| /* |
| * Copyright 2014 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "SkColorPriv.h" |
| #include "SkColor_opts_SSE2.h" |
| #include "SkMathPriv.h" |
| #include "SkMath_opts_SSE2.h" |
| #include "SkXfermode.h" |
| #include "SkXfermode_opts_SSE2.h" |
| #include "SkXfermode_proccoeff.h" |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // 4 pixels SSE2 version functions |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| static inline __m128i SkDiv255Round_SSE2(const __m128i& a) { |
| __m128i prod = _mm_add_epi32(a, _mm_set1_epi32(128)); // prod += 128; |
| prod = _mm_add_epi32(prod, _mm_srli_epi32(prod, 8)); // prod + (prod >> 8) |
| prod = _mm_srli_epi32(prod, 8); // >> 8 |
| |
| return prod; |
| } |
| |
| static inline __m128i saturated_add_SSE2(const __m128i& a, const __m128i& b) { |
| __m128i sum = _mm_add_epi32(a, b); |
| __m128i cmp = _mm_cmpgt_epi32(sum, _mm_set1_epi32(255)); |
| |
| sum = _mm_or_si128(_mm_and_si128(cmp, _mm_set1_epi32(255)), |
| _mm_andnot_si128(cmp, sum)); |
| return sum; |
| } |
| |
| static inline __m128i clamp_signed_byte_SSE2(const __m128i& n) { |
| __m128i cmp1 = _mm_cmplt_epi32(n, _mm_setzero_si128()); |
| __m128i cmp2 = _mm_cmpgt_epi32(n, _mm_set1_epi32(255)); |
| __m128i ret = _mm_and_si128(cmp2, _mm_set1_epi32(255)); |
| |
| __m128i cmp = _mm_or_si128(cmp1, cmp2); |
| ret = _mm_or_si128(_mm_and_si128(cmp, ret), _mm_andnot_si128(cmp, n)); |
| |
| return ret; |
| } |
| |
| static inline __m128i clamp_div255round_SSE2(const __m128i& prod) { |
| // test if > 0 |
| __m128i cmp1 = _mm_cmpgt_epi32(prod, _mm_setzero_si128()); |
| // test if < 255*255 |
| __m128i cmp2 = _mm_cmplt_epi32(prod, _mm_set1_epi32(255*255)); |
| |
| __m128i ret = _mm_setzero_si128(); |
| |
| // if value >= 255*255, value = 255 |
| ret = _mm_andnot_si128(cmp2, _mm_set1_epi32(255)); |
| |
| __m128i div = SkDiv255Round_SSE2(prod); |
| |
| // test if > 0 && < 255*255 |
| __m128i cmp = _mm_and_si128(cmp1, cmp2); |
| |
| ret = _mm_or_si128(_mm_and_si128(cmp, div), _mm_andnot_si128(cmp, ret)); |
| |
| return ret; |
| } |
| |
| static __m128i srcover_modeproc_SSE2(const __m128i& src, const __m128i& dst) { |
| __m128i isa = _mm_sub_epi32(_mm_set1_epi32(256), SkGetPackedA32_SSE2(src)); |
| return _mm_add_epi32(src, SkAlphaMulQ_SSE2(dst, isa)); |
| } |
| |
| static __m128i dstover_modeproc_SSE2(const __m128i& src, const __m128i& dst) { |
| __m128i ida = _mm_sub_epi32(_mm_set1_epi32(256), SkGetPackedA32_SSE2(dst)); |
| return _mm_add_epi32(dst, SkAlphaMulQ_SSE2(src, ida)); |
| } |
| |
| static __m128i srcin_modeproc_SSE2(const __m128i& src, const __m128i& dst) { |
| __m128i da = SkGetPackedA32_SSE2(dst); |
| return SkAlphaMulQ_SSE2(src, SkAlpha255To256_SSE2(da)); |
| } |
| |
| static __m128i dstin_modeproc_SSE2(const __m128i& src, const __m128i& dst) { |
| __m128i sa = SkGetPackedA32_SSE2(src); |
| return SkAlphaMulQ_SSE2(dst, SkAlpha255To256_SSE2(sa)); |
| } |
| |
| static __m128i srcout_modeproc_SSE2(const __m128i& src, const __m128i& dst) { |
| __m128i ida = _mm_sub_epi32(_mm_set1_epi32(256), SkGetPackedA32_SSE2(dst)); |
| return SkAlphaMulQ_SSE2(src, ida); |
| } |
| |
| static __m128i dstout_modeproc_SSE2(const __m128i& src, const __m128i& dst) { |
| __m128i isa = _mm_sub_epi32(_mm_set1_epi32(256), SkGetPackedA32_SSE2(src)); |
| return SkAlphaMulQ_SSE2(dst, isa); |
| } |
| |
| static __m128i srcatop_modeproc_SSE2(const __m128i& src, const __m128i& dst) { |
| __m128i sa = SkGetPackedA32_SSE2(src); |
| __m128i da = SkGetPackedA32_SSE2(dst); |
| __m128i isa = _mm_sub_epi32(_mm_set1_epi32(255), sa); |
| |
| __m128i a = da; |
