blob: fccf66514789950d58da06f9695af0fb90d4409a [file] [log] [blame]
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkColorPriv.h"
#include "SkColor_opts_SSE2.h"
#include "SkMathPriv.h"
#include "SkMath_opts_SSE2.h"
#include "SkXfermode.h"
#include "SkXfermode_opts_SSE2.h"
#include "SkXfermode_proccoeff.h"
////////////////////////////////////////////////////////////////////////////////
// 4 pixels SSE2 version functions
////////////////////////////////////////////////////////////////////////////////
static inline __m128i SkDiv255Round_SSE2(const __m128i& a) {
__m128i prod = _mm_add_epi32(a, _mm_set1_epi32(128)); // prod += 128;
prod = _mm_add_epi32(prod, _mm_srli_epi32(prod, 8)); // prod + (prod >> 8)
prod = _mm_srli_epi32(prod, 8); // >> 8
return prod;
}
static inline __m128i saturated_add_SSE2(const __m128i& a, const __m128i& b) {
__m128i sum = _mm_add_epi32(a, b);
__m128i cmp = _mm_cmpgt_epi32(sum, _mm_set1_epi32(255));
sum = _mm_or_si128(_mm_and_si128(cmp, _mm_set1_epi32(255)),
_mm_andnot_si128(cmp, sum));
return sum;
}
static inline __m128i clamp_signed_byte_SSE2(const __m128i& n) {
__m128i cmp1 = _mm_cmplt_epi32(n, _mm_setzero_si128());
__m128i cmp2 = _mm_cmpgt_epi32(n, _mm_set1_epi32(255));
__m128i ret = _mm_and_si128(cmp2, _mm_set1_epi32(255));
__m128i cmp = _mm_or_si128(cmp1, cmp2);
ret = _mm_or_si128(_mm_and_si128(cmp, ret), _mm_andnot_si128(cmp, n));
return ret;
}
static inline __m128i clamp_div255round_SSE2(const __m128i& prod) {
// test if > 0
__m128i cmp1 = _mm_cmpgt_epi32(prod, _mm_setzero_si128());
// test if < 255*255
__m128i cmp2 = _mm_cmplt_epi32(prod, _mm_set1_epi32(255*255));
__m128i ret = _mm_setzero_si128();
// if value >= 255*255, value = 255
ret = _mm_andnot_si128(cmp2, _mm_set1_epi32(255));
__m128i div = SkDiv255Round_SSE2(prod);
// test if > 0 && < 255*255
__m128i cmp = _mm_and_si128(cmp1, cmp2);
ret = _mm_or_si128(_mm_and_si128(cmp, div), _mm_andnot_si128(cmp, ret));
return ret;
}
static __m128i srcover_modeproc_SSE2(const __m128i& src, const __m128i& dst) {
__m128i isa = _mm_sub_epi32(_mm_set1_epi32(256), SkGetPackedA32_SSE2(src));
return _mm_add_epi32(src, SkAlphaMulQ_SSE2(dst, isa));
}
static __m128i dstover_modeproc_SSE2(const __m128i& src, const __m128i& dst) {
__m128i ida = _mm_sub_epi32(_mm_set1_epi32(256), SkGetPackedA32_SSE2(dst));
return _mm_add_epi32(dst, SkAlphaMulQ_SSE2(src, ida));
}
static __m128i srcin_modeproc_SSE2(const __m128i& src, const __m128i& dst) {
__m128i da = SkGetPackedA32_SSE2(dst);
return SkAlphaMulQ_SSE2(src, SkAlpha255To256_SSE2(da));
}
static __m128i dstin_modeproc_SSE2(const __m128i& src, const __m128i& dst) {
__m128i sa = SkGetPackedA32_SSE2(src);
return SkAlphaMulQ_SSE2(dst, SkAlpha255To256_SSE2(sa));
}
static __m128i srcout_modeproc_SSE2(const __m128i& src, const __m128i& dst) {
