| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef GrAtlasTextBlob_DEFINED |
| #define GrAtlasTextBlob_DEFINED |
| |
| #include "GrAtlasGlyphCache.h" |
| #include "GrColor.h" |
| #include "GrDrawOpAtlas.h" |
| #include "GrMemoryPool.h" |
| #include "GrTextUtils.h" |
| #include "SkDescriptor.h" |
| #include "SkMaskFilter.h" |
| #include "SkOpts.h" |
| #include "SkPathEffect.h" |
| #include "SkRasterizer.h" |
| #include "SkSurfaceProps.h" |
| #include "SkTInternalLList.h" |
| |
| struct GrDistanceFieldAdjustTable; |
| class GrMemoryPool; |
| class SkDrawFilter; |
| class SkTextBlob; |
| class SkTextBlobRunIterator; |
| |
| // With this flag enabled, the GrAtlasTextContext will, as a sanity check, regenerate every blob |
| // that comes in to verify the integrity of its cache |
| #define CACHE_SANITY_CHECK 0 |
| |
| /* |
| * A GrAtlasTextBlob contains a fully processed SkTextBlob, suitable for nearly immediate drawing |
| * on the GPU. These are initially created with valid positions and colors, but invalid |
| * texture coordinates. The GrAtlasTextBlob itself has a few Blob-wide properties, and also |
| * consists of a number of runs. Runs inside a blob are flushed individually so they can be |
| * reordered. |
| * |
| * The only thing(aside from a memcopy) required to flush a GrAtlasTextBlob is to ensure that |
| * the GrAtlas will not evict anything the Blob needs. |
| * |
| * Note: This struct should really be named GrCachedAtasTextBlob, but that is too verbose. |
| * |
| * *WARNING* If you add new fields to this struct, then you may need to to update AssertEqual |
| */ |
| class GrAtlasTextBlob : public SkNVRefCnt<GrAtlasTextBlob> { |
| public: |
| SK_DECLARE_INTERNAL_LLIST_INTERFACE(GrAtlasTextBlob); |
| |
| class VertexRegenerator; |
| |
| static sk_sp<GrAtlasTextBlob> Make(GrMemoryPool* pool, int glyphCount, int runCount); |
| |
| struct Key { |
| Key() { |
| sk_bzero(this, sizeof(Key)); |
| } |
| uint32_t fUniqueID; |
| // Color may affect the gamma of the mask we generate, but in a fairly limited way. |
| // Each color is assigned to on of a fixed number of buckets based on its |
| // luminance. For each luminance bucket there is a "canonical color" that |
| // represents the bucket. This functionality is currently only supported for A8 |
| SkColor fCanonicalColor; |
| SkPaint::Style fStyle; |
| SkPixelGeometry fPixelGeometry; |
| bool fHasBlur; |
| uint32_t fScalerContextFlags; |
| |
| bool operator==(const Key& other) const { |
| return 0 == memcmp(this, &other, sizeof(Key)); |
| } |
| }; |
| |
| void setupKey(const GrAtlasTextBlob::Key& key, |
| const SkMaskFilter::BlurRec& blurRec, |
| const SkPaint& paint) { |
| fKey = key; |
| if (key.fHasBlur) { |
| fBlurRec = blurRec; |
| } |
| if (key.fStyle != SkPaint::kFill_Style) { |
| fStrokeInfo.fFrameWidth = paint.getStrokeWidth(); |
| fStrokeInfo.fMiterLimit = paint.getStrokeMiter(); |
| fStrokeInfo.fJoin = paint.getStrokeJoin(); |
| } |
| } |
| |
| static const Key& GetKey(const GrAtlasTextBlob& blob) { |
| return blob.fKey; |
| } |
| |
| static uint32_t Hash(const Key& key) { |
| return SkOpts::hash(&key, sizeof(Key)); |
| } |
| |
| void operator delete(void* p) { |
| GrAtlasTextBlob* blob = reinterpret_cast<GrAtlasTextBlob*>(p); |
| blob->fPool->release(p); |