| |
| __m128i r1 = SkAlphaMulAlpha_SSE2(da, SkGetPackedR32_SSE2(src)); |
| __m128i r2 = SkAlphaMulAlpha_SSE2(isa, SkGetPackedR32_SSE2(dst)); |
| __m128i r = _mm_add_epi32(r1, r2); |
| |
| __m128i g1 = SkAlphaMulAlpha_SSE2(da, SkGetPackedG32_SSE2(src)); |
| __m128i g2 = SkAlphaMulAlpha_SSE2(isa, SkGetPackedG32_SSE2(dst)); |
| __m128i g = _mm_add_epi32(g1, g2); |
| |
| __m128i b1 = SkAlphaMulAlpha_SSE2(da, SkGetPackedB32_SSE2(src)); |
| __m128i b2 = SkAlphaMulAlpha_SSE2(isa, SkGetPackedB32_SSE2(dst)); |
| __m128i b = _mm_add_epi32(b1, b2); |
| |
| return SkPackARGB32_SSE2(a, r, g, b); |
| } |
| |
| static __m128i dstatop_modeproc_SSE2(const __m128i& src, const __m128i& dst) { |
| __m128i sa = SkGetPackedA32_SSE2(src); |
| __m128i da = SkGetPackedA32_SSE2(dst); |
| __m128i ida = _mm_sub_epi32(_mm_set1_epi32(255), da); |
| |
| __m128i a = sa; |
| |
| __m128i r1 = SkAlphaMulAlpha_SSE2(ida, SkGetPackedR32_SSE2(src)); |
| __m128i r2 = SkAlphaMulAlpha_SSE2(sa, SkGetPackedR32_SSE2(dst)); |
| __m128i r = _mm_add_epi32(r1, r2); |
| |
| __m128i g1 = SkAlphaMulAlpha_SSE2(ida, SkGetPackedG32_SSE2(src)); |
| __m128i g2 = SkAlphaMulAlpha_SSE2(sa, SkGetPackedG32_SSE2(dst)); |
| __m128i g = _mm_add_epi32(g1, g2); |
| |
| __m128i b1 = SkAlphaMulAlpha_SSE2(ida, SkGetPackedB32_SSE2(src)); |
| __m128i b2 = SkAlphaMulAlpha_SSE2(sa, SkGetPackedB32_SSE2(dst)); |
| __m128i b = _mm_add_epi32(b1, b2); |
| |
| return SkPackARGB32_SSE2(a, r, g, b); |
| } |
| |
| static __m128i xor_modeproc_SSE2(const __m128i& src, const __m128i& dst) { |
| __m128i sa = SkGetPackedA32_SSE2(src); |
| __m128i da = SkGetPackedA32_SSE2(dst); |
| __m128i isa = _mm_sub_epi32(_mm_set1_epi32(255), sa); |
| __m128i ida = _mm_sub_epi32(_mm_set1_epi32(255), da); |
| |
| __m128i a1 = _mm_add_epi32(sa, da); |
| __m128i a2 = SkAlphaMulAlpha_SSE2(sa, da); |
| a2 = _mm_slli_epi32(a2, 1); |
| __m128i a = _mm_sub_epi32(a1, a2); |
| |
| __m128i r1 = SkAlphaMulAlpha_SSE2(ida, SkGetPackedR32_SSE2(src)); |
| __m128i r2 = SkAlphaMulAlpha_SSE2(isa, SkGetPackedR32_SSE2(dst)); |
| __m128i r = _mm_add_epi32(r1, r2); |
| |
| __m128i g1 = SkAlphaMulAlpha_SSE2(ida, SkGetPackedG32_SSE2(src)); |
| __m128i g2 = SkAlphaMulAlpha_SSE2(isa, SkGetPackedG32_SSE2(dst)); |
| __m128i g = _mm_add_epi32(g1, g2); |
| |
| __m128i b1 = SkAlphaMulAlpha_SSE2(ida, SkGetPackedB32_SSE2(src)); |
| __m128i b2 = SkAlphaMulAlpha_SSE2(isa, SkGetPackedB32_SSE2(dst)); |
| __m128i b = _mm_add_epi32(b1, b2); |
| |
| return SkPackARGB32_SSE2(a, r, g, b); |
| } |
| |
| static __m128i plus_modeproc_SSE2(const __m128i& src, const __m128i& dst) { |
| __m128i b = saturated_add_SSE2(SkGetPackedB32_SSE2(src), |
| SkGetPackedB32_SSE2(dst)); |
| __m128i g = saturated_add_SSE2(SkGetPackedG32_SSE2(src), |
| SkGetPackedG32_SSE2(dst)); |
| __m128i r = saturated_add_SSE2(SkGetPackedR32_SSE2(src), |
| SkGetPackedR32_SSE2(dst)); |
| __m128i a = saturated_add_SSE2(SkGetPackedA32_SSE2(src), |
| SkGetPackedA32_SSE2(dst)); |
| return SkPackARGB32_SSE2(a, r, g, b); |
| } |
| |
| static __m128i modulate_modeproc_SSE2(const __m128i& src, const __m128i& dst) { |
| __m128i a = SkAlphaMulAlpha_SSE2(SkGetPackedA32_SSE2(src), |
| SkGetPackedA32_SSE2(dst)); |
| __m128i r = SkAlphaMulAlpha_SSE2(SkGetPackedR32_SSE2(src), |
| SkGetPackedR32_SSE2(dst)); |
| __m128i g = SkAlphaMulAlpha_SSE2(SkGetPackedG32_SSE2(src), |
| SkGetPackedG32_SSE2(dst)); |
| __m128i b = SkAlphaMulAlpha_SSE2(SkGetPackedB32_SSE2(src), |
| SkGetPackedB32_SSE2(dst)); |
| return SkPackARGB32_SSE2(a, r, g, b); |
| } |
| |
| static inline __m128i SkMin32_SSE2(const __m128i& a, const __m128i& b) { |
