blob: 01be63a61eb5b1e404158b248ab6cae6e0fe4dff [file] [log] [blame]
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "tests/Test.h"
#include "include/gpu/GrDirectContext.h"
#include "src/gpu/GrClip.h"
#include "src/gpu/GrDirectContextPriv.h"
#include "src/gpu/GrGpuResource.h"
#include "src/gpu/GrImageInfo.h"
#include "src/gpu/GrMemoryPool.h"
#include "src/gpu/GrProxyProvider.h"
#include "src/gpu/GrResourceProvider.h"
#include "src/gpu/SkGr.h"
#include "src/gpu/effects/GrTextureEffect.h"
#include "src/gpu/glsl/GrGLSLFragmentProcessor.h"
#include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
#include "src/gpu/ops/GrMeshDrawOp.h"
#include "src/gpu/v1/SurfaceDrawContext_v1.h"
#include "tests/TestUtils.h"
#include <atomic>
#include <random>
namespace {
class TestOp : public GrMeshDrawOp {
public:
DEFINE_OP_CLASS_ID
static GrOp::Owner Make(GrRecordingContext* rContext,
std::unique_ptr<GrFragmentProcessor> fp) {
return GrOp::Make<TestOp>(rContext, std::move(fp));
}
const char* name() const override { return "TestOp"; }
void visitProxies(const GrVisitProxyFunc& func) const override {
fProcessors.visitProxies(func);
}
FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; }
GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip,
GrClampType clampType) override {
static constexpr GrProcessorAnalysisColor kUnknownColor;
SkPMColor4f overrideColor;
return fProcessors.finalize(
kUnknownColor, GrProcessorAnalysisCoverage::kNone, clip,
&GrUserStencilSettings::kUnused, caps, clampType, &overrideColor);
}
private:
friend class ::GrOp; // for ctor
TestOp(std::unique_ptr<GrFragmentProcessor> fp)
: INHERITED(ClassID()), fProcessors(std::move(fp)) {
this->setBounds(SkRect::MakeWH(100, 100), HasAABloat::kNo, IsHairline::kNo);
}
GrProgramInfo* programInfo() override { return nullptr; }
void onCreateProgramInfo(const GrCaps*,
SkArenaAlloc*,
const GrSurfaceProxyView& writeView,
bool usesMSAASurface,
GrAppliedClip&&,
const GrDstProxyView&,
GrXferBarrierFlags renderPassXferBarriers,
GrLoadOp colorLoadOp) override {}
void onPrePrepareDraws(GrRecordingContext*,
const GrSurfaceProxyView& writeView,
GrAppliedClip*,
const GrDstProxyView&,
GrXferBarrierFlags renderPassXferBarriers,
GrLoadOp colorLoadOp) override {}
void onPrepareDraws(GrMeshDrawTarget*) override { return; }
void onExecute(GrOpFlushState*, const SkRect&) override { return; }
GrProcessorSet fProcessors;
using INHERITED = GrMeshDrawOp;
};
/**
* FP used to test ref counts on owned GrGpuResources. Can also be a parent FP to test counts
* of resources owned by child FPs.
*/
class TestFP : public GrFragmentProcessor {
public:
static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> child) {
return std::unique_ptr<GrFragmentProcessor>(new TestFP(std::move(child)));
}
static std::unique_ptr<GrFragmentProcessor> Make(const SkTArray<GrSurfaceProxyView>& views) {
return std::unique_ptr<GrFragmentProcessor>(new TestFP(views));
}
const char* name() const override { return "test"; }
void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const override {
static std::atomic<int32_t> nextKey{0};
b->add32(nextKey++);
}
std::unique_ptr<GrFragmentProcessor> clone() const override {
return std::unique_ptr<GrFragmentProcessor>(new TestFP(*this));
}
private:
TestFP(const SkTArray<GrSurfaceProxyView>& views)
: INHERITED(kTestFP_ClassID, kNone_OptimizationFlags) {
for (const GrSurfaceProxyView& view : views) {
this->registerChild(GrTextureEffect::Make(view, kUnknown_SkAlphaType));
}
}
TestFP(std::unique_ptr<GrFragmentProcessor> child)
: INHERITED(kTestFP_ClassID, kNone_OptimizationFlags) {
this->registerChild(std::move(child));
}
explicit TestFP(const TestFP& that) : INHERITED(kTestFP_ClassID, that.optimizationFlags()) {
this->cloneAndRegisterAllChildProcessors(that);
}
std::unique_ptr<GrGLSLFragmentProcessor> onMakeProgramImpl() const override {
class TestGLSLFP : public GrGLSLFragmentProcessor {
public:
TestGLSLFP() {}
void emitCode(EmitArgs& args) override {
args.fFragBuilder->codeAppendf("return half4(1);");
}
private:
};
return std::make_unique<TestGLSLFP>();
}