| } |
| void* operator new(size_t) { |
| SK_ABORT("All blobs are created by placement new."); |
| return sk_malloc_throw(0); |
| } |
| |
| void* operator new(size_t, void* p) { return p; } |
| void operator delete(void* target, void* placement) { |
| ::operator delete(target, placement); |
| } |
| |
| bool hasDistanceField() const { return SkToBool(fTextType & kHasDistanceField_TextType); } |
| bool hasBitmap() const { return SkToBool(fTextType & kHasBitmap_TextType); } |
| void setHasDistanceField() { fTextType |= kHasDistanceField_TextType; } |
| void setHasBitmap() { fTextType |= kHasBitmap_TextType; } |
| |
| int runCount() const { return fRunCount; } |
| |
| void push_back_run(int currRun) { |
| SkASSERT(currRun < fRunCount); |
| if (currRun > 0) { |
| Run::SubRunInfo& newRun = fRuns[currRun].fSubRunInfo.back(); |
| Run::SubRunInfo& lastRun = fRuns[currRun - 1].fSubRunInfo.back(); |
| newRun.setAsSuccessor(lastRun); |
| } |
| } |
| |
| // sets the last subrun of runIndex to use distance field text |
| void setSubRunHasDistanceFields(int runIndex, bool hasLCD, bool isAntiAlias) { |
| Run& run = fRuns[runIndex]; |
| Run::SubRunInfo& subRun = run.fSubRunInfo.back(); |
| subRun.setUseLCDText(hasLCD); |
| subRun.setAntiAliased(isAntiAlias); |
| subRun.setDrawAsDistanceFields(); |
| } |
| |
| void setRunDrawAsPaths(int runIndex) { |
| fRuns[runIndex].fDrawAsPaths = true; |
| } |
| |
| void setMinAndMaxScale(SkScalar scaledMax, SkScalar scaledMin) { |
| // we init fMaxMinScale and fMinMaxScale in the constructor |
| fMaxMinScale = SkMaxScalar(scaledMax, fMaxMinScale); |
| fMinMaxScale = SkMinScalar(scaledMin, fMinMaxScale); |
| } |
| |
| // inits the override descriptor on the current run. All following subruns must use this |
| // descriptor |
| void initOverride(int runIndex) { |
| Run& run = fRuns[runIndex]; |
| // Push back a new subrun to fill and set the override descriptor |
| run.push_back(); |
| run.fOverrideDescriptor.reset(new SkAutoDescriptor); |
| } |
| |
| SkGlyphCache* setupCache(int runIndex, |
| const SkSurfaceProps& props, |
| uint32_t scalerContextFlags, |
| const SkPaint& skPaint, |
| const SkMatrix* viewMatrix); |
| |
| // Appends a glyph to the blob. If the glyph is too large, the glyph will be appended |
| // as a path. |
| void appendGlyph(int runIndex, |
| const SkRect& positions, |
| GrColor color, |
| GrAtlasTextStrike* strike, |
| GrGlyph* glyph, |
| SkGlyphCache*, const SkGlyph& skGlyph, |
| SkScalar x, SkScalar y, SkScalar scale, bool treatAsBMP); |
| |
| static size_t GetVertexStride(GrMaskFormat maskFormat) { |
| switch (maskFormat) { |
| case kA8_GrMaskFormat: |
| return kGrayTextVASize; |
| case kARGB_GrMaskFormat: |
| return kColorTextVASize; |
| default: |
| return kLCDTextVASize; |
| } |
| } |
| |
| bool mustRegenerate(const GrTextUtils::Paint&, const SkMaskFilter::BlurRec& blurRec, |
| const SkMatrix& viewMatrix, SkScalar x, SkScalar y); |
| |
| // flush a GrAtlasTextBlob associated with a SkTextBlob |
| void flushCached(GrContext* context, GrTextUtils::Target*, const SkTextBlob* blob, |
| const SkSurfaceProps& props, |
| const GrDistanceFieldAdjustTable* distanceAdjustTable, |
| const GrTextUtils::Paint&, SkDrawFilter* drawFilter, const GrClip& clip, |
