| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "GrGpuGL.h" |
| |
| #include "GrCustomStage.h" |
| #include "GrGLProgramStage.h" |
| #include "GrGpuVertex.h" |
| |
| #define SKIP_CACHE_CHECK true |
| #define GR_UINT32_MAX static_cast<uint32_t>(-1) |
| |
| void GrGpuGL::ProgramCache::Entry::copyAndTakeOwnership(Entry& entry) { |
| fProgramData.copyAndTakeOwnership(entry.fProgramData); |
| fKey = entry.fKey; // ownership transfer |
| fLRUStamp = entry.fLRUStamp; |
| } |
| |
| GrGpuGL::ProgramCache::ProgramCache(const GrGLContextInfo& gl) |
| : fCount(0) |
| , fCurrLRUStamp(0) |
| , fGL(gl) { |
| } |
| |
| GrGpuGL::ProgramCache::~ProgramCache() { |
| for (int i = 0; i < fCount; ++i) { |
| GrGpuGL::DeleteProgram(fGL.interface(), |
| &fEntries[i].fProgramData); |
| } |
| } |
| |
| void GrGpuGL::ProgramCache::abandon() { |
| fCount = 0; |
| } |
| |
| GrGLProgram::CachedData* GrGpuGL::ProgramCache::getProgramData( |
| const GrGLProgram& desc, |
| GrCustomStage** stages) { |
| Entry newEntry; |
| newEntry.fKey.setKeyData(desc.keyData()); |
| |
| Entry* entry = fHashCache.find(newEntry.fKey); |
| if (NULL == entry) { |
| if (!desc.genProgram(fGL, stages, &newEntry.fProgramData)) { |
| return NULL; |
| } |
| if (fCount < kMaxEntries) { |
| entry = fEntries + fCount; |
| ++fCount; |
| } else { |
| GrAssert(kMaxEntries == fCount); |
| entry = fEntries; |
| for (int i = 1; i < kMaxEntries; ++i) { |
| if (fEntries[i].fLRUStamp < entry->fLRUStamp) { |
| entry = fEntries + i; |
| } |
| } |
| fHashCache.remove(entry->fKey, entry); |
| GrGpuGL::DeleteProgram(fGL.interface(), |
| &entry->fProgramData); |
| } |
| entry->copyAndTakeOwnership(newEntry); |
| fHashCache.insert(entry->fKey, entry); |
| } |
| |
| entry->fLRUStamp = fCurrLRUStamp; |
| if (GR_UINT32_MAX == fCurrLRUStamp) { |
| // wrap around! just trash our LRU, one time hit. |
| for (int i = 0; i < fCount; ++i) { |
| fEntries[i].fLRUStamp = 0; |
| } |
| } |
| ++fCurrLRUStamp; |
| return &entry->fProgramData; |
| } |
| |
| void GrGpuGL::DeleteProgram(const GrGLInterface* gl, |
| CachedData* programData) { |
| GR_GL_CALL(gl, DeleteShader(programData->fVShaderID)); |
| if (programData->fGShaderID) { |
| GR_GL_CALL(gl, DeleteShader(programData->fGShaderID)); |
| } |
| GR_GL_CALL(gl, DeleteShader(programData->fFShaderID)); |
| GR_GL_CALL(gl, DeleteProgram(programData->fProgramID)); |
| GR_DEBUGCODE(programData->fVShaderID = 0); |
| GR_DEBUGCODE(programData->fGShaderID = 0); |
| GR_DEBUGCODE(programData->fFShaderID = 0); |
| GR_DEBUGCODE(programData->fProgramID = 0); |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| void GrGpuGL::abandonResources(){ |
| INHERITED::abandonResources(); |
| fProgramCache->abandon(); |
| fHWProgramID = 0; |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| #define GL_CALL(X) GR_GL_CALL(this->glInterface(), X) |
| |
| void GrGpuGL::flushViewMatrix(DrawType type) { |
| const GrGLRenderTarget* rt = static_cast<const GrGLRenderTarget*>(this->getDrawState().getRenderTarget()); |
| SkISize viewportSize; |
| const GrGLIRect& viewport = rt->getViewport(); |
| viewportSize.set(viewport.fWidth, viewport.fHeight); |
| |
| const GrMatrix& vm = this->getDrawState().getViewMatrix(); |
| |
| if (kStencilPath_DrawType == type) { |
| if (fHWPathMatrixState.fViewMatrix != vm || |
| fHWPathMatrixState.fRTSize != viewportSize) { |
| // rescale the coords from skia's "device" coords to GL's normalized coords, |
| // and perform a y-flip. |
| GrMatrix m; |
| m.setScale(GrIntToScalar(2) / rt->width(), GrIntToScalar(-2) / rt->height()); |
| m.postTranslate(-GR_Scalar1, GR_Scalar1); |
| m.preConcat(vm); |
| |
| // GL wants a column-major 4x4. |
| GrGLfloat mv[] = { |
| // col 0 |
| GrScalarToFloat(m[GrMatrix::kMScaleX]), |
| GrScalarToFloat(m[GrMatrix::kMSkewY]), |
| 0, |
| GrScalarToFloat(m[GrMatrix::kMPersp0]), |
| |
