(SkDevice* device, GrContext* context,
GrTexture* texture, SkImageFilter* filter,
const GrRect& rect) {
GrAssert(filter);
SkDeviceImageFilterProxy proxy(device);
GrTextureDesc desc;
desc.fFlags = kRenderTarget_GrTextureFlagBit,
desc.fWidth = SkScalarCeilToInt(rect.width());
desc.fHeight = SkScalarCeilToInt(rect.height());
desc.fConfig = kRGBA_8888_GrPixelConfig;
GrEffect* stage;
if (filter->canFilterImageGPU()) {
// Save the render target and set it to NULL, so we don't accidentally draw to it in the
// filter. Also set the clip wide open and the matrix to identity.
GrContext::AutoWideOpenIdentityDraw awo(context, NULL);
texture = filter->onFilterImageGPU(&proxy, texture, rect);
} else if (filter->asNewCustomStage(&stage, texture)) {
GrAutoScratchTexture dst(context, desc);
apply_effect(context, texture, dst.texture(), rect, stage);
texture = dst.detach();
stage->unref();
}
return texture;
}
void SkGpuDevice::drawSprite(const SkDraw& draw, const SkBitmap& bitmap,
int left, int top, const SkPaint& paint) {
// drawSprite is defined to be in device coords.
CHECK_SHOULD_DRAW(draw, true);
SkAutoLockPixels alp(bitmap, !bitmap.getTexture());
if (!bitmap.getTexture() && !bitmap.readyToDraw()) {
return;
}
int w = bitmap.width();
int h = bitmap.height();
GrPaint grPaint;
SkAutoCachedTexture colorLutTexture;
if(!skPaint2GrPaintNoShader(this, paint, true, false, &colorLutTexture, &grPaint)) {
return;
}
GrSamplerState* sampler = grPaint.colorSampler(kBitmapTextureIdx);
GrTexture* texture;
sampler->reset();
// draw sprite uses the default texture params
SkAutoCachedTexture act(this, bitmap, NULL, &texture);
grPaint.colorSampler(kBitmapTextureIdx)->setEffect(SkNEW_ARGS
(GrSingleTextureEffect, (texture)))->unref();
SkImageFilter* filter = paint.getImageFilter();
if (NULL != filter) {
GrTexture* filteredTexture = filter_texture(this, fContext, texture, filter,
GrRect::MakeWH(SkIntToScalar(w), SkIntToScalar(h)));
if (filteredTexture) {
grPaint.colorSampler(kBitmapTextureIdx)->setEffect(SkNEW_ARGS
(GrSingleTextureEffect, (filteredTexture)))->unref();
texture = filteredTexture;
filteredTexture->unref();
}
}
fContext->drawRectToRect(grPaint,
GrRect::MakeXYWH(GrIntToScalar(left),
GrIntToScalar(top),
GrIntToScalar(w),
GrIntToScalar(h)),
GrRect::MakeWH(GR_Scalar1 * w / texture->width(),
GR_Scalar1 * h / texture->height()));
}
void SkGpuDevice::drawBitmapRect(const SkDraw& draw, const SkBitmap& bitmap,
const SkRect* src, const SkRect& dst,
const SkPaint& paint) {
SkMatrix matrix;
SkRect bitmapBounds, tmpSrc;
bitmapBounds.set(0, 0,
SkIntToScalar(bitmap.width()),
SkIntToScalar(bitmap.height()));
// Compute matrix from the two rectangles
if (NULL != src) {
tmpSrc = *src;
} else {
tmpSrc = bitmapBounds;
}
matrix.setRectToRect(tmpSrc, dst, SkMatrix::kFill_ScaleToFit);
// clip the tmpSrc to the bounds of the bitmap. No check needed if src==null.
if (NULL != src) {
if (!bitmapBounds.contains(tmpSrc)) {
if (!tmpSrc.intersect(bitmapBounds)) {
return; // nothing to draw
}
}
}
this->drawBitmapCommon(draw, bitmap, &tmpSrc, matrix, paint);
}
void SkGpuDevice::drawDevice(const SkDraw& draw, SkDevice* device,
int x, int y, const SkPaint& paint) {
// clear of the source device must occur before CHECK_SHOULD_DRAW
SkGpuDevice* dev = static_cast<SkGpuDevice*>(device);
if (dev->fNeedClear) {
// TODO: could check here whether we really need to draw at all
dev->clear(0x0);
}
// drawDevice is defined to be in device coords.