bool onIsEqual(const GrFragmentProcessor&) const override { return false; }
using INHERITED = GrFragmentProcessor;
};
} // namespace
DEF_GPUTEST_FOR_ALL_CONTEXTS(ProcessorRefTest, reporter, ctxInfo) {
auto dContext = ctxInfo.directContext();
GrProxyProvider* proxyProvider = dContext->priv().proxyProvider();
static constexpr SkISize kDims = {10, 10};
const GrBackendFormat format =
dContext->priv().caps()->getDefaultBackendFormat(GrColorType::kRGBA_8888,
GrRenderable::kNo);
GrSwizzle swizzle = dContext->priv().caps()->getReadSwizzle(format, GrColorType::kRGBA_8888);
for (bool makeClone : {false, true}) {
for (int parentCnt = 0; parentCnt < 2; parentCnt++) {
auto sdc = skgpu::v1::SurfaceDrawContext::Make(
dContext, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kApprox, {1, 1},
SkSurfaceProps());
{
sk_sp<GrTextureProxy> proxy = proxyProvider->createProxy(
format, kDims, GrRenderable::kNo, 1, GrMipmapped::kNo, SkBackingFit::kExact,
SkBudgeted::kYes, GrProtected::kNo);
{
SkTArray<GrSurfaceProxyView> views;
views.push_back({proxy, kTopLeft_GrSurfaceOrigin, swizzle});
auto fp = TestFP::Make(std::move(views));
for (int i = 0; i < parentCnt; ++i) {
fp = TestFP::Make(std::move(fp));
}
std::unique_ptr<GrFragmentProcessor> clone;
if (makeClone) {
clone = fp->clone();
}
GrOp::Owner op = TestOp::Make(dContext, std::move(fp));
sdc->addDrawOp(std::move(op));
if (clone) {
op = TestOp::Make(dContext, std::move(clone));
sdc->addDrawOp(std::move(op));
}
}
// If the fp is cloned the number of refs should increase by one (for the clone)
int expectedProxyRefs = makeClone ? 3 : 2;
CheckSingleThreadedProxyRefs(reporter, proxy.get(), expectedProxyRefs, -1);
dContext->flushAndSubmit();
// just one from the 'proxy' sk_sp
CheckSingleThreadedProxyRefs(reporter, proxy.get(), 1, 1);
}
}
}
}
#include "tools/flags/CommandLineFlags.h"
static DEFINE_bool(randomProcessorTest, false,
"Use non-deterministic seed for random processor tests?");
static DEFINE_int(processorSeed, 0,
"Use specific seed for processor tests. Overridden by --randomProcessorTest.");
#if GR_TEST_UTILS
static GrColor input_texel_color(int i, int j, SkScalar delta) {
// Delta must be less than 0.5 to prevent over/underflow issues with the input color
SkASSERT(delta <= 0.5);
SkColor color = SkColorSetARGB((uint8_t)(i & 0xFF),
(uint8_t)(j & 0xFF),
(uint8_t)((i + j) & 0xFF),
(uint8_t)((2 * j - i) & 0xFF));
SkColor4f color4f = SkColor4f::FromColor(color);
// We only apply delta to the r,g, and b channels. This is because we're using this
// to test the canTweakAlphaForCoverage() optimization. A processor is allowed
// to use the input color's alpha in its calculation and report this optimization.
for (int i = 0; i < 3; i++) {
if (color4f[i] > 0.5) {
color4f[i] -= delta;
} else {
color4f[i] += delta;
}
}
return color4f.premul().toBytes_RGBA();
}
// The output buffer must be the same size as the render-target context.
void render_fp(GrDirectContext* dContext,
skgpu::v1::SurfaceDrawContext* sdc,
std::unique_ptr<GrFragmentProcessor> fp,
GrColor* outBuffer) {
sdc->fillWithFP(std::move(fp));
std::fill_n(outBuffer, sdc->width() * sdc->height(), 0);
auto ii = SkImageInfo::Make(sdc->dimensions(), kRGBA_8888_SkColorType, kPremul_SkAlphaType);
GrPixmap resultPM(ii, outBuffer, sdc->width()*sizeof(uint32_t));
sdc->readPixels(dContext, resultPM, {0, 0});
}
// This class is responsible for reproducibly generating a random fragment processor.
// An identical randomly-designed FP can be generated as many times as needed.
class TestFPGenerator {
public:
TestFPGenerator() = delete;
TestFPGenerator(GrDirectContext* context, GrResourceProvider* resourceProvider)
: fContext(context)
, fResourceProvider(resourceProvider)
, fInitialSeed(synthesizeInitialSeed())
, fRandomSeed(fInitialSeed) {}
uint32_t initialSeed() { return fInitialSeed; }
bool init() {
// Initializes the two test texture proxies that are available to the FP test factories.
SkRandom random{fRandomSeed};
static constexpr int kTestTextureSize = 256;
{
// Put premul data into the RGBA texture that the test FPs can optionally use.