| __m128i cmp = _mm_cmplt_epi32(a, b); |
| return _mm_or_si128(_mm_and_si128(cmp, a), _mm_andnot_si128(cmp, b)); |
| } |
| |
| static inline __m128i srcover_byte_SSE2(const __m128i& a, const __m128i& b) { |
| // a + b - SkAlphaMulAlpha(a, b); |
| return _mm_sub_epi32(_mm_add_epi32(a, b), SkAlphaMulAlpha_SSE2(a, b)); |
| |
| } |
| |
| static inline __m128i blendfunc_multiply_byte_SSE2(const __m128i& sc, const __m128i& dc, |
| const __m128i& sa, const __m128i& da) { |
| // sc * (255 - da) |
| __m128i ret1 = _mm_sub_epi32(_mm_set1_epi32(255), da); |
| ret1 = _mm_mullo_epi16(sc, ret1); |
| |
| // dc * (255 - sa) |
| __m128i ret2 = _mm_sub_epi32(_mm_set1_epi32(255), sa); |
| ret2 = _mm_mullo_epi16(dc, ret2); |
| |
| // sc * dc |
| __m128i ret3 = _mm_mullo_epi16(sc, dc); |
| |
| __m128i ret = _mm_add_epi32(ret1, ret2); |
| ret = _mm_add_epi32(ret, ret3); |
| |
| return clamp_div255round_SSE2(ret); |
| } |
| |
| static __m128i multiply_modeproc_SSE2(const __m128i& src, const __m128i& dst) { |
| __m128i sa = SkGetPackedA32_SSE2(src); |
| __m128i da = SkGetPackedA32_SSE2(dst); |
| __m128i a = srcover_byte_SSE2(sa, da); |
| |
| __m128i sr = SkGetPackedR32_SSE2(src); |
| __m128i dr = SkGetPackedR32_SSE2(dst); |
| __m128i r = blendfunc_multiply_byte_SSE2(sr, dr, sa, da); |
| |
| __m128i sg = SkGetPackedG32_SSE2(src); |
| __m128i dg = SkGetPackedG32_SSE2(dst); |
| __m128i g = blendfunc_multiply_byte_SSE2(sg, dg, sa, da); |
| |
| |
| __m128i sb = SkGetPackedB32_SSE2(src); |
| __m128i db = SkGetPackedB32_SSE2(dst); |
| __m128i b = blendfunc_multiply_byte_SSE2(sb, db, sa, da); |
| |
| return SkPackARGB32_SSE2(a, r, g, b); |
| } |
| |
| static __m128i screen_modeproc_SSE2(const __m128i& src, const __m128i& dst) { |
| __m128i a = srcover_byte_SSE2(SkGetPackedA32_SSE2(src), |
| SkGetPackedA32_SSE2(dst)); |
| __m128i r = srcover_byte_SSE2(SkGetPackedR32_SSE2(src), |
| SkGetPackedR32_SSE2(dst)); |
| __m128i g = srcover_byte_SSE2(SkGetPackedG32_SSE2(src), |
| SkGetPackedG32_SSE2(dst)); |
| __m128i b = srcover_byte_SSE2(SkGetPackedB32_SSE2(src), |
| SkGetPackedB32_SSE2(dst)); |
| return SkPackARGB32_SSE2(a, r, g, b); |
| } |
| |
| // Portable version overlay_byte() is in SkXfermode.cpp. |
| static inline __m128i overlay_byte_SSE2(const __m128i& sc, const __m128i& dc, |
| const __m128i& sa, const __m128i& da) { |
| __m128i ida = _mm_sub_epi32(_mm_set1_epi32(255), da); |
| __m128i tmp1 = _mm_mullo_epi16(sc, ida); |
| __m128i isa = _mm_sub_epi32(_mm_set1_epi32(255), sa); |
| __m128i tmp2 = _mm_mullo_epi16(dc, isa); |
| __m128i tmp = _mm_add_epi32(tmp1, tmp2); |
| |
| __m128i cmp = _mm_cmpgt_epi32(_mm_slli_epi32(dc, 1), da); |
| __m128i rc1 = _mm_slli_epi32(sc, 1); // 2 * sc |
| rc1 = Multiply32_SSE2(rc1, dc); // *dc |
| |
| __m128i rc2 = _mm_mullo_epi16(sa, da); // sa * da |
| __m128i tmp3 = _mm_slli_epi32(_mm_sub_epi32(da, dc), 1); // 2 * (da - dc) |
| tmp3 = Multiply32_SSE2(tmp3, _mm_sub_epi32(sa, sc)); // * (sa - sc) |
| rc2 = _mm_sub_epi32(rc2, tmp3); |
| |
| __m128i rc = _mm_or_si128(_mm_andnot_si128(cmp, rc1), |
| _mm_and_si128(cmp, rc2)); |
| return clamp_div255round_SSE2(_mm_add_epi32(rc, tmp)); |
| } |
| |
| static __m128i overlay_modeproc_SSE2(const __m128i& src, const __m128i& dst) { |
| __m128i sa = SkGetPackedA32_SSE2(src); |
| __m128i da = SkGetPackedA32_SSE2(dst); |
| |
| __m128i a = srcover_byte_SSE2(sa, da); |
| __m128i r = overlay_byte_SSE2(SkGetPackedR32_SSE2(src), |
| SkGetPackedR32_SSE2(dst), sa, da); |
| __m128i g = overlay_byte_SSE2(SkGetPackedG32_SSE2(src), |
| SkGetPackedG32_SSE2(dst), sa, da); |
| __m128i b = overlay_byte_SSE2(SkGetPackedB32_SSE2(src), |