| // col 1 |
| GrScalarToFloat(m[GrMatrix::kMSkewX]), |
| GrScalarToFloat(m[GrMatrix::kMScaleY]), |
| 0, |
| GrScalarToFloat(m[GrMatrix::kMPersp1]), |
| |
| // col 2 |
| 0, 0, 0, 0, |
| |
| // col3 |
| GrScalarToFloat(m[GrMatrix::kMTransX]), |
| GrScalarToFloat(m[GrMatrix::kMTransY]), |
| 0.0f, |
| GrScalarToFloat(m[GrMatrix::kMPersp2]) |
| }; |
| GL_CALL(MatrixMode(GR_GL_PROJECTION)); |
| GL_CALL(LoadMatrixf(mv)); |
| fHWPathMatrixState.fViewMatrix = vm; |
| fHWPathMatrixState.fRTSize = viewportSize; |
| } |
| } else if (!fProgramData->fViewMatrix.cheapEqualTo(vm) || |
| fProgramData->fViewportSize != viewportSize) { |
| GrMatrix m; |
| m.setAll( |
| GrIntToScalar(2) / viewportSize.fWidth, 0, -GR_Scalar1, |
| 0,-GrIntToScalar(2) / viewportSize.fHeight, GR_Scalar1, |
| 0, 0, GrMatrix::I()[8]); |
| m.setConcat(m, vm); |
| |
| // ES doesn't allow you to pass true to the transpose param, |
| // so do our own transpose |
| GrGLfloat mt[] = { |
| GrScalarToFloat(m[GrMatrix::kMScaleX]), |
| GrScalarToFloat(m[GrMatrix::kMSkewY]), |
| GrScalarToFloat(m[GrMatrix::kMPersp0]), |
| GrScalarToFloat(m[GrMatrix::kMSkewX]), |
| GrScalarToFloat(m[GrMatrix::kMScaleY]), |
| GrScalarToFloat(m[GrMatrix::kMPersp1]), |
| GrScalarToFloat(m[GrMatrix::kMTransX]), |
| GrScalarToFloat(m[GrMatrix::kMTransY]), |
| GrScalarToFloat(m[GrMatrix::kMPersp2]) |
| }; |
| |
| GrAssert(GrGLProgram::kUnusedUniform != |
| fProgramData->fUniLocations.fViewMatrixUni); |
| GL_CALL(UniformMatrix3fv(fProgramData->fUniLocations.fViewMatrixUni, |
| 1, false, mt)); |
| fProgramData->fViewMatrix = vm; |
| fProgramData->fViewportSize = viewportSize; |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| // helpers for texture matrices |
| |
| void GrGpuGL::AdjustTextureMatrix(const GrGLTexture* texture, |
| GrMatrix* matrix) { |
| GrAssert(NULL != texture); |
| GrAssert(NULL != matrix); |
| GrGLTexture::Orientation orientation = texture->orientation(); |
| if (GrGLTexture::kBottomUp_Orientation == orientation) { |
| GrMatrix invY; |
| invY.setAll(GR_Scalar1, 0, 0, |
| 0, -GR_Scalar1, GR_Scalar1, |
| 0, 0, GrMatrix::I()[8]); |
| matrix->postConcat(invY); |
| } else { |
| GrAssert(GrGLTexture::kTopDown_Orientation == orientation); |
| } |
| } |
| |
| bool GrGpuGL::TextureMatrixIsIdentity(const GrGLTexture* texture, |
| const GrSamplerState& sampler) { |
| GrAssert(NULL != texture); |
| if (!sampler.getMatrix().isIdentity()) { |
| return false; |
| } |
| GrGLTexture::Orientation orientation = texture->orientation(); |
| if (GrGLTexture::kBottomUp_Orientation == orientation) { |
| return false; |
| } else { |
| GrAssert(GrGLTexture::kTopDown_Orientation == orientation); |
| } |
| return true; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void GrGpuGL::flushTextureMatrixAndDomain(int s) { |
| const GrDrawState& drawState = this->getDrawState(); |
| const GrGLTexture* texture = |
| static_cast<const GrGLTexture*>(drawState.getTexture(s)); |
| if (NULL != texture) { |
| |
| bool orientationChange = fProgramData->fTextureOrientation[s] != |
| texture->orientation(); |
| |
| const GrGLint& matrixUni = |
| fProgramData->fUniLocations.fStages[s].fTextureMatrixUni; |
| |
| const GrMatrix& hwMatrix = fProgramData->fTextureMatrices[s]; |
| const GrMatrix& samplerMatrix = drawState.getSampler(s).getMatrix(); |
| |
| if (GrGLProgram::kUnusedUniform != matrixUni && |
| (orientationChange || !hwMatrix.cheapEqualTo(samplerMatrix))) { |
| |
| GrMatrix m = samplerMatrix; |
| AdjustTextureMatrix(texture, &m); |
| |
| // ES doesn't allow you to pass true to the transpose param, |
| // so do our own transpose |
| GrGLfloat mt[] = { |
| GrScalarToFloat(m[GrMatrix::kMScaleX]), |
| GrScalarToFloat(m[GrMatrix::kMSkewY]), |
| GrScalarToFloat(m[GrMatrix::kMPersp0]), |
| GrScalarToFloat(m[GrMatrix::kMSkewX]), |
| GrScalarToFloat(m[GrMatrix::kMScaleY]), |