GrColor* rgbaData = new GrColor[kTestTextureSize * kTestTextureSize];
for (int y = 0; y < kTestTextureSize; ++y) {
for (int x = 0; x < kTestTextureSize; ++x) {
rgbaData[kTestTextureSize * y + x] = input_texel_color(
random.nextULessThan(256), random.nextULessThan(256), 0.0f);
}
}
SkImageInfo ii = SkImageInfo::Make(kTestTextureSize, kTestTextureSize,
kRGBA_8888_SkColorType, kPremul_SkAlphaType);
SkBitmap bitmap;
bitmap.installPixels(
ii, rgbaData, ii.minRowBytes(),
[](void* addr, void* context) { delete[](GrColor*) addr; }, nullptr);
bitmap.setImmutable();
auto view = std::get<0>(GrMakeUncachedBitmapProxyView(fContext, bitmap));
if (!view || !view.proxy()->instantiate(fResourceProvider)) {
SkDebugf("Unable to instantiate RGBA8888 test texture.");
return false;
}
fTestViews[0] = GrProcessorTestData::ViewInfo{view, GrColorType::kRGBA_8888,
kPremul_SkAlphaType};
}
{
// Put random values into the alpha texture that the test FPs can optionally use.
uint8_t* alphaData = new uint8_t[kTestTextureSize * kTestTextureSize];
for (int y = 0; y < kTestTextureSize; ++y) {
for (int x = 0; x < kTestTextureSize; ++x) {
alphaData[kTestTextureSize * y + x] = random.nextULessThan(256);
}
}
SkImageInfo ii = SkImageInfo::Make(kTestTextureSize, kTestTextureSize,
kAlpha_8_SkColorType, kPremul_SkAlphaType);
SkBitmap bitmap;
bitmap.installPixels(
ii, alphaData, ii.minRowBytes(),
[](void* addr, void* context) { delete[](uint8_t*) addr; }, nullptr);
bitmap.setImmutable();
auto view = std::get<0>(GrMakeUncachedBitmapProxyView(fContext, bitmap));
if (!view || !view.proxy()->instantiate(fResourceProvider)) {
SkDebugf("Unable to instantiate A8 test texture.");
return false;
}
fTestViews[1] = GrProcessorTestData::ViewInfo{view, GrColorType::kAlpha_8,
kPremul_SkAlphaType};
}
return true;
}
void reroll() {
// Feed our current random seed into SkRandom to generate a new seed.
SkRandom random{fRandomSeed};
fRandomSeed = random.nextU();
}
std::unique_ptr<GrFragmentProcessor> make(int type, int randomTreeDepth,
std::unique_ptr<GrFragmentProcessor> inputFP) {
// This will generate the exact same randomized FP (of each requested type) each time
// it's called. Call `reroll` to get a different FP.
SkRandom random{fRandomSeed};
GrProcessorTestData testData{&random, fContext, randomTreeDepth,
SK_ARRAY_COUNT(fTestViews), fTestViews,
std::move(inputFP)};
return GrFragmentProcessorTestFactory::MakeIdx(type, &testData);
}
std::unique_ptr<GrFragmentProcessor> make(int type, int randomTreeDepth,
GrSurfaceProxyView view,
SkAlphaType alpha = kPremul_SkAlphaType) {
return make(type, randomTreeDepth, GrTextureEffect::Make(view, alpha));
}
private:
static uint32_t synthesizeInitialSeed() {
if (FLAGS_randomProcessorTest) {
std::random_device rd;
return rd();
} else {
return FLAGS_processorSeed;
}
}
GrDirectContext* fContext; // owned by caller
GrResourceProvider* fResourceProvider; // owned by caller
const uint32_t fInitialSeed;
uint32_t fRandomSeed;
GrProcessorTestData::ViewInfo fTestViews[2];
};
// Creates an array of color values from input_texel_color(), to be used as an input texture.
std::vector<GrColor> make_input_pixels(int width, int height, SkScalar delta) {
std::vector<GrColor> pixel(width * height);
for (int y = 0; y < width; ++y) {
for (int x = 0; x < height; ++x) {
pixel[width * y + x] = input_texel_color(x, y, delta);
}
}
return pixel;
}
// Creates a texture of premul colors used as the output of the fragment processor that precedes
// the fragment processor under test. An array of W*H colors are passed in as the texture data.
GrSurfaceProxyView make_input_texture(GrRecordingContext* context,
int width, int height, GrColor* pixel) {
SkImageInfo ii = SkImageInfo::Make(width, height, kRGBA_8888_SkColorType, kPremul_SkAlphaType);
SkBitmap bitmap;
bitmap.installPixels(ii, pixel, ii.minRowBytes());
bitmap.setImmutable();
return std::get<0>(GrMakeUncachedBitmapProxyView(context, bitmap));
}
// We tag logged data as unpremul to avoid conversion when encoding as PNG. The input texture
// actually contains unpremul data. Also, even though we made the result data by rendering into
// a "unpremul" SurfaceDrawContext, our input texture is unpremul and outside of the random
// effect configuration, we didn't do anything to ensure the output is actually premul. We just
// don't currently allow kUnpremul GrSurfaceDrawContexts.
static constexpr auto kLogAlphaType = kUnpremul_SkAlphaType;
bool log_pixels(GrColor* pixels, int widthHeight, SkString* dst) {
SkImageInfo info =
SkImageInfo::Make(widthHeight, widthHeight, kRGBA_8888_SkColorType, kLogAlphaType);
SkBitmap bmp;
bmp.installPixels(info, pixels, widthHeight * sizeof(GrColor));
return BipmapToBase64DataURI(bmp, dst);
}
bool log_texture_view(GrDirectContext* dContext, GrSurfaceProxyView src, SkString* dst) {
SkImageInfo ii = SkImageInfo::Make(src.proxy()->dimensions(), kRGBA_8888_SkColorType,
kLogAlphaType);
auto sContext = dContext->priv().makeSC(std::move(src), ii.colorInfo());
SkBitmap bm;
SkAssertResult(bm.tryAllocPixels(ii));
SkAssertResult(sContext->readPixels(dContext, bm.pixmap(), {0, 0}));
return BipmapToBase64DataURI(bm, dst);
}
bool fuzzy_color_equals(const SkPMColor4f& c1, const SkPMColor4f& c2) {
// With the loss of precision of rendering into 32-bit color, then estimating the FP's output
// from that, it is not uncommon for a valid output to differ from estimate by up to 0.01
// (really 1/128 ~ .0078, but frequently floating point issues make that tolerance a little
// too unforgiving).