| SkGetPackedB32_SSE2(dst), sa, da); |
| return SkPackARGB32_SSE2(a, r, g, b); |
| } |
| |
| static inline __m128i darken_byte_SSE2(const __m128i& sc, const __m128i& dc, |
| const __m128i& sa, const __m128i& da) { |
| __m128i sd = _mm_mullo_epi16(sc, da); |
| __m128i ds = _mm_mullo_epi16(dc, sa); |
| |
| __m128i cmp = _mm_cmplt_epi32(sd, ds); |
| |
| __m128i tmp = _mm_add_epi32(sc, dc); |
| __m128i ret1 = _mm_sub_epi32(tmp, SkDiv255Round_SSE2(ds)); |
| __m128i ret2 = _mm_sub_epi32(tmp, SkDiv255Round_SSE2(sd)); |
| __m128i ret = _mm_or_si128(_mm_and_si128(cmp, ret1), |
| _mm_andnot_si128(cmp, ret2)); |
| return ret; |
| } |
| |
| static __m128i darken_modeproc_SSE2(const __m128i& src, const __m128i& dst) { |
| __m128i sa = SkGetPackedA32_SSE2(src); |
| __m128i da = SkGetPackedA32_SSE2(dst); |
| |
| __m128i a = srcover_byte_SSE2(sa, da); |
| __m128i r = darken_byte_SSE2(SkGetPackedR32_SSE2(src), |
| SkGetPackedR32_SSE2(dst), sa, da); |
| __m128i g = darken_byte_SSE2(SkGetPackedG32_SSE2(src), |
| SkGetPackedG32_SSE2(dst), sa, da); |
| __m128i b = darken_byte_SSE2(SkGetPackedB32_SSE2(src), |
| SkGetPackedB32_SSE2(dst), sa, da); |
| return SkPackARGB32_SSE2(a, r, g, b); |
| } |
| |
| static inline __m128i lighten_byte_SSE2(const __m128i& sc, const __m128i& dc, |
| const __m128i& sa, const __m128i& da) { |
| __m128i sd = _mm_mullo_epi16(sc, da); |
| __m128i ds = _mm_mullo_epi16(dc, sa); |
| |
| __m128i cmp = _mm_cmpgt_epi32(sd, ds); |
| |
| __m128i tmp = _mm_add_epi32(sc, dc); |
| __m128i ret1 = _mm_sub_epi32(tmp, SkDiv255Round_SSE2(ds)); |
| __m128i ret2 = _mm_sub_epi32(tmp, SkDiv255Round_SSE2(sd)); |
| __m128i ret = _mm_or_si128(_mm_and_si128(cmp, ret1), |
| _mm_andnot_si128(cmp, ret2)); |
| return ret; |
| } |
| |
| static __m128i lighten_modeproc_SSE2(const __m128i& src, const __m128i& dst) { |
| __m128i sa = SkGetPackedA32_SSE2(src); |
| __m128i da = SkGetPackedA32_SSE2(dst); |
| |
| __m128i a = srcover_byte_SSE2(sa, da); |
| __m128i r = lighten_byte_SSE2(SkGetPackedR32_SSE2(src), |
| SkGetPackedR32_SSE2(dst), sa, da); |
| __m128i g = lighten_byte_SSE2(SkGetPackedG32_SSE2(src), |
| SkGetPackedG32_SSE2(dst), sa, da); |
| __m128i b = lighten_byte_SSE2(SkGetPackedB32_SSE2(src), |
| SkGetPackedB32_SSE2(dst), sa, da); |
| return SkPackARGB32_SSE2(a, r, g, b); |
| } |
| |
| static inline __m128i colordodge_byte_SSE2(const __m128i& sc, const __m128i& dc, |
| const __m128i& sa, const __m128i& da) { |
| __m128i diff = _mm_sub_epi32(sa, sc); |
| __m128i ida = _mm_sub_epi32(_mm_set1_epi32(255), da); |
| __m128i isa = _mm_sub_epi32(_mm_set1_epi32(255), sa); |
| |
| // if (0 == dc) |
| __m128i cmp1 = _mm_cmpeq_epi32(dc, _mm_setzero_si128()); |
| __m128i rc1 = _mm_and_si128(cmp1, SkAlphaMulAlpha_SSE2(sc, ida)); |
| |
| // else if (0 == diff) |
| __m128i cmp2 = _mm_cmpeq_epi32(diff, _mm_setzero_si128()); |
| __m128i cmp = _mm_andnot_si128(cmp1, cmp2); |
| __m128i tmp1 = _mm_mullo_epi16(sa, da); |
| __m128i tmp2 = _mm_mullo_epi16(sc, ida); |
| __m128i tmp3 = _mm_mullo_epi16(dc, isa); |
| __m128i rc2 = _mm_add_epi32(tmp1, tmp2); |
| rc2 = _mm_add_epi32(rc2, tmp3); |
| rc2 = clamp_div255round_SSE2(rc2); |
| rc2 = _mm_and_si128(cmp, rc2); |
| |
| // else |
| __m128i cmp3 = _mm_or_si128(cmp1, cmp2); |
| __m128i value = _mm_mullo_epi16(dc, sa); |
| diff = shim_mm_div_epi32(value, diff); |
| |
| __m128i tmp4 = SkMin32_SSE2(da, diff); |
| tmp4 = Multiply32_SSE2(sa, tmp4); |
| __m128i rc3 = _mm_add_epi32(tmp4, tmp2); |
| rc3 = _mm_add_epi32(rc3, tmp3); |
| rc3 = clamp_div255round_SSE2(rc3); |
| rc3 = _mm_andnot_si128(cmp3, rc3); |
| |