| const SkMatrix& viewMatrix, const SkIRect& clipBounds, SkScalar x, SkScalar y); |
| |
| // flush a throwaway GrAtlasTextBlob *not* associated with an SkTextBlob |
| void flushThrowaway(GrContext* context, GrTextUtils::Target*, const SkSurfaceProps& props, |
| const GrDistanceFieldAdjustTable* distanceAdjustTable, |
| const GrTextUtils::Paint& paint, const GrClip& clip, |
| const SkMatrix& viewMatrix, const SkIRect& clipBounds, SkScalar x, |
| SkScalar y); |
| |
| void computeSubRunBounds(SkRect* outBounds, int runIndex, int subRunIndex, |
| const SkMatrix& viewMatrix, SkScalar x, SkScalar y) { |
| // We don't yet position distance field text on the cpu, so we have to map the vertex bounds |
| // into device space. |
| // We handle vertex bounds differently for distance field text and bitmap text because |
| // the vertex bounds of bitmap text are in device space. If we are flushing multiple runs |
| // from one blob then we are going to pay the price here of mapping the rect for each run. |
| const Run& run = fRuns[runIndex]; |
| const Run::SubRunInfo& subRun = run.fSubRunInfo[subRunIndex]; |
| *outBounds = subRun.vertexBounds(); |
| if (subRun.drawAsDistanceFields()) { |
| // Distance field text is positioned with the (X,Y) as part of the glyph position, |
| // and currently the view matrix is applied on the GPU |
| outBounds->offset(x - fInitialX, y - fInitialY); |
| viewMatrix.mapRect(outBounds); |
| } else { |
| // Bitmap text is fully positioned on the CPU, and offset by an (X,Y) translate in |
| // device space. |
| SkMatrix boundsMatrix = fInitialViewMatrixInverse; |
| |
| boundsMatrix.postTranslate(-fInitialX, -fInitialY); |
| |
| boundsMatrix.postTranslate(x, y); |
| |
| boundsMatrix.postConcat(viewMatrix); |
| boundsMatrix.mapRect(outBounds); |
| |
| // Due to floating point numerical inaccuracies, we have to round out here |
| outBounds->roundOut(outBounds); |
| } |
| } |
| |
| // position + local coord |
| static const size_t kColorTextVASize = sizeof(SkPoint) + sizeof(SkIPoint16); |
| static const size_t kGrayTextVASize = sizeof(SkPoint) + sizeof(GrColor) + sizeof(SkIPoint16); |
| static const size_t kLCDTextVASize = kGrayTextVASize; |
| static const size_t kMaxVASize = kGrayTextVASize; |
| static const int kVerticesPerGlyph = 4; |
| |
| static void AssertEqual(const GrAtlasTextBlob&, const GrAtlasTextBlob&); |
| |
| // The color here is the GrPaint color, and it is used to determine whether we |
| // have to regenerate LCD text blobs. |
| // We use this color vs the SkPaint color because it has the colorfilter applied. |
| void initReusableBlob(SkColor luminanceColor, const SkMatrix& viewMatrix, |
| SkScalar x, SkScalar y) { |
| fLuminanceColor = luminanceColor; |
| this->setupViewMatrix(viewMatrix, x, y); |
| } |
| |
| void initThrowawayBlob(const SkMatrix& viewMatrix, SkScalar x, SkScalar y) { |
| this->setupViewMatrix(viewMatrix, x, y); |
| } |
| |
| const Key& key() const { return fKey; } |
| |
| ~GrAtlasTextBlob() { |
| for (int i = 0; i < fRunCount; i++) { |
| fRuns[i].~Run(); |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////////////////////// |
| // Internal test methods |
| std::unique_ptr<GrDrawOp> test_makeOp(int glyphCount, uint16_t run, uint16_t subRun, |
| const SkMatrix& viewMatrix, SkScalar x, SkScalar y, |