static constexpr SkScalar kTolerance = 0.01f;
for (int i = 0; i < 4; i++) {
if (!SkScalarNearlyEqual(c1[i], c2[i], kTolerance)) {
return false;
}
}
return true;
}
// Given three input colors (color preceding the FP being tested) provided to the FP at the same
// local coord and the three corresponding FP outputs, this ensures that either:
// out[0] = fp * in[0].a, out[1] = fp * in[1].a, and out[2] = fp * in[2].a
// where fp is the pre-modulated color that should not be changing across frames (FP's state doesn't
// change), OR:
// out[0] = fp * in[0], out[1] = fp * in[1], and out[2] = fp * in[2]
// (per-channel modulation instead of modulation by just the alpha channel)
// It does this by estimating the pre-modulated fp color from one of the input/output pairs and
// confirms the conditions hold for the other two pairs.
// It is required that the three input colors have the same alpha as fp is allowed to be a function
// of the input alpha (but not r, g, or b).
bool legal_modulation(const GrColor in[3], const GrColor out[3]) {
// Convert to floating point, which is the number space the FP operates in (more or less)
SkPMColor4f inf[3], outf[3];
for (int i = 0; i < 3; ++i) {
inf[i] = SkPMColor4f::FromBytes_RGBA(in[i]);
outf[i] = SkPMColor4f::FromBytes_RGBA(out[i]);
}
// This test is only valid if all the input alphas are the same.
SkASSERT(inf[0].fA == inf[1].fA && inf[1].fA == inf[2].fA);
// Reconstruct the output of the FP before the shader modulated its color with the input value.
// When the original input is very small, it may cause the final output color to round
// to 0, in which case we estimate the pre-modulated color using one of the stepped frames that
// will then have a guaranteed larger channel value (since the offset will be added to it).
SkPMColor4f fpPreColorModulation = {0,0,0,0};
SkPMColor4f fpPreAlphaModulation = {0,0,0,0};
for (int i = 0; i < 4; i++) {
// Use the most stepped up frame
int maxInIdx = inf[0][i] > inf[1][i] ? 0 : 1;
maxInIdx = inf[maxInIdx][i] > inf[2][i] ? maxInIdx : 2;
const SkPMColor4f& in = inf[maxInIdx];
const SkPMColor4f& out = outf[maxInIdx];
if (in[i] > 0) {
fpPreColorModulation[i] = out[i] / in[i];
}
if (in[3] > 0) {
fpPreAlphaModulation[i] = out[i] / in[3];
}
}
// With reconstructed pre-modulated FP output, derive the expected value of fp * input for each
// of the transformed input colors.
SkPMColor4f expectedForAlphaModulation[3];
SkPMColor4f expectedForColorModulation[3];
for (int i = 0; i < 3; ++i) {
expectedForAlphaModulation[i] = fpPreAlphaModulation * inf[i].fA;
expectedForColorModulation[i] = fpPreColorModulation * inf[i];
// If the input alpha is 0 then the other channels should also be zero
// since the color is assumed to be premul. Modulating zeros by anything
// should produce zeros.
if (inf[i].fA == 0) {
SkASSERT(inf[i].fR == 0 && inf[i].fG == 0 && inf[i].fB == 0);
expectedForColorModulation[i] = expectedForAlphaModulation[i] = {0, 0, 0, 0};
}
}
bool isLegalColorModulation = fuzzy_color_equals(outf[0], expectedForColorModulation[0]) &&
fuzzy_color_equals(outf[1], expectedForColorModulation[1]) &&
fuzzy_color_equals(outf[2], expectedForColorModulation[2]);
bool isLegalAlphaModulation = fuzzy_color_equals(outf[0], expectedForAlphaModulation[0]) &&
fuzzy_color_equals(outf[1], expectedForAlphaModulation[1]) &&
fuzzy_color_equals(outf[2], expectedForAlphaModulation[2]);
// This can be enabled to print the values that caused this check to fail.