| __m128i rc = _mm_or_si128(rc1, rc2); |
| rc = _mm_or_si128(rc, rc3); |
| |
| return rc; |
| } |
| |
| static __m128i colordodge_modeproc_SSE2(const __m128i& src, |
| const __m128i& dst) { |
| __m128i sa = SkGetPackedA32_SSE2(src); |
| __m128i da = SkGetPackedA32_SSE2(dst); |
| |
| __m128i a = srcover_byte_SSE2(sa, da); |
| __m128i r = colordodge_byte_SSE2(SkGetPackedR32_SSE2(src), |
| SkGetPackedR32_SSE2(dst), sa, da); |
| __m128i g = colordodge_byte_SSE2(SkGetPackedG32_SSE2(src), |
| SkGetPackedG32_SSE2(dst), sa, da); |
| __m128i b = colordodge_byte_SSE2(SkGetPackedB32_SSE2(src), |
| SkGetPackedB32_SSE2(dst), sa, da); |
| return SkPackARGB32_SSE2(a, r, g, b); |
| } |
| |
| static inline __m128i colorburn_byte_SSE2(const __m128i& sc, const __m128i& dc, |
| const __m128i& sa, const __m128i& da) { |
| __m128i ida = _mm_sub_epi32(_mm_set1_epi32(255), da); |
| __m128i isa = _mm_sub_epi32(_mm_set1_epi32(255), sa); |
| |
| // if (dc == da) |
| __m128i cmp1 = _mm_cmpeq_epi32(dc, da); |
| __m128i tmp1 = _mm_mullo_epi16(sa, da); |
| __m128i tmp2 = _mm_mullo_epi16(sc, ida); |
| __m128i tmp3 = _mm_mullo_epi16(dc, isa); |
| __m128i rc1 = _mm_add_epi32(tmp1, tmp2); |
| rc1 = _mm_add_epi32(rc1, tmp3); |
| rc1 = clamp_div255round_SSE2(rc1); |
| rc1 = _mm_and_si128(cmp1, rc1); |
| |
| // else if (0 == sc) |
| __m128i cmp2 = _mm_cmpeq_epi32(sc, _mm_setzero_si128()); |
| __m128i rc2 = SkAlphaMulAlpha_SSE2(dc, isa); |
| __m128i cmp = _mm_andnot_si128(cmp1, cmp2); |
| rc2 = _mm_and_si128(cmp, rc2); |
| |
| // else |
| __m128i cmp3 = _mm_or_si128(cmp1, cmp2); |
| __m128i tmp4 = _mm_sub_epi32(da, dc); |
| tmp4 = Multiply32_SSE2(tmp4, sa); |
| tmp4 = shim_mm_div_epi32(tmp4, sc); |
| |
| __m128i tmp5 = _mm_sub_epi32(da, SkMin32_SSE2(da, tmp4)); |
| tmp5 = Multiply32_SSE2(sa, tmp5); |
| __m128i rc3 = _mm_add_epi32(tmp5, tmp2); |
| rc3 = _mm_add_epi32(rc3, tmp3); |
| rc3 = clamp_div255round_SSE2(rc3); |
| rc3 = _mm_andnot_si128(cmp3, rc3); |
| |
| __m128i rc = _mm_or_si128(rc1, rc2); |
| rc = _mm_or_si128(rc, rc3); |
| |
| return rc; |
| } |
| |
| static __m128i colorburn_modeproc_SSE2(const __m128i& src, const __m128i& dst) { |
| __m128i sa = SkGetPackedA32_SSE2(src); |
| __m128i da = SkGetPackedA32_SSE2(dst); |
| |
| __m128i a = srcover_byte_SSE2(sa, da); |
| __m128i r = colorburn_byte_SSE2(SkGetPackedR32_SSE2(src), |
| SkGetPackedR32_SSE2(dst), sa, da); |
| __m128i g = colorburn_byte_SSE2(SkGetPackedG32_SSE2(src), |
| SkGetPackedG32_SSE2(dst), sa, da); |
| __m128i b = colorburn_byte_SSE2(SkGetPackedB32_SSE2(src), |
| SkGetPackedB32_SSE2(dst), sa, da); |
| return SkPackARGB32_SSE2(a, r, g, b); |
| } |
| |
| static inline __m128i hardlight_byte_SSE2(const __m128i& sc, const __m128i& dc, |
| const __m128i& sa, const __m128i& da) { |
| // if (2 * sc <= sa) |
| __m128i tmp1 = _mm_slli_epi32(sc, 1); |
| __m128i cmp1 = _mm_cmpgt_epi32(tmp1, sa); |
| __m128i rc1 = _mm_mullo_epi16(sc, dc); // sc * dc; |
| rc1 = _mm_slli_epi32(rc1, 1); // 2 * sc * dc |
| rc1 = _mm_andnot_si128(cmp1, rc1); |
| |
| // else |
| tmp1 = _mm_mullo_epi16(sa, da); |
| __m128i tmp2 = Multiply32_SSE2(_mm_sub_epi32(da, dc), |
| _mm_sub_epi32(sa, sc)); |
| tmp2 = _mm_slli_epi32(tmp2, 1); |
| __m128i rc2 = _mm_sub_epi32(tmp1, tmp2); |
| rc2 = _mm_and_si128(cmp1, rc2); |
| |
| __m128i rc = _mm_or_si128(rc1, rc2); |
| |
| __m128i ida = _mm_sub_epi32(_mm_set1_epi32(255), da); |
| tmp1 = _mm_mullo_epi16(sc, ida); |
| __m128i isa = _mm_sub_epi32(_mm_set1_epi32(255), sa); |
| tmp2 = _mm_mullo_epi16(dc, isa); |
| rc = _mm_add_epi32(rc, tmp1); |
| rc = _mm_add_epi32(rc, tmp2); |
| return clamp_div255round_SSE2(rc); |