| const GrTextUtils::Paint&, const SkSurfaceProps&, |
| const GrDistanceFieldAdjustTable*, GrAtlasGlyphCache*, |
| GrTextUtils::Target*); |
| |
| private: |
| GrAtlasTextBlob() |
| : fMaxMinScale(-SK_ScalarMax) |
| , fMinMaxScale(SK_ScalarMax) |
| , fTextType(0) {} |
| |
| void appendLargeGlyph(GrGlyph* glyph, SkGlyphCache* cache, const SkGlyph& skGlyph, |
| SkScalar x, SkScalar y, SkScalar scale, bool treatAsBMP); |
| |
| inline void flushRun(GrTextUtils::Target*, const GrClip&, int run, const SkMatrix& viewMatrix, |
| SkScalar x, SkScalar y, const GrTextUtils::Paint& paint, |
| const SkSurfaceProps& props, |
| const GrDistanceFieldAdjustTable* distanceAdjustTable, |
| GrAtlasGlyphCache* cache); |
| |
| void flushBigGlyphs(GrContext* context, GrTextUtils::Target*, const GrClip& clip, |
| const SkPaint& paint, const SkMatrix& viewMatrix, SkScalar x, SkScalar y, |
| const SkIRect& clipBounds); |
| |
| void flushRunAsPaths(GrContext* context, GrTextUtils::Target*, const SkSurfaceProps& props, |
| const SkTextBlobRunIterator& it, const GrClip& clip, |
| const GrTextUtils::Paint& paint, SkDrawFilter* drawFilter, |
| const SkMatrix& viewMatrix, const SkIRect& clipBounds, SkScalar x, |
| SkScalar y); |
| |
| // This function will only be called when we are generating a blob from scratch. We record the |
| // initial view matrix and initial offsets(x,y), because we record vertex bounds relative to |
| // these numbers. When blobs are reused with new matrices, we need to return to model space so |
| // we can update the vertex bounds appropriately. |
| void setupViewMatrix(const SkMatrix& viewMatrix, SkScalar x, SkScalar y) { |
| fInitialViewMatrix = viewMatrix; |
| if (!viewMatrix.invert(&fInitialViewMatrixInverse)) { |
| fInitialViewMatrixInverse = SkMatrix::I(); |
| SkDebugf("Could not invert viewmatrix\n"); |
| } |
| fInitialX = x; |
| fInitialY = y; |
| |
| // make sure all initial subruns have the correct VM and X/Y applied |
| for (int i = 0; i < fRunCount; i++) { |
| fRuns[i].fSubRunInfo[0].init(fInitialViewMatrix, x, y); |
| } |
| } |
| |
| /* |
| * Each Run inside of the blob can have its texture coordinates regenerated if required. |
| * To determine if regeneration is necessary, fAtlasGeneration is used. If there have been |
| * any evictions inside of the atlas, then we will simply regenerate Runs. We could track |
| * this at a more fine grained level, but its not clear if this is worth it, as evictions |
| * should be fairly rare. |
| * |
| * One additional point, each run can contain glyphs with any of the three mask formats. |
| * We call these SubRuns. Because a subrun must be a contiguous range, we have to create |
| * a new subrun each time the mask format changes in a run. In theory, a run can have as |
| * many SubRuns as it has glyphs, ie if a run alternates between color emoji and A8. In |
| * practice, the vast majority of runs have only a single subrun. |
| * |
| * Finally, for runs where the entire thing is too large for the GrAtlasTextContext to |
| * handle, we have a bit to mark the run as flushable via rendering as paths. It is worth |
| * pointing. It would be a bit expensive to figure out ahead of time whether or not a run |
| * can flush in this manner, so we always allocate vertices for the run, regardless of |