| GrScalarToFloat(m[GrMatrix::kMPersp1]), |
| GrScalarToFloat(m[GrMatrix::kMTransX]), |
| GrScalarToFloat(m[GrMatrix::kMTransY]), |
| GrScalarToFloat(m[GrMatrix::kMPersp2]) |
| }; |
| |
| GL_CALL(UniformMatrix3fv(matrixUni, 1, false, mt)); |
| fProgramData->fTextureMatrices[s] = samplerMatrix; |
| } |
| |
| const GrGLint& domUni = |
| fProgramData->fUniLocations.fStages[s].fTexDomUni; |
| const GrRect &texDom = drawState.getSampler(s).getTextureDomain(); |
| if (GrGLProgram::kUnusedUniform != domUni && |
| (orientationChange ||fProgramData->fTextureDomain[s] != texDom)) { |
| |
| fProgramData->fTextureDomain[s] = texDom; |
| |
| float values[4] = { |
| GrScalarToFloat(texDom.left()), |
| GrScalarToFloat(texDom.top()), |
| GrScalarToFloat(texDom.right()), |
| GrScalarToFloat(texDom.bottom()) |
| }; |
| |
| // vertical flip if necessary |
| if (GrGLTexture::kBottomUp_Orientation == texture->orientation()) { |
| values[1] = 1.0f - values[1]; |
| values[3] = 1.0f - values[3]; |
| // The top and bottom were just flipped, so correct the ordering |
| // of elements so that values = (l, t, r, b). |
| SkTSwap(values[1], values[3]); |
| } |
| GL_CALL(Uniform4fv(domUni, 1, values)); |
| } |
| fProgramData->fTextureOrientation[s] = texture->orientation(); |
| } |
| } |
| |
| |
| void GrGpuGL::flushColorMatrix() { |
| // const ProgramDesc& desc = fCurrentProgram.getDesc(); |
| int matrixUni = fProgramData->fUniLocations.fColorMatrixUni; |
| int vecUni = fProgramData->fUniLocations.fColorMatrixVecUni; |
| if (GrGLProgram::kUnusedUniform != matrixUni |
| && GrGLProgram::kUnusedUniform != vecUni) { |
| const float* m = this->getDrawState().getColorMatrix(); |
| GrGLfloat mt[] = { |
| m[0], m[5], m[10], m[15], |
| m[1], m[6], m[11], m[16], |
| m[2], m[7], m[12], m[17], |
| m[3], m[8], m[13], m[18], |
| }; |
| static float scale = 1.0f / 255.0f; |
| GrGLfloat vec[] = { |
| m[4] * scale, m[9] * scale, m[14] * scale, m[19] * scale, |
| }; |
| GL_CALL(UniformMatrix4fv(matrixUni, 1, false, mt)); |
| GL_CALL(Uniform4fv(vecUni, 1, vec)); |
| } |
| } |
| |
| static const float ONE_OVER_255 = 1.f / 255.f; |
| |
| #define GR_COLOR_TO_VEC4(color) {\ |
| GrColorUnpackR(color) * ONE_OVER_255,\ |
| GrColorUnpackG(color) * ONE_OVER_255,\ |
| GrColorUnpackB(color) * ONE_OVER_255,\ |
| GrColorUnpackA(color) * ONE_OVER_255 \ |
| } |
| |
| void GrGpuGL::flushColor(GrColor color) { |
| const ProgramDesc& desc = fCurrentProgram.getDesc(); |
| const GrDrawState& drawState = this->getDrawState(); |
| |
| if (this->getVertexLayout() & kColor_VertexLayoutBit) { |
| // color will be specified per-vertex as an attribute |
| // invalidate the const vertex attrib color |
| fHWConstAttribColor = GrColor_ILLEGAL; |
| } else { |
| switch (desc.fColorInput) { |
| case ProgramDesc::kAttribute_ColorInput: |
| if (fHWConstAttribColor != color) { |
| // OpenGL ES only supports the float varieties of |
| // glVertexAttrib |
| float c[] = GR_COLOR_TO_VEC4(color); |
| GL_CALL(VertexAttrib4fv(GrGLProgram::ColorAttributeIdx(), |
| c)); |
| fHWConstAttribColor = color; |
| } |
| break; |
| case ProgramDesc::kUniform_ColorInput: |
| if (fProgramData->fColor != color) { |
| // OpenGL ES doesn't support unsigned byte varieties of |
| // glUniform |
| float c[] = GR_COLOR_TO_VEC4(color); |
| GrAssert(GrGLProgram::kUnusedUniform != |
| fProgramData->fUniLocations.fColorUni); |
| GL_CALL(Uniform4fv(fProgramData->fUniLocations.fColorUni, |
| 1, c)); |
| fProgramData->fColor = color; |
| } |
| break; |
| case ProgramDesc::kSolidWhite_ColorInput: |
| case ProgramDesc::kTransBlack_ColorInput: |
| break; |
| default: |
| GrCrash("Unknown color type."); |
| } |
| } |
| if (fProgramData->fUniLocations.fColorFilterUni |
| != GrGLProgram::kUnusedUniform |
| && fProgramData->fColorFilterColor |
| != drawState.getColorFilterColor()) { |