| } |
| |
| static __m128i hardlight_modeproc_SSE2(const __m128i& src, const __m128i& dst) { |
| __m128i sa = SkGetPackedA32_SSE2(src); |
| __m128i da = SkGetPackedA32_SSE2(dst); |
| |
| __m128i a = srcover_byte_SSE2(sa, da); |
| __m128i r = hardlight_byte_SSE2(SkGetPackedR32_SSE2(src), |
| SkGetPackedR32_SSE2(dst), sa, da); |
| __m128i g = hardlight_byte_SSE2(SkGetPackedG32_SSE2(src), |
| SkGetPackedG32_SSE2(dst), sa, da); |
| __m128i b = hardlight_byte_SSE2(SkGetPackedB32_SSE2(src), |
| SkGetPackedB32_SSE2(dst), sa, da); |
| return SkPackARGB32_SSE2(a, r, g, b); |
| } |
| |
| static __m128i sqrt_unit_byte_SSE2(const __m128i& n) { |
| return SkSqrtBits_SSE2(n, 15+4); |
| } |
| |
| static inline __m128i softlight_byte_SSE2(const __m128i& sc, const __m128i& dc, |
| const __m128i& sa, const __m128i& da) { |
| __m128i tmp1, tmp2, tmp3; |
| |
| // int m = da ? dc * 256 / da : 0; |
| __m128i cmp = _mm_cmpeq_epi32(da, _mm_setzero_si128()); |
| __m128i m = _mm_slli_epi32(dc, 8); |
| __m128 x = _mm_cvtepi32_ps(m); |
| __m128 y = _mm_cvtepi32_ps(da); |
| m = _mm_cvttps_epi32(_mm_div_ps(x, y)); |
| m = _mm_andnot_si128(cmp, m); |
| |
| // if (2 * sc <= sa) |
| tmp1 = _mm_slli_epi32(sc, 1); // 2 * sc |
| __m128i cmp1 = _mm_cmpgt_epi32(tmp1, sa); |
| tmp1 = _mm_sub_epi32(tmp1, sa); // 2 * sc - sa |
| tmp2 = _mm_sub_epi32(_mm_set1_epi32(256), m); // 256 - m |
| tmp1 = Multiply32_SSE2(tmp1, tmp2); |
| tmp1 = _mm_srai_epi32(tmp1, 8); |
| tmp1 = _mm_add_epi32(sa, tmp1); |
| tmp1 = Multiply32_SSE2(dc, tmp1); |
| __m128i rc1 = _mm_andnot_si128(cmp1, tmp1); |
| |
| // else if (4 * dc <= da) |
| tmp2 = _mm_slli_epi32(dc, 2); // dc * 4 |
| __m128i cmp2 = _mm_cmpgt_epi32(tmp2, da); |
| __m128i i = _mm_slli_epi32(m, 2); // 4 * m |
| __m128i j = _mm_add_epi32(i, _mm_set1_epi32(256)); // 4 * m + 256 |
| __m128i k = Multiply32_SSE2(i, j); // 4 * m * (4 * m + 256) |
| __m128i t = _mm_sub_epi32(m, _mm_set1_epi32(256)); // m - 256 |
| i = Multiply32_SSE2(k, t); // 4 * m * (4 * m + 256) * (m - 256) |
| i = _mm_srai_epi32(i, 16); // >> 16 |
| j = Multiply32_SSE2(_mm_set1_epi32(7), m); // 7 * m |
| tmp2 = _mm_add_epi32(i, j); |
| i = Multiply32_SSE2(dc, sa); // dc * sa |
| j = _mm_slli_epi32(sc, 1); // 2 * sc |
| j = _mm_sub_epi32(j, sa); // 2 * sc - sa |
| j = Multiply32_SSE2(da, j); // da * (2 * sc - sa) |
| tmp2 = Multiply32_SSE2(j, tmp2); // * tmp |
| tmp2 = _mm_srai_epi32(tmp2, 8); // >> 8 |
| tmp2 = _mm_add_epi32(i, tmp2); |
| cmp = _mm_andnot_si128(cmp2, cmp1); |
| __m128i rc2 = _mm_and_si128(cmp, tmp2); |
| __m128i rc = _mm_or_si128(rc1, rc2); |
| |
| // else |
| tmp3 = sqrt_unit_byte_SSE2(m); |
| tmp3 = _mm_sub_epi32(tmp3, m); |
| tmp3 = Multiply32_SSE2(j, tmp3); // j = da * (2 * sc - sa) |
| tmp3 = _mm_srai_epi32(tmp3, 8); |
| tmp3 = _mm_add_epi32(i, tmp3); // i = dc * sa |
| cmp = _mm_and_si128(cmp1, cmp2); |
| __m128i rc3 = _mm_and_si128(cmp, tmp3); |
| rc = _mm_or_si128(rc, rc3); |
| |
| tmp1 = _mm_sub_epi32(_mm_set1_epi32(255), da); // 255 - da |
| tmp1 = _mm_mullo_epi16(sc, tmp1); |
| tmp2 = _mm_sub_epi32(_mm_set1_epi32(255), sa); // 255 - sa |
| tmp2 = _mm_mullo_epi16(dc, tmp2); |
| rc = _mm_add_epi32(rc, tmp1); |
| rc = _mm_add_epi32(rc, tmp2); |
| return clamp_div255round_SSE2(rc); |
| } |
| |
| static __m128i softlight_modeproc_SSE2(const __m128i& src, const __m128i& dst) { |
| __m128i sa = SkGetPackedA32_SSE2(src); |
| __m128i da = SkGetPackedA32_SSE2(dst); |
| |
| __m128i a = srcover_byte_SSE2(sa, da); |
| __m128i r = softlight_byte_SSE2(SkGetPackedR32_SSE2(src), |
| SkGetPackedR32_SSE2(dst), sa, da); |