| * whether or not it is too large. The benefit of this strategy is that we can always reuse |
| * a blob allocation regardless of viewmatrix changes. We could store positions for these |
| * glyphs. However, its not clear if this is a win because we'd still have to either go the |
| * glyph cache to get the path at flush time, or hold onto the path in the cache, which |
| * would greatly increase the memory of these cached items. |
| */ |
| struct Run { |
| Run() |
| : fInitialized(false) |
| , fDrawAsPaths(false) { |
| // To ensure we always have one subrun, we push back a fresh run here |
| fSubRunInfo.push_back(); |
| } |
| struct SubRunInfo { |
| SubRunInfo() |
| : fAtlasGeneration(GrDrawOpAtlas::kInvalidAtlasGeneration) |
| , fVertexStartIndex(0) |
| , fVertexEndIndex(0) |
| , fGlyphStartIndex(0) |
| , fGlyphEndIndex(0) |
| , fColor(GrColor_ILLEGAL) |
| , fMaskFormat(kA8_GrMaskFormat) |
| , fFlags(0) { |
| fVertexBounds.setLargestInverted(); |
| } |
| SubRunInfo(const SubRunInfo& that) |
| : fBulkUseToken(that.fBulkUseToken) |
| , fStrike(SkSafeRef(that.fStrike.get())) |
| , fCurrentViewMatrix(that.fCurrentViewMatrix) |
| , fVertexBounds(that.fVertexBounds) |
| , fAtlasGeneration(that.fAtlasGeneration) |
| , fVertexStartIndex(that.fVertexStartIndex) |
| , fVertexEndIndex(that.fVertexEndIndex) |
| , fGlyphStartIndex(that.fGlyphStartIndex) |
| , fGlyphEndIndex(that.fGlyphEndIndex) |
| , fX(that.fX) |
| , fY(that.fY) |
| , fColor(that.fColor) |
| , fMaskFormat(that.fMaskFormat) |
| , fFlags(that.fFlags) { |
| } |
| |
| // TODO when this object is more internal, drop the privacy |
| void resetBulkUseToken() { fBulkUseToken.reset(); } |
| GrDrawOpAtlas::BulkUseTokenUpdater* bulkUseToken() { return &fBulkUseToken; } |
| void setStrike(GrAtlasTextStrike* strike) { fStrike.reset(SkRef(strike)); } |
| GrAtlasTextStrike* strike() const { return fStrike.get(); } |
| |
| void setAtlasGeneration(uint64_t atlasGeneration) { fAtlasGeneration = atlasGeneration;} |
| uint64_t atlasGeneration() const { return fAtlasGeneration; } |
| |
| size_t byteCount() const { return fVertexEndIndex - fVertexStartIndex; } |
| size_t vertexStartIndex() const { return fVertexStartIndex; } |
| size_t vertexEndIndex() const { return fVertexEndIndex; } |
| void appendVertices(size_t vertexStride) { |
| fVertexEndIndex += vertexStride * kVerticesPerGlyph; |
| } |
| |
| uint32_t glyphCount() const { return fGlyphEndIndex - fGlyphStartIndex; } |
| uint32_t glyphStartIndex() const { return fGlyphStartIndex; } |
| uint32_t glyphEndIndex() const { return fGlyphEndIndex; } |
| void glyphAppended() { fGlyphEndIndex++; } |
| void setColor(GrColor color) { fColor = color; } |
| GrColor color() const { return fColor; } |
| void setMaskFormat(GrMaskFormat format) { fMaskFormat = format; } |
| GrMaskFormat maskFormat() const { return fMaskFormat; } |
| |
| void setAsSuccessor(const SubRunInfo& prev) { |
| fGlyphStartIndex = prev.glyphEndIndex(); |
| fGlyphEndIndex = prev.glyphEndIndex(); |
| |
| fVertexStartIndex = prev.vertexEndIndex(); |
| fVertexEndIndex = prev.vertexEndIndex(); |
| |
| // copy over viewmatrix settings |
| this->init(prev.fCurrentViewMatrix, prev.fX, prev.fY); |
| } |
| |
| const SkRect& vertexBounds() const { return fVertexBounds; } |