| float c[] = GR_COLOR_TO_VEC4(drawState.getColorFilterColor()); |
| GL_CALL(Uniform4fv(fProgramData->fUniLocations.fColorFilterUni, 1, c)); |
| fProgramData->fColorFilterColor = drawState.getColorFilterColor(); |
| } |
| } |
| |
| void GrGpuGL::flushCoverage(GrColor coverage) { |
| const ProgramDesc& desc = fCurrentProgram.getDesc(); |
| // const GrDrawState& drawState = this->getDrawState(); |
| |
| |
| if (this->getVertexLayout() & kCoverage_VertexLayoutBit) { |
| // coverage will be specified per-vertex as an attribute |
| // invalidate the const vertex attrib coverage |
| fHWConstAttribCoverage = GrColor_ILLEGAL; |
| } else { |
| switch (desc.fCoverageInput) { |
| case ProgramDesc::kAttribute_ColorInput: |
| if (fHWConstAttribCoverage != coverage) { |
| // OpenGL ES only supports the float varieties of |
| // glVertexAttrib |
| float c[] = GR_COLOR_TO_VEC4(coverage); |
| GL_CALL(VertexAttrib4fv(GrGLProgram::CoverageAttributeIdx(), |
| c)); |
| fHWConstAttribCoverage = coverage; |
| } |
| break; |
| case ProgramDesc::kUniform_ColorInput: |
| if (fProgramData->fCoverage != coverage) { |
| // OpenGL ES doesn't support unsigned byte varieties of |
| // glUniform |
| float c[] = GR_COLOR_TO_VEC4(coverage); |
| GrAssert(GrGLProgram::kUnusedUniform != |
| fProgramData->fUniLocations.fCoverageUni); |
| GL_CALL(Uniform4fv(fProgramData->fUniLocations.fCoverageUni, |
| 1, c)); |
| fProgramData->fCoverage = coverage; |
| } |
| break; |
| case ProgramDesc::kSolidWhite_ColorInput: |
| case ProgramDesc::kTransBlack_ColorInput: |
| break; |
| default: |
| GrCrash("Unknown coverage type."); |
| } |
| } |
| } |
| |
| bool GrGpuGL::flushGraphicsState(DrawType type) { |
| const GrDrawState& drawState = this->getDrawState(); |
| |
| // GrGpu::setupClipAndFlushState should have already checked this |
| // and bailed if not true. |
| GrAssert(NULL != drawState.getRenderTarget()); |
| |
| if (kStencilPath_DrawType != type) { |
| this->flushMiscFixedFunctionState(); |
| |
| GrBlendCoeff srcCoeff; |
| GrBlendCoeff dstCoeff; |
| BlendOptFlags blendOpts = this->getBlendOpts(false, &srcCoeff, &dstCoeff); |
| if (kSkipDraw_BlendOptFlag & blendOpts) { |
| return false; |
| } |
| |
| GrCustomStage* customStages [GrDrawState::kNumStages]; |
| this->buildProgram(kDrawPoints_DrawType == type, |
| blendOpts, dstCoeff, customStages); |
| fProgramData = fProgramCache->getProgramData(fCurrentProgram, |
| customStages); |
| if (NULL == fProgramData) { |
| GrAssert(!"Failed to create program!"); |
| return false; |
| } |
| |
| if (fHWProgramID != fProgramData->fProgramID) { |
| GL_CALL(UseProgram(fProgramData->fProgramID)); |
| fHWProgramID = fProgramData->fProgramID; |
| } |
| fCurrentProgram.overrideBlend(&srcCoeff, &dstCoeff); |
| this->flushBlend(kDrawLines_DrawType == type, srcCoeff, dstCoeff); |
| |
| GrColor color; |
| GrColor coverage; |
| if (blendOpts & kEmitTransBlack_BlendOptFlag) { |
| color = 0; |
| coverage = 0; |
| } else if (blendOpts & kEmitCoverage_BlendOptFlag) { |
| color = 0xffffffff; |
| coverage = drawState.getCoverage(); |
| } else { |
| color = drawState.getColor(); |
| coverage = drawState.getCoverage(); |
| } |
| this->flushColor(color); |
| this->flushCoverage(coverage); |
| |
| for (int s = 0; s < GrDrawState::kNumStages; ++s) { |
| if (this->isStageEnabled(s)) { |
| #if GR_DEBUG |
| // check for circular rendering |
| GrAssert(NULL == drawState.getRenderTarget() || |
| NULL == drawState.getTexture(s) || |
| drawState.getTexture(s)->asRenderTarget() != |
| drawState.getRenderTarget()); |
| #endif |
| this->flushBoundTextureAndParams(s); |
| |
| this->flushTextureMatrixAndDomain(s); |
| |
| if (NULL != fProgramData->fCustomStage[s]) { |
| const GrSamplerState& sampler = |
| this->getDrawState().getSampler(s); |
| const GrGLTexture* texture = |
| static_cast<const GrGLTexture*>( |
| this->getDrawState().getTexture(s)); |