__m128i ida = _mm_sub_epi32(_mm_set1_epi32(256), SkGetPackedA32_SSE2(dst));
return SkAlphaMulQ_SSE2(src, ida);
}
static __m128i dstout_modeproc_SSE2(const __m128i& src, const __m128i& dst) {
__m128i isa = _mm_sub_epi32(_mm_set1_epi32(256), SkGetPackedA32_SSE2(src));
return SkAlphaMulQ_SSE2(dst, isa);
}
static __m128i srcatop_modeproc_SSE2(const __m128i& src, const __m128i& dst) {
__m128i sa = SkGetPackedA32_SSE2(src);
__m128i da = SkGetPackedA32_SSE2(dst);
__m128i isa = _mm_sub_epi32(_mm_set1_epi32(255), sa);
__m128i a = da;
__m128i r1 = SkAlphaMulAlpha_SSE2(da, SkGetPackedR32_SSE2(src));
__m128i r2 = SkAlphaMulAlpha_SSE2(isa, SkGetPackedR32_SSE2(dst));
__m128i r = _mm_add_epi32(r1, r2);
__m128i g1 = SkAlphaMulAlpha_SSE2(da, SkGetPackedG32_SSE2(src));
__m128i g2 = SkAlphaMulAlpha_SSE2(isa, SkGetPackedG32_SSE2(dst));
__m128i g = _mm_add_epi32(g1, g2);
__m128i b1 = SkAlphaMulAlpha_SSE2(da, SkGetPackedB32_SSE2(src));
__m128i b2 = SkAlphaMulAlpha_SSE2(isa, SkGetPackedB32_SSE2(dst));
__m128i b = _mm_add_epi32(b1, b2);
return SkPackARGB32_SSE2(a, r, g, b);
}
static __m128i dstatop_modeproc_SSE2(const __m128i& src, const __m128i& dst) {
__m128i sa = SkGetPackedA32_SSE2(src);
__m128i da = SkGetPackedA32_SSE2(dst);
__m128i ida = _mm_sub_epi32(_mm_set1_epi32(255), da);
__m128i a = sa;
__m128i r1 = SkAlphaMulAlpha_SSE2(ida, SkGetPackedR32_SSE2(src));
__m128i r2 = SkAlphaMulAlpha_SSE2(sa, SkGetPackedR32_SSE2(dst));
__m128i r = _mm_add_epi32(r1, r2);
__m128i g1 = SkAlphaMulAlpha_SSE2(ida, SkGetPackedG32_SSE2(src));
__m128i g2 = SkAlphaMulAlpha_SSE2(sa, SkGetPackedG32_SSE2(dst));
__m128i g = _mm_add_epi32(g1, g2);
__m128i b1 = SkAlphaMulAlpha_SSE2(ida, SkGetPackedB32_SSE2(src));
__m128i b2 = SkAlphaMulAlpha_SSE2(sa, SkGetPackedB32_SSE2(dst));
__m128i b = _mm_add_epi32(b1, b2);
return SkPackARGB32_SSE2(a, r, g, b);
}
static __m128i xor_modeproc_SSE2(const __m128i& src, const __m128i& dst) {
__m128i sa = SkGetPackedA32_SSE2(src);
__m128i da = SkGetPackedA32_SSE2(dst);
__m128i isa = _mm_sub_epi32(_mm_set1_epi32(255), sa);
__m128i ida = _mm_sub_epi32(_mm_set1_epi32(255), da);
__m128i a1 = _mm_add_epi32(sa, da);
__m128i a2 = SkAlphaMulAlpha_SSE2(sa, da);
a2 = _mm_slli_epi32(a2, 1);
__m128i a = _mm_sub_epi32(a1, a2);
__m128i r1 = SkAlphaMulAlpha_SSE2(ida, SkGetPackedR32_SSE2(src));
__m128i r2 = SkAlphaMulAlpha_SSE2(isa, SkGetPackedR32_SSE2(dst));
__m128i r = _mm_add_epi32(r1, r2);
__m128i g1 = SkAlphaMulAlpha_SSE2(ida, SkGetPackedG32_SSE2(src));
__m128i g2 = SkAlphaMulAlpha_SSE2(isa, SkGetPackedG32_SSE2(dst));
__m128i g = _mm_add_epi32(g1, g2);
__m128i b1 = SkAlphaMulAlpha_SSE2(ida, SkGetPackedB32_SSE2(src));
__m128i b2 = SkAlphaMulAlpha_SSE2(isa, SkGetPackedB32_SSE2(dst));
__m128i b = _mm_add_epi32(b1, b2);
return SkPackARGB32_SSE2(a, r, g, b);
}
static __m128i plus_modeproc_SSE2(const __m128i& src, const __m128i& dst) {