if (0 && !isLegalColorModulation && !isLegalAlphaModulation) {
SkDebugf("Color modulation test\n\timplied mod color: (%.03f, %.03f, %.03f, %.03f)\n",
fpPreColorModulation[0],
fpPreColorModulation[1],
fpPreColorModulation[2],
fpPreColorModulation[3]);
for (int i = 0; i < 3; ++i) {
SkDebugf("\t(%.03f, %.03f, %.03f, %.03f) -> "
"(%.03f, %.03f, %.03f, %.03f) | "
"(%.03f, %.03f, %.03f, %.03f), ok: %d\n",
inf[i].fR, inf[i].fG, inf[i].fB, inf[i].fA,
outf[i].fR, outf[i].fG, outf[i].fB, outf[i].fA,
expectedForColorModulation[i].fR, expectedForColorModulation[i].fG,
expectedForColorModulation[i].fB, expectedForColorModulation[i].fA,
fuzzy_color_equals(outf[i], expectedForColorModulation[i]));
}
SkDebugf("Alpha modulation test\n\timplied mod color: (%.03f, %.03f, %.03f, %.03f)\n",
fpPreAlphaModulation[0],
fpPreAlphaModulation[1],
fpPreAlphaModulation[2],
fpPreAlphaModulation[3]);
for (int i = 0; i < 3; ++i) {
SkDebugf("\t(%.03f, %.03f, %.03f, %.03f) -> "
"(%.03f, %.03f, %.03f, %.03f) | "
"(%.03f, %.03f, %.03f, %.03f), ok: %d\n",
inf[i].fR, inf[i].fG, inf[i].fB, inf[i].fA,
outf[i].fR, outf[i].fG, outf[i].fB, outf[i].fA,
expectedForAlphaModulation[i].fR, expectedForAlphaModulation[i].fG,
expectedForAlphaModulation[i].fB, expectedForAlphaModulation[i].fA,
fuzzy_color_equals(outf[i], expectedForAlphaModulation[i]));
}
}
return isLegalColorModulation || isLegalAlphaModulation;
}
DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(ProcessorOptimizationValidationTest, reporter, ctxInfo) {
GrDirectContext* context = ctxInfo.directContext();
GrResourceProvider* resourceProvider = context->priv().resourceProvider();
using FPFactory = GrFragmentProcessorTestFactory;
TestFPGenerator fpGenerator{context, resourceProvider};
if (!fpGenerator.init()) {
ERRORF(reporter, "Could not initialize TestFPGenerator");
return;
}
// Make the destination context for the test.
static constexpr int kRenderSize = 256;
auto sdc = skgpu::v1::SurfaceDrawContext::Make(
context, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kExact,
{kRenderSize, kRenderSize}, SkSurfaceProps());
// Coverage optimization uses three frames with a linearly transformed input texture. The first
// frame has no offset, second frames add .2 and .4, which should then be present as a fixed
// difference between the frame outputs if the FP is properly following the modulation
// requirements of the coverage optimization.
static constexpr SkScalar kInputDelta = 0.2f;
std::vector<GrColor> inputPixels1 = make_input_pixels(kRenderSize, kRenderSize, 0.0f);
std::vector<GrColor> inputPixels2 =
make_input_pixels(kRenderSize, kRenderSize, 1 * kInputDelta);
std::vector<GrColor> inputPixels3 =
make_input_pixels(kRenderSize, kRenderSize, 2 * kInputDelta);
GrSurfaceProxyView inputTexture1 =
make_input_texture(context, kRenderSize, kRenderSize, inputPixels1.data());
GrSurfaceProxyView inputTexture2 =
make_input_texture(context, kRenderSize, kRenderSize, inputPixels2.data());
GrSurfaceProxyView inputTexture3 =
make_input_texture(context, kRenderSize, kRenderSize, inputPixels3.data());
// Encoded images are very verbose and this tests many potential images, so only export the
// first failure (subsequent failures have a reasonable chance of being related).
bool loggedFirstFailure = false;
bool loggedFirstWarning = false;
// Storage for the three frames required for coverage compatibility optimization testing.
// Each frame uses the correspondingly numbered inputTextureX.
std::vector<GrColor> readData1(kRenderSize * kRenderSize);
std::vector<GrColor> readData2(kRenderSize * kRenderSize);
std::vector<GrColor> readData3(kRenderSize * kRenderSize);
// Because processor factories configure themselves in random ways, this is not exhaustive.
for (int i = 0; i < FPFactory::Count(); ++i) {
int optimizedForOpaqueInput = 0;
int optimizedForCoverageAsAlpha = 0;
int optimizedForConstantOutputForInput = 0;
#ifdef __MSVC_RUNTIME_CHECKS
// This test is infuriatingly slow with MSVC runtime checks enabled
static constexpr int kMinimumTrials = 1;
static constexpr int kMaximumTrials = 1;
static constexpr int kExpectedSuccesses = 1;
#else
// We start by testing each fragment-processor 100 times, watching the optimization bits
// that appear. If we see an optimization bit appear in those first 100 trials, we keep
// running tests until we see at least five successful trials that have this optimization
// bit enabled. If we never see a particular optimization bit after 100 trials, we assume
// that this FP doesn't support that optimization at all.
static constexpr int kMinimumTrials = 100;
static constexpr int kMaximumTrials = 2000;
static constexpr int kExpectedSuccesses = 5;
#endif
for (int trial = 0;; ++trial) {
// Create a randomly-configured FP.
fpGenerator.reroll();
std::unique_ptr<GrFragmentProcessor> fp =
fpGenerator.make(i, /*randomTreeDepth=*/1, inputTexture1);
// If we have iterated enough times and seen a sufficient number of successes on each
// optimization bit that can be returned, stop running trials.