| fProgramData->fCustomStage[s]->setData( |
| this->glInterface(), *texture, |
| *sampler.getCustomStage(), s); |
| } |
| } |
| } |
| this->flushColorMatrix(); |
| } |
| this->flushStencil(type); |
| this->flushViewMatrix(type); |
| this->flushScissor(); |
| this->flushAAState(type); |
| |
| GrIRect* rect = NULL; |
| GrIRect clipBounds; |
| if (drawState.isClipState()) { |
| fClip.getConservativeBounds().roundOut(&clipBounds); |
| rect = &clipBounds; |
| } |
| // This must come after textures are flushed because a texture may need |
| // to be msaa-resolved (which will modify bound FBO state). |
| this->flushRenderTarget(rect); |
| |
| return true; |
| } |
| |
| #if GR_TEXT_SCALAR_IS_USHORT |
| #define TEXT_COORDS_GL_TYPE GR_GL_UNSIGNED_SHORT |
| #define TEXT_COORDS_ARE_NORMALIZED 1 |
| #elif GR_TEXT_SCALAR_IS_FLOAT |
| #define TEXT_COORDS_GL_TYPE GR_GL_FLOAT |
| #define TEXT_COORDS_ARE_NORMALIZED 0 |
| #elif GR_TEXT_SCALAR_IS_FIXED |
| #define TEXT_COORDS_GL_TYPE GR_GL_FIXED |
| #define TEXT_COORDS_ARE_NORMALIZED 0 |
| #else |
| #error "unknown GR_TEXT_SCALAR type" |
| #endif |
| |
| void GrGpuGL::setupGeometry(int* startVertex, |
| int* startIndex, |
| int vertexCount, |
| int indexCount) { |
| |
| int newColorOffset; |
| int newCoverageOffset; |
| int newTexCoordOffsets[GrDrawState::kMaxTexCoords]; |
| int newEdgeOffset; |
| |
| GrVertexLayout currLayout = this->getVertexLayout(); |
| |
| GrGLsizei newStride = VertexSizeAndOffsetsByIdx( |
| currLayout, |
| newTexCoordOffsets, |
| &newColorOffset, |
| &newCoverageOffset, |
| &newEdgeOffset); |
| int oldColorOffset; |
| int oldCoverageOffset; |
| int oldTexCoordOffsets[GrDrawState::kMaxTexCoords]; |
| int oldEdgeOffset; |
| |
| GrGLsizei oldStride = VertexSizeAndOffsetsByIdx( |
| fHWGeometryState.fVertexLayout, |
| oldTexCoordOffsets, |
| &oldColorOffset, |
| &oldCoverageOffset, |
| &oldEdgeOffset); |
| bool indexed = NULL != startIndex; |
| |
| int extraVertexOffset; |
| int extraIndexOffset; |
| this->setBuffers(indexed, &extraVertexOffset, &extraIndexOffset); |
| |
| GrGLenum scalarType; |
| bool texCoordNorm; |
| if (currLayout & kTextFormat_VertexLayoutBit) { |
| scalarType = TEXT_COORDS_GL_TYPE; |
| texCoordNorm = SkToBool(TEXT_COORDS_ARE_NORMALIZED); |
| } else { |
| GR_STATIC_ASSERT(GR_SCALAR_IS_FLOAT); |
| scalarType = GR_GL_FLOAT; |
| texCoordNorm = false; |
| } |
| |
| size_t vertexOffset = (*startVertex + extraVertexOffset) * newStride; |
| *startVertex = 0; |
| if (indexed) { |
| *startIndex += extraIndexOffset; |
| } |
| |
| // all the Pointers must be set if any of these are true |
| bool allOffsetsChange = fHWGeometryState.fArrayPtrsDirty || |
| vertexOffset != fHWGeometryState.fVertexOffset || |
| newStride != oldStride; |
| |
| // position and tex coord offsets change if above conditions are true |
| // or the type/normalization changed based on text vs nontext type coords. |
| bool posAndTexChange = allOffsetsChange || |
| (((TEXT_COORDS_GL_TYPE != GR_GL_FLOAT) || TEXT_COORDS_ARE_NORMALIZED) && |
| (kTextFormat_VertexLayoutBit & |
| (fHWGeometryState.fVertexLayout ^ currLayout))); |
| |
| if (posAndTexChange) { |
| int idx = GrGLProgram::PositionAttributeIdx(); |
| GL_CALL(VertexAttribPointer(idx, 2, scalarType, false, newStride, |
| (GrGLvoid*)vertexOffset)); |
| fHWGeometryState.fVertexOffset = vertexOffset; |
| } |
| |
| for (int t = 0; t < GrDrawState::kMaxTexCoords; ++t) { |
| if (newTexCoordOffsets[t] > 0) { |
| GrGLvoid* texCoordOffset = (GrGLvoid*)(vertexOffset + newTexCoordOffsets[t]); |
| int idx = GrGLProgram::TexCoordAttributeIdx(t); |
| if (oldTexCoordOffsets[t] <= 0) { |
| GL_CALL(EnableVertexAttribArray(idx)); |
| GL_CALL(VertexAttribPointer(idx, 2, scalarType, texCoordNorm, |
| newStride, texCoordOffset)); |
| } else if (posAndTexChange || |
| newTexCoordOffsets[t] != oldTexCoordOffsets[t]) { |