| __m128i g = softlight_byte_SSE2(SkGetPackedG32_SSE2(src), |
| SkGetPackedG32_SSE2(dst), sa, da); |
| __m128i b = softlight_byte_SSE2(SkGetPackedB32_SSE2(src), |
| SkGetPackedB32_SSE2(dst), sa, da); |
| return SkPackARGB32_SSE2(a, r, g, b); |
| } |
| |
| static inline __m128i difference_byte_SSE2(const __m128i& sc, const __m128i& dc, |
| const __m128i& sa, const __m128i& da) { |
| __m128i tmp1 = _mm_mullo_epi16(sc, da); |
| __m128i tmp2 = _mm_mullo_epi16(dc, sa); |
| __m128i tmp = SkMin32_SSE2(tmp1, tmp2); |
| |
| __m128i ret1 = _mm_add_epi32(sc, dc); |
| __m128i ret2 = _mm_slli_epi32(SkDiv255Round_SSE2(tmp), 1); |
| __m128i ret = _mm_sub_epi32(ret1, ret2); |
| |
| ret = clamp_signed_byte_SSE2(ret); |
| return ret; |
| } |
| |
| static __m128i difference_modeproc_SSE2(const __m128i& src, |
| const __m128i& dst) { |
| __m128i sa = SkGetPackedA32_SSE2(src); |
| __m128i da = SkGetPackedA32_SSE2(dst); |
| |
| __m128i a = srcover_byte_SSE2(sa, da); |
| __m128i r = difference_byte_SSE2(SkGetPackedR32_SSE2(src), |
| SkGetPackedR32_SSE2(dst), sa, da); |
| __m128i g = difference_byte_SSE2(SkGetPackedG32_SSE2(src), |
| SkGetPackedG32_SSE2(dst), sa, da); |
| __m128i b = difference_byte_SSE2(SkGetPackedB32_SSE2(src), |
| SkGetPackedB32_SSE2(dst), sa, da); |
| return SkPackARGB32_SSE2(a, r, g, b); |
| } |
| |
| static inline __m128i exclusion_byte_SSE2(const __m128i& sc, const __m128i& dc, |
| const __m128i&, __m128i&) { |
| __m128i tmp1 = _mm_mullo_epi16(_mm_set1_epi32(255), sc); // 255 * sc |
| __m128i tmp2 = _mm_mullo_epi16(_mm_set1_epi32(255), dc); // 255 * dc |
| tmp1 = _mm_add_epi32(tmp1, tmp2); |
| tmp2 = _mm_mullo_epi16(sc, dc); // sc * dc |
| tmp2 = _mm_slli_epi32(tmp2, 1); // 2 * sc * dc |
| |
| __m128i r = _mm_sub_epi32(tmp1, tmp2); |
| return clamp_div255round_SSE2(r); |
| } |
| |
| static __m128i exclusion_modeproc_SSE2(const __m128i& src, const __m128i& dst) { |
| __m128i sa = SkGetPackedA32_SSE2(src); |
| __m128i da = SkGetPackedA32_SSE2(dst); |
| |
| __m128i a = srcover_byte_SSE2(sa, da); |
| __m128i r = exclusion_byte_SSE2(SkGetPackedR32_SSE2(src), |
| SkGetPackedR32_SSE2(dst), sa, da); |
| __m128i g = exclusion_byte_SSE2(SkGetPackedG32_SSE2(src), |
| SkGetPackedG32_SSE2(dst), sa, da); |
| __m128i b = exclusion_byte_SSE2(SkGetPackedB32_SSE2(src), |
| SkGetPackedB32_SSE2(dst), sa, da); |
| return SkPackARGB32_SSE2(a, r, g, b); |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| typedef __m128i (*SkXfermodeProcSIMD)(const __m128i& src, const __m128i& dst); |
| |
| extern SkXfermodeProcSIMD gSSE2XfermodeProcs[]; |
| |
| void SkSSE2ProcCoeffXfermode::xfer32(SkPMColor dst[], const SkPMColor src[], |
| int count, const SkAlpha aa[]) const { |
| SkASSERT(dst && src && count >= 0); |
| |
| SkXfermodeProc proc = this->getProc(); |
| SkXfermodeProcSIMD procSIMD = reinterpret_cast<SkXfermodeProcSIMD>(fProcSIMD); |
| SkASSERT(procSIMD != NULL); |
| |
| if (NULL == aa) { |
| if (count >= 4) { |
| while (((size_t)dst & 0x0F) != 0) { |
| *dst = proc(*src, *dst); |
| dst++; |
| src++; |
| count--; |
| } |
| |
| const __m128i* s = reinterpret_cast<const __m128i*>(src); |
| __m128i* d = reinterpret_cast<__m128i*>(dst); |
| |
| while (count >= 4) { |
| __m128i src_pixel = _mm_loadu_si128(s++); |
| __m128i dst_pixel = _mm_load_si128(d); |
| |
| dst_pixel = procSIMD(src_pixel, dst_pixel); |
| _mm_store_si128(d++, dst_pixel); |
| count -= 4; |
| } |
| |
| src = reinterpret_cast<const SkPMColor*>(s); |
| dst = reinterpret_cast<SkPMColor*>(d); |
| } |
| |
| for (int i = count - 1; i >= 0; --i) { |
| *dst = proc(*src, *dst); |
| dst++; |
| src++; |
| } |
| } else { |