if (trial >= kMinimumTrials) {
bool moreTrialsNeeded = (optimizedForOpaqueInput > 0 &&
optimizedForOpaqueInput < kExpectedSuccesses) ||
(optimizedForCoverageAsAlpha > 0 &&
optimizedForCoverageAsAlpha < kExpectedSuccesses) ||
(optimizedForConstantOutputForInput > 0 &&
optimizedForConstantOutputForInput < kExpectedSuccesses);
if (!moreTrialsNeeded) break;
if (trial >= kMaximumTrials) {
SkDebugf("Abandoning ProcessorOptimizationValidationTest after %d trials. "
"Seed: 0x%08x, processor:\n%s",
kMaximumTrials, fpGenerator.initialSeed(), fp->dumpTreeInfo().c_str());
break;
}
}
// Skip further testing if this trial has no optimization bits enabled.
if (!fp->hasConstantOutputForConstantInput() && !fp->preservesOpaqueInput() &&
!fp->compatibleWithCoverageAsAlpha()) {
continue;
}
// We can make identical copies of the test FP in order to test coverage-as-alpha.
if (fp->compatibleWithCoverageAsAlpha()) {
// Create and render two identical versions of this FP, but using different input
// textures, to check coverage optimization. We don't need to do this step for
// constant-output or preserving-opacity tests.
render_fp(context, sdc.get(),
fpGenerator.make(i, /*randomTreeDepth=*/1, inputTexture2),
readData2.data());
render_fp(context, sdc.get(),
fpGenerator.make(i, /*randomTreeDepth=*/1, inputTexture3),
readData3.data());
++optimizedForCoverageAsAlpha;
}
if (fp->hasConstantOutputForConstantInput()) {
++optimizedForConstantOutputForInput;
}
if (fp->preservesOpaqueInput()) {
++optimizedForOpaqueInput;
}
// Draw base frame last so that rtc holds the original FP behavior if we need to dump
// the image to the log.
render_fp(context, sdc.get(), fpGenerator.make(i, /*randomTreeDepth=*/1, inputTexture1),
readData1.data());
// This test has a history of being flaky on a number of devices. If an FP is logically
// violating the optimizations, it's reasonable to expect it to violate requirements on
// a large number of pixels in the image. Sporadic pixel violations are more indicative
// of device errors and represents a separate problem.
#if defined(SK_BUILD_FOR_SKQP)
static constexpr int kMaxAcceptableFailedPixels = 0; // Strict when running as SKQP
#else
static constexpr int kMaxAcceptableFailedPixels = 2 * kRenderSize; // ~0.7% of the image
#endif
// Collect first optimization failure message, to be output later as a warning or an
// error depending on whether the rendering "passed" or failed.
int failedPixelCount = 0;
SkString coverageMessage;
SkString opaqueMessage;
SkString constMessage;
for (int y = 0; y < kRenderSize; ++y) {
for (int x = 0; x < kRenderSize; ++x) {
bool passing = true;
GrColor input = inputPixels1[y * kRenderSize + x];
GrColor output = readData1[y * kRenderSize + x];
if (fp->compatibleWithCoverageAsAlpha()) {
GrColor ins[3];
ins[0] = input;
ins[1] = inputPixels2[y * kRenderSize + x];
ins[2] = inputPixels3[y * kRenderSize + x];
GrColor outs[3];
outs[0] = output;
outs[1] = readData2[y * kRenderSize + x];
outs[2] = readData3[y * kRenderSize + x];
if (!legal_modulation(ins, outs)) {
passing = false;
if (coverageMessage.isEmpty()) {
coverageMessage.printf(
"\"Modulating\" processor did not match alpha-modulation "
"nor color-modulation rules.\n"
"Input: 0x%08x, Output: 0x%08x, pixel (%d, %d).",
input, output, x, y);
}
}
}
SkPMColor4f input4f = SkPMColor4f::FromBytes_RGBA(input);
SkPMColor4f output4f = SkPMColor4f::FromBytes_RGBA(output);
SkPMColor4f expected4f;
if (fp->hasConstantOutputForConstantInput(input4f, &expected4f)) {
float rDiff = fabsf(output4f.fR - expected4f.fR);
float gDiff = fabsf(output4f.fG - expected4f.fG);
float bDiff = fabsf(output4f.fB - expected4f.fB);
float aDiff = fabsf(output4f.fA - expected4f.fA);
static constexpr float kTol = 4 / 255.f;
if (rDiff > kTol || gDiff > kTol || bDiff > kTol || aDiff > kTol) {
if (constMessage.isEmpty()) {
passing = false;
constMessage.printf(
"Processor claimed output for const input doesn't match "
"actual output.\n"
"Error: %f, Tolerance: %f, input: (%f, %f, %f, %f), "
"actual: (%f, %f, %f, %f), expected(%f, %f, %f, %f).",
std::max(rDiff, std::max(gDiff, std::max(bDiff, aDiff))),
kTol, input4f.fR, input4f.fG, input4f.fB, input4f.fA,
output4f.fR, output4f.fG, output4f.fB, output4f.fA,
expected4f.fR, expected4f.fG, expected4f.fB, expected4f.fA);
}
}
}
if (input4f.isOpaque() && fp->preservesOpaqueInput() && !output4f.isOpaque()) {
passing = false;
if (opaqueMessage.isEmpty()) {
opaqueMessage.printf(
"Processor claimed opaqueness is preserved but "
"it is not. Input: 0x%08x, Output: 0x%08x.",
input, output);
}
}
if (!passing) {
// Regardless of how many optimizations the pixel violates, count it as a
// single bad pixel.