CHECK_SHOULD_DRAW(draw, true);
GrPaint grPaint;
SkAutoCachedTexture colorLutTexture;
grPaint.colorSampler(kBitmapTextureIdx)->reset();
if (!dev->bindDeviceAsTexture(&grPaint) ||
!skPaint2GrPaintNoShader(this, paint, true, false, &colorLutTexture, &grPaint)) {
return;
}
GrTexture* devTex = grPaint.getColorSampler(kBitmapTextureIdx).getEffect()->texture(0);
SkASSERT(NULL != devTex);
SkImageFilter* filter = paint.getImageFilter();
if (NULL != filter) {
GrRect rect = GrRect::MakeWH(SkIntToScalar(devTex->width()),
SkIntToScalar(devTex->height()));
GrTexture* filteredTexture = filter_texture(this, fContext, devTex, filter, rect);
if (filteredTexture) {
grPaint.colorSampler(kBitmapTextureIdx)->setEffect(SkNEW_ARGS
(GrSingleTextureEffect, (filteredTexture)))->unref();
devTex = filteredTexture;
filteredTexture->unref();
}
}
const SkBitmap& bm = dev->accessBitmap(false);
int w = bm.width();
int h = bm.height();
GrRect dstRect = GrRect::MakeXYWH(GrIntToScalar(x),
GrIntToScalar(y),
GrIntToScalar(w),
GrIntToScalar(h));
// The device being drawn may not fill up its texture (saveLayer uses
// the approximate ).
GrRect srcRect = GrRect::MakeWH(GR_Scalar1 * w / devTex->width(),
GR_Scalar1 * h / devTex->height());
fContext->drawRectToRect(grPaint, dstRect, srcRect);
}
bool SkGpuDevice::canHandleImageFilter(SkImageFilter* filter) {
if (!filter->asNewCustomStage(NULL, NULL) &&
!filter->canFilterImageGPU()) {
return false;
}
return true;
}
bool SkGpuDevice::filterImage(SkImageFilter* filter, const SkBitmap& src,
const SkMatrix& ctm,
SkBitmap* result, SkIPoint* offset) {
// want explicitly our impl, so guard against a subclass of us overriding it
if (!this->SkGpuDevice::canHandleImageFilter(filter)) {
return false;
}
SkAutoLockPixels alp(src, !src.getTexture());
if (!src.getTexture() && !src.readyToDraw()) {
return false;
}
GrPaint paint;
GrTexture* texture;
// We assume here that the filter will not attempt to tile the src. Otherwise, this cache lookup
// must be pushed upstack.
SkAutoCachedTexture act(this, src, NULL, &texture);
result->setConfig(src.config(), src.width(), src.height());
GrRect rect = GrRect::MakeWH(SkIntToScalar(src.width()),
SkIntToScalar(src.height()));
GrTexture* resultTexture = filter_texture(this, fContext, texture, filter, rect);
if (resultTexture) {
result->setPixelRef(SkNEW_ARGS(SkGrTexturePixelRef,
(resultTexture)))->unref();
resultTexture->unref();
}
return true;
}
///////////////////////////////////////////////////////////////////////////////
// must be in SkCanvas::VertexMode order
static const GrPrimitiveType gVertexMode2PrimitiveType[] = {
kTriangles_GrPrimitiveType,
kTriangleStrip_GrPrimitiveType,
kTriangleFan_GrPrimitiveType,
};
void SkGpuDevice::drawVertices(const SkDraw& draw, SkCanvas::VertexMode vmode,
int vertexCount, const SkPoint vertices[],
const SkPoint texs[], const SkColor colors[],
SkXfermode* xmode,
const uint16_t indices[], int indexCount,
const SkPaint& paint) {
CHECK_SHOULD_DRAW(draw, false);
GrPaint grPaint;
SkAutoCachedTexture textures[GrPaint::kMaxColorStages];
// we ignore the shader if texs is null.