| void joinGlyphBounds(const SkRect& glyphBounds) { |
| fVertexBounds.joinNonEmptyArg(glyphBounds); |
| } |
| |
| void init(const SkMatrix& viewMatrix, SkScalar x, SkScalar y) { |
| fCurrentViewMatrix = viewMatrix; |
| fX = x; |
| fY = y; |
| } |
| |
| // This function assumes the translation will be applied before it is called again |
| void computeTranslation(const SkMatrix& viewMatrix, SkScalar x, SkScalar y, |
| SkScalar*transX, SkScalar* transY); |
| |
| // df properties |
| void setDrawAsDistanceFields() { fFlags |= kDrawAsSDF_Flag; } |
| bool drawAsDistanceFields() const { return SkToBool(fFlags & kDrawAsSDF_Flag); } |
| void setUseLCDText(bool useLCDText) { |
| fFlags = useLCDText ? fFlags | kUseLCDText_Flag : fFlags & ~kUseLCDText_Flag; |
| } |
| bool hasUseLCDText() const { return SkToBool(fFlags & kUseLCDText_Flag); } |
| void setAntiAliased(bool antiAliased) { |
| fFlags = antiAliased ? fFlags | kAntiAliased_Flag : fFlags & ~kAntiAliased_Flag; |
| } |
| bool isAntiAliased() const { return SkToBool(fFlags & kAntiAliased_Flag); } |
| |
| private: |
| enum Flag { |
| kDrawAsSDF_Flag = 0x1, |
| kUseLCDText_Flag = 0x2, |
| kAntiAliased_Flag = 0x4 |
| }; |
| |
| GrDrawOpAtlas::BulkUseTokenUpdater fBulkUseToken; |
| sk_sp<GrAtlasTextStrike> fStrike; |
| SkMatrix fCurrentViewMatrix; |
| SkRect fVertexBounds; |
| uint64_t fAtlasGeneration; |
| size_t fVertexStartIndex; |
| size_t fVertexEndIndex; |
| uint32_t fGlyphStartIndex; |
| uint32_t fGlyphEndIndex; |
| SkScalar fX; |
| SkScalar fY; |
| GrColor fColor; |
| GrMaskFormat fMaskFormat; |
| uint32_t fFlags; |
| }; // SubRunInfo |
| |
| SubRunInfo& push_back() { |
| // Forward glyph / vertex information to seed the new sub run |
| SubRunInfo& newSubRun = fSubRunInfo.push_back(); |
| const SubRunInfo& prevSubRun = fSubRunInfo.fromBack(1); |
| |
| newSubRun.setAsSuccessor(prevSubRun); |
| return newSubRun; |
| } |
| static const int kMinSubRuns = 1; |
| sk_sp<SkTypeface> fTypeface; |
| SkSTArray<kMinSubRuns, SubRunInfo> fSubRunInfo; |
| SkAutoDescriptor fDescriptor; |
| |
| // Effects from the paint that are used to build a SkScalerContext. |
| sk_sp<SkPathEffect> fPathEffect; |
| sk_sp<SkRasterizer> fRasterizer; |
| sk_sp<SkMaskFilter> fMaskFilter; |
| |
| // Distance field text cannot draw coloremoji, and so has to fall back. However, |
| // though the distance field text and the coloremoji may share the same run, they |
| // will have different descriptors. If fOverrideDescriptor is non-nullptr, then it |
| // will be used in place of the run's descriptor to regen texture coords |
| std::unique_ptr<SkAutoDescriptor> fOverrideDescriptor; // df properties |
| bool fInitialized; |
| bool fDrawAsPaths; |
| }; // Run |
| |
| inline std::unique_ptr<GrAtlasTextOp> makeOp( |
| const Run::SubRunInfo& info, int glyphCount, uint16_t run, uint16_t subRun, |
| const SkMatrix& viewMatrix, SkScalar x, SkScalar y, const SkIRect& clipRect, |
| const GrTextUtils::Paint& paint, const SkSurfaceProps& props, |
| const GrDistanceFieldAdjustTable* distanceAdjustTable, GrAtlasGlyphCache* cache, |
| GrTextUtils::Target*); |
| |
| struct BigGlyph { |
| BigGlyph(const SkPath& path, SkScalar vx, SkScalar vy, SkScalar scale, bool treatAsBMP) |
| : fPath(path) |
| , fScale(scale) |