failedPixelCount++;
}
}
}
// Finished analyzing the entire image, see if the number of pixel failures meets the
// threshold for an FP violating the optimization requirements.
if (failedPixelCount > kMaxAcceptableFailedPixels) {
ERRORF(reporter,
"Processor violated %d of %d pixels, seed: 0x%08x.\n"
"Processor:\n%s\nFirst failing pixel details are below:",
failedPixelCount, kRenderSize * kRenderSize, fpGenerator.initialSeed(),
fp->dumpTreeInfo().c_str());
// Print first failing pixel's details.
if (!coverageMessage.isEmpty()) {
ERRORF(reporter, coverageMessage.c_str());
}
if (!constMessage.isEmpty()) {
ERRORF(reporter, constMessage.c_str());
}
if (!opaqueMessage.isEmpty()) {
ERRORF(reporter, opaqueMessage.c_str());
}
if (!loggedFirstFailure) {
// Print with ERRORF to make sure the encoded image is output
SkString input;
log_texture_view(context, inputTexture1, &input);
SkString output;
log_pixels(readData1.data(), kRenderSize, &output);
ERRORF(reporter, "Input image: %s\n\n"
"===========================================================\n\n"
"Output image: %s\n", input.c_str(), output.c_str());
loggedFirstFailure = true;
}
} else if (failedPixelCount > 0) {
// Don't trigger an error, but don't just hide the failures either.
INFOF(reporter, "Processor violated %d of %d pixels (below error threshold), seed: "
"0x%08x, processor: %s", failedPixelCount, kRenderSize * kRenderSize,
fpGenerator.initialSeed(), fp->dumpInfo().c_str());
if (!coverageMessage.isEmpty()) {
INFOF(reporter, "%s", coverageMessage.c_str());
}
if (!constMessage.isEmpty()) {
INFOF(reporter, "%s", constMessage.c_str());
}
if (!opaqueMessage.isEmpty()) {
INFOF(reporter, "%s", opaqueMessage.c_str());
}
if (!loggedFirstWarning) {
SkString input;
log_texture_view(context, inputTexture1, &input);
SkString output;
log_pixels(readData1.data(), kRenderSize, &output);
INFOF(reporter, "Input image: %s\n\n"
"===========================================================\n\n"
"Output image: %s\n", input.c_str(), output.c_str());
loggedFirstWarning = true;
}
}
}
}
}
static void assert_processor_equality(skiatest::Reporter* reporter,
const GrFragmentProcessor& fp,
const GrFragmentProcessor& clone) {
REPORTER_ASSERT(reporter, !strcmp(fp.name(), clone.name()),
"\n%s", fp.dumpTreeInfo().c_str());
REPORTER_ASSERT(reporter, fp.compatibleWithCoverageAsAlpha() ==
clone.compatibleWithCoverageAsAlpha(),
"\n%s", fp.dumpTreeInfo().c_str());
REPORTER_ASSERT(reporter, fp.isEqual(clone),
"\n%s", fp.dumpTreeInfo().c_str());
REPORTER_ASSERT(reporter, fp.preservesOpaqueInput() == clone.preservesOpaqueInput(),
"\n%s", fp.dumpTreeInfo().c_str());
REPORTER_ASSERT(reporter, fp.hasConstantOutputForConstantInput() ==
clone.hasConstantOutputForConstantInput(),
"\n%s", fp.dumpTreeInfo().c_str());
REPORTER_ASSERT(reporter, fp.numChildProcessors() == clone.numChildProcessors(),
"\n%s", fp.dumpTreeInfo().c_str());
REPORTER_ASSERT(reporter, fp.sampleUsage() == clone.sampleUsage(),
"\n%s", fp.dumpTreeInfo().c_str());
REPORTER_ASSERT(reporter, fp.usesSampleCoords() == clone.usesSampleCoords(),
"\n%s", fp.dumpTreeInfo().c_str());
}
static bool verify_identical_render(skiatest::Reporter* reporter, int renderSize,
const char* processorType,
const GrColor readData1[], const GrColor readData2[]) {
// The ProcessorClone test has a history of being flaky on a number of devices. If an FP clone
// is logically wrong, it's reasonable to expect it produce a large number of pixel differences
// in the image. Sporadic pixel violations are more indicative device errors and represents a
// separate problem.
#if defined(SK_BUILD_FOR_SKQP)
const int maxAcceptableFailedPixels = 0; // Strict when running as SKQP
#else
const int maxAcceptableFailedPixels = 2 * renderSize; // ~0.002% of the pixels (size 1024*1024)
#endif
int failedPixelCount = 0;
int firstWrongX = 0;
int firstWrongY = 0;
int idx = 0;
for (int y = 0; y < renderSize; ++y) {
for (int x = 0; x < renderSize; ++x, ++idx) {
if (readData1[idx] != readData2[idx]) {
if (!failedPixelCount) {
firstWrongX = x;
firstWrongY = y;
}
++failedPixelCount;
}
if (failedPixelCount > maxAcceptableFailedPixels) {
idx = firstWrongY * renderSize + firstWrongX;
ERRORF(reporter,
"%s produced different output at (%d, %d). "
"Input color: 0x%08x, Original Output Color: 0x%08x, "
"Clone Output Color: 0x%08x.",
processorType, firstWrongX, firstWrongY, input_texel_color(x, y, 0.0f),
readData1[idx], readData2[idx]);
return false;
}
}
}
return true;
}
static void log_clone_failure(skiatest::Reporter* reporter, int renderSize,
GrDirectContext* context, const GrSurfaceProxyView& inputTexture,
GrColor pixelsFP[], GrColor pixelsClone[], GrColor pixelsRegen[]) {
// Write the images out as data URLs for inspection.