__m128i b = saturated_add_SSE2(SkGetPackedB32_SSE2(src),
SkGetPackedB32_SSE2(dst));
__m128i g = saturated_add_SSE2(SkGetPackedG32_SSE2(src),
SkGetPackedG32_SSE2(dst));
__m128i r = saturated_add_SSE2(SkGetPackedR32_SSE2(src),
SkGetPackedR32_SSE2(dst));
__m128i a = saturated_add_SSE2(SkGetPackedA32_SSE2(src),
SkGetPackedA32_SSE2(dst));
return SkPackARGB32_SSE2(a, r, g, b);
}
static __m128i modulate_modeproc_SSE2(const __m128i& src, const __m128i& dst) {
__m128i a = SkAlphaMulAlpha_SSE2(SkGetPackedA32_SSE2(src),
SkGetPackedA32_SSE2(dst));
__m128i r = SkAlphaMulAlpha_SSE2(SkGetPackedR32_SSE2(src),
SkGetPackedR32_SSE2(dst));
__m128i g = SkAlphaMulAlpha_SSE2(SkGetPackedG32_SSE2(src),
SkGetPackedG32_SSE2(dst));
__m128i b = SkAlphaMulAlpha_SSE2(SkGetPackedB32_SSE2(src),
SkGetPackedB32_SSE2(dst));
return SkPackARGB32_SSE2(a, r, g, b);
}
static inline __m128i SkMin32_SSE2(const __m128i& a, const __m128i& b) {
__m128i cmp = _mm_cmplt_epi32(a, b);
return _mm_or_si128(_mm_and_si128(cmp, a), _mm_andnot_si128(cmp, b));
}
static inline __m128i srcover_byte_SSE2(const __m128i& a, const __m128i& b) {
// a + b - SkAlphaMulAlpha(a, b);
return _mm_sub_epi32(_mm_add_epi32(a, b), SkAlphaMulAlpha_SSE2(a, b));
}
static inline __m128i blendfunc_multiply_byte_SSE2(const __m128i& sc, const __m128i& dc,
const __m128i& sa, const __m128i& da) {
// sc * (255 - da)
__m128i ret1 = _mm_sub_epi32(_mm_set1_epi32(255), da);
ret1 = _mm_mullo_epi16(sc, ret1);
// dc * (255 - sa)
__m128i ret2 = _mm_sub_epi32(_mm_set1_epi32(255), sa);
ret2 = _mm_mullo_epi16(dc, ret2);
// sc * dc
__m128i ret3 = _mm_mullo_epi16(sc, dc);
__m128i ret = _mm_add_epi32(ret1, ret2);
ret = _mm_add_epi32(ret, ret3);
return clamp_div255round_SSE2(ret);
}
static __m128i multiply_modeproc_SSE2(const __m128i& src, const __m128i& dst) {
__m128i sa = SkGetPackedA32_SSE2(src);
__m128i da = SkGetPackedA32_SSE2(dst);
__m128i a = srcover_byte_SSE2(sa, da);
__m128i sr = SkGetPackedR32_SSE2(src);
__m128i dr = SkGetPackedR32_SSE2(dst);
__m128i r = blendfunc_multiply_byte_SSE2(sr, dr, sa, da);
__m128i sg = SkGetPackedG32_SSE2(src);
__m128i dg = SkGetPackedG32_SSE2(dst);
__m128i g = blendfunc_multiply_byte_SSE2(sg, dg, sa, da);
__m128i sb = SkGetPackedB32_SSE2(src);
__m128i db = SkGetPackedB32_SSE2(dst);
__m128i b = blendfunc_multiply_byte_SSE2(sb, db, sa, da);
return SkPackARGB32_SSE2(a, r, g, b);
}
static __m128i screen_modeproc_SSE2(const __m128i& src, const __m128i& dst) {
__m128i a = srcover_byte_SSE2(SkGetPackedA32_SSE2(src),
SkGetPackedA32_SSE2(dst));
__m128i r = srcover_byte_SSE2(SkGetPackedR32_SSE2(src),
SkGetPackedR32_SSE2(dst));
__m128i g = srcover_byte_SSE2(SkGetPackedG32_SSE2(src),
SkGetPackedG32_SSE2(dst));
__m128i b = srcover_byte_SSE2(SkGetPackedB32_SSE2(src),
SkGetPackedB32_SSE2(dst));
return SkPackARGB32_SSE2(a, r, g, b);
}
// Portable version overlay_byte() is in SkXfermode.cpp.