| , fX(vx) |
| , fY(vy) |
| , fTreatAsBMP(treatAsBMP) {} |
| SkPath fPath; |
| SkScalar fScale; |
| SkScalar fX; |
| SkScalar fY; |
| bool fTreatAsBMP; |
| }; |
| |
| struct StrokeInfo { |
| SkScalar fFrameWidth; |
| SkScalar fMiterLimit; |
| SkPaint::Join fJoin; |
| }; |
| |
| enum TextType { |
| kHasDistanceField_TextType = 0x1, |
| kHasBitmap_TextType = 0x2, |
| }; |
| |
| // all glyph / vertex offsets are into these pools. |
| char* fVertices; |
| GrGlyph** fGlyphs; |
| Run* fRuns; |
| GrMemoryPool* fPool; |
| SkMaskFilter::BlurRec fBlurRec; |
| StrokeInfo fStrokeInfo; |
| SkTArray<BigGlyph> fBigGlyphs; |
| Key fKey; |
| SkMatrix fInitialViewMatrix; |
| SkMatrix fInitialViewMatrixInverse; |
| size_t fSize; |
| SkColor fLuminanceColor; |
| SkScalar fInitialX; |
| SkScalar fInitialY; |
| |
| // We can reuse distance field text, but only if the new viewmatrix would not result in |
| // a mip change. Because there can be multiple runs in a blob, we track the overall |
| // maximum minimum scale, and minimum maximum scale, we can support before we need to regen |
| SkScalar fMaxMinScale; |
| SkScalar fMinMaxScale; |
| int fRunCount; |
| uint8_t fTextType; |
| }; |
| |
| /** |
| * Used to produce vertices for a subrun of a blob. The vertices are cached in the blob itself. |
| * This is invoked each time a sub run is drawn. It regenerates the vertex data as required either |
| * because of changes to the atlas or because of different draw parameters (e.g. color change). In |
| * rare cases the draw may have to interrupted and flushed in the middle of the sub run in order to |
| * free up atlas space. Thus, this generator is stateful and should be invoked in a loop until the |
| * entire sub run has been completed. |
| */ |
| class GrAtlasTextBlob::VertexRegenerator { |
| public: |
| /** |
| * Consecutive VertexRegenerators often use the same SkGlyphCache. If the same instance of |
| * SkAutoGlyphCache is reused then it can save the cost of multiple detach/attach operations of |
| * SkGlyphCache. |
| */ |
| VertexRegenerator(GrAtlasTextBlob* blob, int runIdx, int subRunIdx, const SkMatrix& viewMatrix, |
| SkScalar x, SkScalar y, GrColor color, GrDeferredUploadTarget*, |
| GrAtlasGlyphCache*, SkAutoGlyphCache*); |
| |
| struct Result { |
| /** |
| * Was regenerate() able to draw all the glyphs from the sub run? If not flush all glyph |
| * draws and call regenerate() again. |
| */ |
| bool fFinished = true; |
| |
| /** |
| * How many glyphs were regenerated. Will be equal to the sub run's glyph count if |
| * fType is kFinished. |
| */ |
| int fGlyphsRegenerated = 0; |
| |
| /** |
| * Pointer where the caller finds the first regenerated vertex. |
| */ |
| const char* fFirstVertex; |
| }; |
| |
| Result regenerate(); |
| |
| private: |
| template <bool regenPos, bool regenCol, bool regenTexCoords, bool regenGlyphs> |
| Result doRegen(); |
| |
| const SkMatrix& fViewMatrix; |
| GrAtlasTextBlob* fBlob; |
| GrDeferredUploadTarget* fUploadTarget; |
| GrAtlasGlyphCache* fGlyphCache; |
| SkAutoGlyphCache* fLazyCache; |
| Run* fRun; |
| Run::SubRunInfo* fSubRun; |
| GrColor fColor; |
| SkScalar fTransX; |
| SkScalar fTransY; |
| |
| uint32_t fRegenFlags = 0; |
| int fCurrGlyph = 0; |
| bool fBrokenRun = false; |
| }; |
| |
| #endif |