| for (int i = count - 1; i >= 0; --i) { |
| unsigned a = aa[i]; |
| if (0 != a) { |
| SkPMColor dstC = dst[i]; |
| SkPMColor C = proc(src[i], dstC); |
| if (a != 0xFF) { |
| C = SkFourByteInterp(C, dstC, a); |
| } |
| dst[i] = C; |
| } |
| } |
| } |
| } |
| |
| void SkSSE2ProcCoeffXfermode::xfer16(uint16_t dst[], const SkPMColor src[], |
| int count, const SkAlpha aa[]) const { |
| SkASSERT(dst && src && count >= 0); |
| |
| SkXfermodeProc proc = this->getProc(); |
| SkXfermodeProcSIMD procSIMD = reinterpret_cast<SkXfermodeProcSIMD>(fProcSIMD); |
| SkASSERT(procSIMD != NULL); |
| |
| if (NULL == aa) { |
| if (count >= 8) { |
| while (((size_t)dst & 0x0F) != 0) { |
| SkPMColor dstC = SkPixel16ToPixel32(*dst); |
| *dst = SkPixel32ToPixel16_ToU16(proc(*src, dstC)); |
| dst++; |
| src++; |
| count--; |
| } |
| |
| const __m128i* s = reinterpret_cast<const __m128i*>(src); |
| __m128i* d = reinterpret_cast<__m128i*>(dst); |
| |
| while (count >= 8) { |
| __m128i src_pixel1 = _mm_loadu_si128(s++); |
| __m128i src_pixel2 = _mm_loadu_si128(s++); |
| __m128i dst_pixel = _mm_load_si128(d); |
| |
| __m128i dst_pixel1 = _mm_unpacklo_epi16(dst_pixel, _mm_setzero_si128()); |
| __m128i dst_pixel2 = _mm_unpackhi_epi16(dst_pixel, _mm_setzero_si128()); |
| |
| __m128i dstC1 = SkPixel16ToPixel32_SSE2(dst_pixel1); |
| __m128i dstC2 = SkPixel16ToPixel32_SSE2(dst_pixel2); |
| |
| dst_pixel1 = procSIMD(src_pixel1, dstC1); |
| dst_pixel2 = procSIMD(src_pixel2, dstC2); |
| dst_pixel = SkPixel32ToPixel16_ToU16_SSE2(dst_pixel1, dst_pixel2); |
| |
| _mm_store_si128(d++, dst_pixel); |
| count -= 8; |
| } |
| |
| src = reinterpret_cast<const SkPMColor*>(s); |
| dst = reinterpret_cast<uint16_t*>(d); |
| } |
| |
| for (int i = count - 1; i >= 0; --i) { |
| SkPMColor dstC = SkPixel16ToPixel32(*dst); |
| *dst = SkPixel32ToPixel16_ToU16(proc(*src, dstC)); |
| dst++; |
| src++; |
| } |
| } else { |
| for (int i = count - 1; i >= 0; --i) { |
| unsigned a = aa[i]; |
| if (0 != a) { |
| SkPMColor dstC = SkPixel16ToPixel32(dst[i]); |
| SkPMColor C = proc(src[i], dstC); |
| if (0xFF != a) { |
| C = SkFourByteInterp(C, dstC, a); |
| } |
| dst[i] = SkPixel32ToPixel16_ToU16(C); |
| } |
| } |
| } |
| } |
| |
| #ifndef SK_IGNORE_TO_STRING |
| void SkSSE2ProcCoeffXfermode::toString(SkString* str) const { |
| this->INHERITED::toString(str); |
| } |
| #endif |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| // 4 pixels modeprocs with SSE2 |
| SkXfermodeProcSIMD gSSE2XfermodeProcs[] = { |
| NULL, // kClear_Mode |
| NULL, // kSrc_Mode |
| NULL, // kDst_Mode |
| srcover_modeproc_SSE2, |
| dstover_modeproc_SSE2, |
| srcin_modeproc_SSE2, |
| dstin_modeproc_SSE2, |
| srcout_modeproc_SSE2, |
| dstout_modeproc_SSE2, |
| srcatop_modeproc_SSE2, |
| dstatop_modeproc_SSE2, |
| xor_modeproc_SSE2, |
| plus_modeproc_SSE2, |
| modulate_modeproc_SSE2, |
| screen_modeproc_SSE2, |
| |
| overlay_modeproc_SSE2, |
| darken_modeproc_SSE2, |
| lighten_modeproc_SSE2, |
| colordodge_modeproc_SSE2, |
| colorburn_modeproc_SSE2, |
| hardlight_modeproc_SSE2, |
| softlight_modeproc_SSE2, |
| difference_modeproc_SSE2, |
| exclusion_modeproc_SSE2, |
| multiply_modeproc_SSE2, |
| |
| NULL, // kHue_Mode |
| NULL, // kSaturation_Mode |
| NULL, // kColor_Mode |
| NULL, // kLuminosity_Mode |
| }; |
| |
| SkProcCoeffXfermode* SkPlatformXfermodeFactory_impl_SSE2(const ProcCoeff& rec, |
| SkXfermode::Mode mode) { |
| void* procSIMD = reinterpret_cast<void*>(gSSE2XfermodeProcs[mode]); |
| |
| if (procSIMD != NULL) { |
| return SkNEW_ARGS(SkSSE2ProcCoeffXfermode, (rec, mode, procSIMD)); |
| } |
| return NULL; |
| } |