| GL_CALL(VertexAttribPointer(idx, 2, scalarType, texCoordNorm, |
| newStride, texCoordOffset)); |
| } |
| } else if (oldTexCoordOffsets[t] > 0) { |
| GL_CALL(DisableVertexAttribArray(GrGLProgram::TexCoordAttributeIdx(t))); |
| } |
| } |
| |
| if (newColorOffset > 0) { |
| GrGLvoid* colorOffset = (int8_t*)(vertexOffset + newColorOffset); |
| int idx = GrGLProgram::ColorAttributeIdx(); |
| if (oldColorOffset <= 0) { |
| GL_CALL(EnableVertexAttribArray(idx)); |
| GL_CALL(VertexAttribPointer(idx, 4, GR_GL_UNSIGNED_BYTE, |
| true, newStride, colorOffset)); |
| } else if (allOffsetsChange || newColorOffset != oldColorOffset) { |
| GL_CALL(VertexAttribPointer(idx, 4, GR_GL_UNSIGNED_BYTE, |
| true, newStride, colorOffset)); |
| } |
| } else if (oldColorOffset > 0) { |
| GL_CALL(DisableVertexAttribArray(GrGLProgram::ColorAttributeIdx())); |
| } |
| |
| if (newCoverageOffset > 0) { |
| GrGLvoid* coverageOffset = (int8_t*)(vertexOffset + newCoverageOffset); |
| int idx = GrGLProgram::CoverageAttributeIdx(); |
| if (oldCoverageOffset <= 0) { |
| GL_CALL(EnableVertexAttribArray(idx)); |
| GL_CALL(VertexAttribPointer(idx, 4, GR_GL_UNSIGNED_BYTE, |
| true, newStride, coverageOffset)); |
| } else if (allOffsetsChange || newCoverageOffset != oldCoverageOffset) { |
| GL_CALL(VertexAttribPointer(idx, 4, GR_GL_UNSIGNED_BYTE, |
| true, newStride, coverageOffset)); |
| } |
| } else if (oldCoverageOffset > 0) { |
| GL_CALL(DisableVertexAttribArray(GrGLProgram::CoverageAttributeIdx())); |
| } |
| |
| if (newEdgeOffset > 0) { |
| GrGLvoid* edgeOffset = (int8_t*)(vertexOffset + newEdgeOffset); |
| int idx = GrGLProgram::EdgeAttributeIdx(); |
| if (oldEdgeOffset <= 0) { |
| GL_CALL(EnableVertexAttribArray(idx)); |
| GL_CALL(VertexAttribPointer(idx, 4, scalarType, |
| false, newStride, edgeOffset)); |
| } else if (allOffsetsChange || newEdgeOffset != oldEdgeOffset) { |
| GL_CALL(VertexAttribPointer(idx, 4, scalarType, |
| false, newStride, edgeOffset)); |
| } |
| } else if (oldEdgeOffset > 0) { |
| GL_CALL(DisableVertexAttribArray(GrGLProgram::EdgeAttributeIdx())); |
| } |
| |
| fHWGeometryState.fVertexLayout = currLayout; |
| fHWGeometryState.fArrayPtrsDirty = false; |
| } |
| |
| namespace { |
| |
| void setup_custom_stage(GrGLProgram::ProgramDesc::StageDesc* stage, |
| const GrSamplerState& sampler, |
| GrCustomStage** customStages, |
| GrGLProgram* program, int index) { |
| GrCustomStage* customStage = sampler.getCustomStage(); |
| if (customStage) { |
| const GrProgramStageFactory& factory = customStage->getFactory(); |
| stage->fCustomStageKey = factory.glStageKey(*customStage); |
| customStages[index] = customStage; |
| } else { |
| stage->fCustomStageKey = 0; |
| customStages[index] = NULL; |
| } |
| } |
| |
| } |
| |
| void GrGpuGL::buildProgram(bool isPoints, |
| BlendOptFlags blendOpts, |
| GrBlendCoeff dstCoeff, |
| GrCustomStage** customStages) { |
| ProgramDesc& desc = fCurrentProgram.fProgramDesc; |
| const GrDrawState& drawState = this->getDrawState(); |
| |
| // This should already have been caught |
| GrAssert(!(kSkipDraw_BlendOptFlag & blendOpts)); |
| |
| bool skipCoverage = SkToBool(blendOpts & kEmitTransBlack_BlendOptFlag); |
| |
| bool skipColor = SkToBool(blendOpts & (kEmitTransBlack_BlendOptFlag | |
| kEmitCoverage_BlendOptFlag)); |
| |
| // The descriptor is used as a cache key. Thus when a field of the |
| // descriptor will not affect program generation (because of the vertex |
| // layout in use or other descriptor field settings) it should be set |
| // to a canonical value to avoid duplicate programs with different keys. |
| |
| // Must initialize all fields or cache will have false negatives! |
| desc.fVertexLayout = this->getVertexLayout(); |
| |
| desc.fEmitsPointSize = isPoints; |
| |
| bool requiresAttributeColors = |
| !skipColor && SkToBool(desc.fVertexLayout & kColor_VertexLayoutBit); |