SkString inputURL, origURL, cloneURL, regenURL;
if (log_texture_view(context, inputTexture, &inputURL) &&
log_pixels(pixelsFP, renderSize, &origURL) &&
log_pixels(pixelsClone, renderSize, &cloneURL) &&
log_pixels(pixelsRegen, renderSize, &regenURL)) {
ERRORF(reporter,
"\nInput image:\n%s\n\n"
"==========================================================="
"\n\n"
"Orig output image:\n%s\n"
"==========================================================="
"\n\n"
"Clone output image:\n%s\n"
"==========================================================="
"\n\n"
"Regen output image:\n%s\n",
inputURL.c_str(), origURL.c_str(), cloneURL.c_str(), regenURL.c_str());
}
}
// Tests that a fragment processor returned by GrFragmentProcessor::clone() is equivalent to its
// progenitor.
DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(ProcessorCloneTest, reporter, ctxInfo) {
GrDirectContext* context = ctxInfo.directContext();
GrResourceProvider* resourceProvider = context->priv().resourceProvider();
TestFPGenerator fpGenerator{context, resourceProvider};
if (!fpGenerator.init()) {
ERRORF(reporter, "Could not initialize TestFPGenerator");
return;
}
// Make the destination context for the test.
static constexpr int kRenderSize = 1024;
auto sdc = skgpu::v1::SurfaceDrawContext::Make(
context, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kExact,
{kRenderSize, kRenderSize}, SkSurfaceProps());
std::vector<GrColor> inputPixels = make_input_pixels(kRenderSize, kRenderSize, 0.0f);
GrSurfaceProxyView inputTexture =
make_input_texture(context, kRenderSize, kRenderSize, inputPixels.data());
// On failure we write out images, but just write the first failing set as the print is very
// large.
bool loggedFirstFailure = false;
// Storage for the original frame's readback and the readback of its clone.
std::vector<GrColor> readDataFP(kRenderSize * kRenderSize);
std::vector<GrColor> readDataClone(kRenderSize * kRenderSize);
std::vector<GrColor> readDataRegen(kRenderSize * kRenderSize);
// Because processor factories configure themselves in random ways, this is not exhaustive.
for (int i = 0; i < GrFragmentProcessorTestFactory::Count(); ++i) {
static constexpr int kTimesToInvokeFactory = 10;
for (int j = 0; j < kTimesToInvokeFactory; ++j) {
fpGenerator.reroll();
std::unique_ptr<GrFragmentProcessor> fp =
fpGenerator.make(i, /*randomTreeDepth=*/1, /*inputFP=*/nullptr);
std::unique_ptr<GrFragmentProcessor> regen =
fpGenerator.make(i, /*randomTreeDepth=*/1, /*inputFP=*/nullptr);
std::unique_ptr<GrFragmentProcessor> clone = fp->clone();
if (!clone) {
ERRORF(reporter, "Clone of processor %s failed.", fp->dumpTreeInfo().c_str());
continue;
}
assert_processor_equality(reporter, *fp, *clone);
// Draw with original and read back the results.
render_fp(context, sdc.get(), std::move(fp), readDataFP.data());
// Draw with clone and read back the results.
render_fp(context, sdc.get(), std::move(clone), readDataClone.data());
// Check that the results are the same.
if (!verify_identical_render(reporter, kRenderSize, "Processor clone",
readDataFP.data(), readDataClone.data())) {
// Dump a description from the regenerated processor (since the original FP has
// already been consumed).
ERRORF(reporter, "FP hierarchy:\n%s", regen->dumpTreeInfo().c_str());
// Render and readback output from the regenerated FP. If this also mismatches, the
// FP itself doesn't generate consistent output. This could happen if:
// - the FP's TestCreate() does not always generate the same FP from a given seed
// - the FP's Make() does not always generate the same FP when given the same inputs
// - the FP itself generates inconsistent pixels (shader UB?)
// - the driver has a bug
render_fp(context, sdc.get(), std::move(regen), readDataRegen.data());
if (!verify_identical_render(reporter, kRenderSize, "Regenerated processor",
readDataFP.data(), readDataRegen.data())) {
ERRORF(reporter, "Output from regen did not match original!\n");
} else {
ERRORF(reporter, "Regenerated processor output matches original results.\n");
}
// If this is the first time we've encountered a cloning failure, log the generated
// images to the reporter as data URLs.
if (!loggedFirstFailure) {
log_clone_failure(reporter, kRenderSize, context, inputTexture,
readDataFP.data(), readDataClone.data(),
readDataRegen.data());
loggedFirstFailure = true;
}
}
}
}
}
#endif // GR_TEST_UTILS