if (NULL == texs) {
if (!skPaint2GrPaintNoShader(this,
paint,
false,
NULL == colors,
&textures[kColorFilterTextureIdx],
&grPaint)) {
return;
}
} else {
if (!skPaint2GrPaintShader(this,
paint,
NULL == colors,
textures,
&grPaint)) {
return;
}
}
if (NULL != xmode && NULL != texs && NULL != colors) {
if (!SkXfermode::IsMode(xmode, SkXfermode::kMultiply_Mode)) {
SkDebugf("Unsupported vertex-color/texture xfer mode.\n");
#if 0
return
#endif
}
}
SkAutoSTMalloc<128, GrColor> convertedColors(0);
if (NULL != colors) {
// need to convert byte order and from non-PM to PM
convertedColors.reset(vertexCount);
for (int i = 0; i < vertexCount; ++i) {
convertedColors[i] = SkColor2GrColor(colors[i]);
}
colors = convertedColors.get();
}
fContext->drawVertices(grPaint,
gVertexMode2PrimitiveType[vmode],
vertexCount,
(GrPoint*) vertices,
(GrPoint*) texs,
colors,
indices,
indexCount);
}
///////////////////////////////////////////////////////////////////////////////
static void GlyphCacheAuxProc(void* data) {
GrFontScaler* scaler = (GrFontScaler*)data;
SkSafeUnref(scaler);
}
static GrFontScaler* get_gr_font_scaler(SkGlyphCache* cache) {
void* auxData;
GrFontScaler* scaler = NULL;
if (cache->getAuxProcData(GlyphCacheAuxProc, &auxData)) {
scaler = (GrFontScaler*)auxData;
}
if (NULL == scaler) {
scaler = SkNEW_ARGS(SkGrFontScaler, (cache));
cache->setAuxProc(GlyphCacheAuxProc, scaler);
}
return scaler;
}
static void SkGPU_Draw1Glyph(const SkDraw1Glyph& state,
SkFixed fx, SkFixed fy,
const SkGlyph& glyph) {
SkASSERT(glyph.fWidth > 0 && glyph.fHeight > 0);
GrSkDrawProcs* procs = static_cast<GrSkDrawProcs*>(state.fDraw->fProcs);
if (NULL == procs->fFontScaler) {
procs->fFontScaler = get_gr_font_scaler(state.fCache);
}
procs->fTextContext->drawPackedGlyph(GrGlyph::Pack(glyph.getGlyphID(),
glyph.getSubXFixed(),
glyph.getSubYFixed()),
SkFixedFloorToFixed(fx),
SkFixedFloorToFixed(fy),
procs->fFontScaler);
}
SkDrawProcs* SkGpuDevice::initDrawForText(GrTextContext* context) {
// deferred allocation
if (NULL == fDrawProcs) {
fDrawProcs = SkNEW(GrSkDrawProcs);
fDrawProcs->fD1GProc = SkGPU_Draw1Glyph;
fDrawProcs->fContext = fContext;
}
// init our (and GL's) state
fDrawProcs->fTextContext = context;
fDrawProcs->fFontScaler = NULL;
return fDrawProcs;
}
void SkGpuDevice::drawText(const SkDraw& draw, const void* text,
size_t byteLength, SkScalar x, SkScalar y,
const SkPaint& paint) {
CHECK_SHOULD_DRAW(draw, false);
if (fContext->getMatrix().hasPerspective()) {
// this guy will just call our drawPath()
draw.drawText((const char*)text, byteLength, x, y, paint);
} else {
SkDraw myDraw(draw);
GrPaint grPaint;
SkAutoCachedTexture textures[GrPaint::kMaxColorStages];
if (!skPaint2GrPaintShader(this,
paint,
true,
textures,
&grPaint)) {
return;
}
GrTextContext context(fContext, grPaint);
myDraw.fProcs = this->initDrawForText(&context);
this->INHERITED::drawText(myDraw, text, byteLength, x, y, paint);
}
}
void SkGpuDevice::drawPosText(const SkDraw& draw, const void* text,
size_t byteLength, const SkScalar pos[],
SkScalar constY, int scalarsPerPos,
const SkPaint& paint) {
CHECK_SHOULD_DRAW(draw, false);
if (fContext->getMatrix().hasPerspective()) {
// this guy will just call our drawPath()
draw.drawPosText((const char*)text, byteLength, pos, constY,
scalarsPerPos, paint);
} else {
SkDraw myDraw(draw);
GrPaint grPaint;
SkAutoCachedTexture textures[GrPaint::kMaxColorStages];