| bool requiresAttributeCoverage = |
| !skipCoverage && SkToBool(desc.fVertexLayout & |
| kCoverage_VertexLayoutBit); |
| |
| // fColorInput/fCoverageInput records how colors are specified for the. |
| // program. So we strip the bits from the layout to avoid false negatives |
| // when searching for an existing program in the cache. |
| desc.fVertexLayout &= ~(kColor_VertexLayoutBit | kCoverage_VertexLayoutBit); |
| |
| desc.fColorFilterXfermode = skipColor ? |
| SkXfermode::kDst_Mode : |
| drawState.getColorFilterMode(); |
| |
| desc.fColorMatrixEnabled = drawState.isStateFlagEnabled(GrDrawState::kColorMatrix_StateBit); |
| |
| // no reason to do edge aa or look at per-vertex coverage if coverage is |
| // ignored |
| if (skipCoverage) { |
| desc.fVertexLayout &= ~(kEdge_VertexLayoutBit | |
| kCoverage_VertexLayoutBit); |
| } |
| |
| bool colorIsTransBlack = SkToBool(blendOpts & kEmitTransBlack_BlendOptFlag); |
| bool colorIsSolidWhite = (blendOpts & kEmitCoverage_BlendOptFlag) || |
| (!requiresAttributeColors && |
| 0xffffffff == drawState.getColor()); |
| if (GR_AGGRESSIVE_SHADER_OPTS && colorIsTransBlack) { |
| desc.fColorInput = ProgramDesc::kTransBlack_ColorInput; |
| } else if (GR_AGGRESSIVE_SHADER_OPTS && colorIsSolidWhite) { |
| desc.fColorInput = ProgramDesc::kSolidWhite_ColorInput; |
| } else if (GR_GL_NO_CONSTANT_ATTRIBUTES && !requiresAttributeColors) { |
| desc.fColorInput = ProgramDesc::kUniform_ColorInput; |
| } else { |
| desc.fColorInput = ProgramDesc::kAttribute_ColorInput; |
| } |
| |
| bool covIsSolidWhite = !requiresAttributeCoverage && |
| 0xffffffff == drawState.getCoverage(); |
| |
| if (skipCoverage) { |
| desc.fCoverageInput = ProgramDesc::kTransBlack_ColorInput; |
| } else if (covIsSolidWhite) { |
| desc.fCoverageInput = ProgramDesc::kSolidWhite_ColorInput; |
| } else if (GR_GL_NO_CONSTANT_ATTRIBUTES && !requiresAttributeCoverage) { |
| desc.fCoverageInput = ProgramDesc::kUniform_ColorInput; |
| } else { |
| desc.fCoverageInput = ProgramDesc::kAttribute_ColorInput; |
| } |
| |
| int lastEnabledStage = -1; |
| |
| if (!skipCoverage && (desc.fVertexLayout & |
| GrDrawTarget::kEdge_VertexLayoutBit)) { |
| desc.fVertexEdgeType = drawState.getVertexEdgeType(); |
| } else { |
| // use canonical value when not set to avoid cache misses |
| desc.fVertexEdgeType = GrDrawState::kHairLine_EdgeType; |
| } |
| |
| for (int s = 0; s < GrDrawState::kNumStages; ++s) { |
| StageDesc& stage = desc.fStages[s]; |
| |
| stage.fOptFlags = 0; |
| stage.setEnabled(this->isStageEnabled(s)); |
| |
| bool skip = s < drawState.getFirstCoverageStage() ? skipColor : |
| skipCoverage; |
| |
| if (!skip && stage.isEnabled()) { |
| lastEnabledStage = s; |
| const GrGLTexture* texture = |
| static_cast<const GrGLTexture*>(drawState.getTexture(s)); |
| GrAssert(NULL != texture); |
| const GrSamplerState& sampler = drawState.getSampler(s); |
| // we matrix to invert when orientation is TopDown, so make sure |
| // we aren't in that case before flagging as identity. |
| if (TextureMatrixIsIdentity(texture, sampler)) { |
| stage.fOptFlags |= StageDesc::kIdentityMatrix_OptFlagBit; |
| } else if (!sampler.getMatrix().hasPerspective()) { |
| stage.fOptFlags |= StageDesc::kNoPerspective_OptFlagBit; |
| } |
| |
| if (sampler.hasTextureDomain()) { |
| GrAssert(GrSamplerState::kClamp_WrapMode == |
| sampler.getWrapX() && |
| GrSamplerState::kClamp_WrapMode == |
| sampler.getWrapY()); |
| stage.fOptFlags |= StageDesc::kCustomTextureDomain_OptFlagBit; |
| } |
| |
| stage.fInConfigFlags = 0; |
| if (!this->glCaps().textureSwizzleSupport()) { |
| if (GrPixelConfigIsAlphaOnly(texture->config())) { |
| // if we don't have texture swizzle support then |
| // the shader must smear the single channel after |
| // reading the texture |
| if (this->glCaps().textureRedSupport()) { |
| // we can use R8 textures so use kSmearRed |
| stage.fInConfigFlags |= |
| StageDesc::kSmearRed_InConfigFlag; |
| } else { |
| // we can use A8 textures so use kSmearAlpha |
| stage.fInConfigFlags |= |
| StageDesc::kSmearAlpha_InConfigFlag; |
| } |
| } else if (sampler.swapsRAndB()) { |
| stage.fInConfigFlags |= StageDesc::kSwapRAndB_InConfigFlag; |
| } |
| } |
| if (GrPixelConfigIsUnpremultiplied(texture->config())) { |
| // The shader generator assumes that color channels are bytes |
| // when rounding. |
| GrAssert(4 == GrBytesPerPixel(texture->config())); |
| if (kUpOnWrite_DownOnRead_UnpremulConversion == |
| fUnpremulConversion) { |
| stage.fInConfigFlags |= |
| StageDesc::kMulRGBByAlpha_RoundDown_InConfigFlag; |
| } else { |
| stage.fInConfigFlags |= |
| StageDesc::kMulRGBByAlpha_RoundUp_InConfigFlag; |
| } |
| } |
| |
| setup_custom_stage(&stage, sampler, customStages, |
| &fCurrentProgram, s); |
| |
| } else { |
| stage.fOptFlags = 0; |
| stage.fInConfigFlags = 0; |
| stage.fCustomStageKey = 0; |
| customStages[s] = NULL; |
| } |
| } |
| |
| if (GrPixelConfigIsUnpremultiplied(drawState.getRenderTarget()->config())) { |
| // The shader generator assumes that color channels are bytes |
| // when rounding. |
| GrAssert(4 == GrBytesPerPixel(drawState.getRenderTarget()->config())); |
| if (kUpOnWrite_DownOnRead_UnpremulConversion == fUnpremulConversion) { |
| desc.fOutputConfig = |
| ProgramDesc::kUnpremultiplied_RoundUp_OutputConfig; |
| } else { |
| desc.fOutputConfig = |
| ProgramDesc::kUnpremultiplied_RoundDown_OutputConfig; |
| } |
| } else { |
| desc.fOutputConfig = ProgramDesc::kPremultiplied_OutputConfig; |
| } |
| |
| desc.fDualSrcOutput = ProgramDesc::kNone_DualSrcOutput; |
| |
| // currently the experimental GS will only work with triangle prims |
| // (and it doesn't do anything other than pass through values from |
| // the VS to the FS anyway). |
| #if 0 && GR_GL_EXPERIMENTAL_GS |
| desc.fExperimentalGS = this->getCaps().fGeometryShaderSupport; |
| #endif |
| |
| // we want to avoid generating programs with different "first cov stage" |
| // values when they would compute the same result. |
| // We set field in the desc to kNumStages when either there are no |
| // coverage stages or the distinction between coverage and color is |
| // immaterial. |
| int firstCoverageStage = GrDrawState::kNumStages; |
| desc.fFirstCoverageStage = GrDrawState::kNumStages; |
| bool hasCoverage = drawState.getFirstCoverageStage() <= lastEnabledStage; |
| if (hasCoverage) { |
| firstCoverageStage = drawState.getFirstCoverageStage(); |
| } |
| |
| // other coverage inputs |
| if (!hasCoverage) { |
| hasCoverage = |
| requiresAttributeCoverage || |
| (desc.fVertexLayout & GrDrawTarget::kEdge_VertexLayoutBit); |
| } |
| |
| if (hasCoverage) { |
| // color filter is applied between color/coverage computation |
| if (SkXfermode::kDst_Mode != desc.fColorFilterXfermode) { |
| desc.fFirstCoverageStage = firstCoverageStage; |
| } |
| |
| if (this->getCaps().fDualSourceBlendingSupport && |
| !(blendOpts & (kEmitCoverage_BlendOptFlag | |
| kCoverageAsAlpha_BlendOptFlag))) { |
| if (kZero_GrBlendCoeff == dstCoeff) { |
| // write the coverage value to second color |
| desc.fDualSrcOutput = ProgramDesc::kCoverage_DualSrcOutput; |
| desc.fFirstCoverageStage = firstCoverageStage; |
| } else if (kSA_GrBlendCoeff == dstCoeff) { |
| // SA dst coeff becomes 1-(1-SA)*coverage when dst is partially |
| // cover |
| desc.fDualSrcOutput = ProgramDesc::kCoverageISA_DualSrcOutput; |
| desc.fFirstCoverageStage = firstCoverageStage; |
| } else if (kSC_GrBlendCoeff == dstCoeff) { |
| // SA dst coeff becomes 1-(1-SA)*coverage when dst is partially |
| // cover |
| desc.fDualSrcOutput = ProgramDesc::kCoverageISC_DualSrcOutput; |
| desc.fFirstCoverageStage = firstCoverageStage; |
| } |
| } |
| } |
| } |