if (!skPaint2GrPaintShader(this,
paint,
true,
textures,
&grPaint)) {
return;
}
GrTextContext context(fContext, grPaint);
myDraw.fProcs = this->initDrawForText(&context);
this->INHERITED::drawPosText(myDraw, text, byteLength, pos, constY,
scalarsPerPos, paint);
}
}
void SkGpuDevice::drawTextOnPath(const SkDraw& draw, const void* text,
size_t len, const SkPath& path,
const SkMatrix* m, const SkPaint& paint) {
CHECK_SHOULD_DRAW(draw, false);
SkASSERT(draw.fDevice == this);
draw.drawTextOnPath((const char*)text, len, path, m, paint);
}
///////////////////////////////////////////////////////////////////////////////
bool SkGpuDevice::filterTextFlags(const SkPaint& paint, TextFlags* flags) {
if (!paint.isLCDRenderText()) {
// we're cool with the paint as is
return false;
}
if (paint.getShader() ||
paint.getXfermode() || // unless its srcover
paint.getMaskFilter() ||
paint.getRasterizer() ||
paint.getColorFilter() ||
paint.getPathEffect() ||
paint.isFakeBoldText() ||
paint.getStyle() != SkPaint::kFill_Style) {
// turn off lcd
flags->fFlags = paint.getFlags() & ~SkPaint::kLCDRenderText_Flag;
flags->fHinting = paint.getHinting();
return true;
}
// we're cool with the paint as is
return false;
}
void SkGpuDevice::flush() {
DO_DEFERRED_CLEAR();
fContext->resolveRenderTarget(fRenderTarget);
}
///////////////////////////////////////////////////////////////////////////////
bool SkGpuDevice::isBitmapInTextureCache(const SkBitmap& bitmap,
const GrTextureParams& params) const {
uint64_t key = bitmap.getGenerationID();
key |= ((uint64_t) bitmap.pixelRefOffset()) << 32;
GrTextureDesc desc;
desc.fWidth = bitmap.width();
desc.fHeight = bitmap.height();
desc.fConfig = SkBitmapConfig2GrPixelConfig(bitmap.config());
GrCacheData cacheData(key);
return this->context()->isTextureInCache(desc, cacheData, &params);
}
SkDevice* SkGpuDevice::onCreateCompatibleDevice(SkBitmap::Config config,
int width, int height,
bool isOpaque,
Usage usage) {
GrTextureDesc desc;
desc.fConfig = fRenderTarget->config();
desc.fFlags = kRenderTarget_GrTextureFlagBit;
desc.fWidth = width;
desc.fHeight = height;
desc.fSampleCnt = fRenderTarget->numSamples();
GrTexture* texture;
SkAutoTUnref<GrTexture> tunref;
// Skia's convention is to only clear a device if it is non-opaque.
bool needClear = !isOpaque;
#if CACHE_COMPATIBLE_DEVICE_TEXTURES
// layers are never draw in repeat modes, so we can request an approx
// match and ignore any padding.
GrContext::ScratchTexMatch matchType = (kSaveLayer_Usage == usage) ?
GrContext::kApprox_ScratchTexMatch :
GrContext::kExact_ScratchTexMatch;
texture = fContext->lockScratchTexture(desc, matchType);
#else
tunref.reset(fContext->createUncachedTexture(desc, NULL, 0));
texture = tunref.get();
#endif
if (texture) {
return SkNEW_ARGS(SkGpuDevice,(fContext,
texture,
needClear));
} else {
GrPrintf("---- failed to create compatible device texture [%d %d]\n",
width, height);
return NULL;
}
}
SkGpuDevice::SkGpuDevice(GrContext* context,
GrTexture* texture,
bool needClear)
: SkDevice(make_bitmap(context, texture->asRenderTarget())) {
GrAssert(texture && texture->asRenderTarget());
// This constructor is called from onCreateCompatibleDevice. It has locked the RT in the texture
// cache. We pass true for the third argument so that it will get unlocked.
this->initFromRenderTarget(context, texture->asRenderTarget(), true);
fNeedClear = needClear;
}