static inline __m128i overlay_byte_SSE2(const __m128i& sc, const __m128i& dc,
const __m128i& sa, const __m128i& da) {
__m128i ida = _mm_sub_epi32(_mm_set1_epi32(255), da);
__m128i tmp1 = _mm_mullo_epi16(sc, ida);
__m128i isa = _mm_sub_epi32(_mm_set1_epi32(255), sa);
__m128i tmp2 = _mm_mullo_epi16(dc, isa);
__m128i tmp = _mm_add_epi32(tmp1, tmp2);
__m128i cmp = _mm_cmpgt_epi32(_mm_slli_epi32(dc, 1), da);
__m128i rc1 = _mm_slli_epi32(sc, 1); // 2 * sc
rc1 = Multiply32_SSE2(rc1, dc); // *dc
__m128i rc2 = _mm_mullo_epi16(sa, da); // sa * da
__m128i tmp3 = _mm_slli_epi32(_mm_sub_epi32(da, dc), 1); // 2 * (da - dc)
tmp3 = Multiply32_SSE2(tmp3, _mm_sub_epi32(sa, sc)); // * (sa - sc)
rc2 = _mm_sub_epi32(rc2, tmp3);
__m128i rc = _mm_or_si128(_mm_andnot_si128(cmp, rc1),
_mm_and_si128(cmp, rc2));
return clamp_div255round_SSE2(_mm_add_epi32(rc, tmp));
}
static __m128i overlay_modeproc_SSE2(const __m128i& src, const __m128i& dst) {
__m128i sa = SkGetPackedA32_SSE2(src);
__m128i da = SkGetPackedA32_SSE2(dst);
__m128i a = srcover_byte_SSE2(sa, da);
__m128i r = overlay_byte_SSE2(SkGetPackedR32_SSE2(src),
SkGetPackedR32_SSE2(dst), sa, da);
__m128i g = overlay_byte_SSE2(SkGetPackedG32_SSE2(src),
SkGetPackedG32_SSE2(dst), sa, da);
__m128i b = overlay_byte_SSE2(SkGetPackedB32_SSE2(src),
SkGetPackedB32_SSE2(dst), sa, da);
return SkPackARGB32_SSE2(a, r, g, b);
}
static inline __m128i darken_byte_SSE2(const __m128i& sc, const __m128i& dc,
const __m128i& sa, const __m128i& da) {
__m128i sd = _mm_mullo_epi16(sc, da);
__m128i ds = _mm_mullo_epi16(dc, sa);
__m128i cmp = _mm_cmplt_epi32(sd, ds);
__m128i tmp = _mm_add_epi32(sc, dc);
__m128i ret1 = _mm_sub_epi32(tmp, SkDiv255Round_SSE2(ds));
__m128i ret2 = _mm_sub_epi32(tmp, SkDiv255Round_SSE2(sd));
__m128i ret = _mm_or_si128(_mm_and_si128(cmp, ret1),
_mm_andnot_si128(cmp, ret2));
return ret;
}
static __m128i darken_modeproc_SSE2(const __m128i& src, const __m128i& dst) {
__m128i sa = SkGetPackedA32_SSE2(src);
__m128i da = SkGetPackedA32_SSE2(dst);
__m128i a = srcover_byte_SSE2(sa, da);
__m128i r = darken_byte_SSE2(SkGetPackedR32_SSE2(src),
SkGetPackedR32_SSE2(dst), sa, da);
__m128i g = darken_byte_SSE2(SkGetPackedG32_SSE2(src),
SkGetPackedG32_SSE2(dst), sa, da);
__m128i b = darken_byte_SSE2(SkGetPackedB32_SSE2(src),
SkGetPackedB32_SSE2(dst), sa, da);
return SkPackARGB32_SSE2(a, r, g, b);
}
static inline __m128i lighten_byte_SSE2(const __m128i& sc, const __m128i& dc,
const __m128i& sa, const __m128i& da) {
__m128i sd = _mm_mullo_epi16(sc, da);
__m128i ds = _mm_mullo_epi16(dc, sa);
__m128i cmp = _mm_cmpgt_epi32(sd, ds);
__m128i tmp = _mm_add_epi32(sc, dc);
__m128i ret1 = _mm_sub_epi32(tmp, SkDiv255Round_SSE2(ds));
__m128i ret2 = _mm_sub_epi32(tmp, SkDiv255Round_SSE2(sd));
__m128i ret = _mm_or_si128(_mm_and_si128(cmp, ret1),
_mm_andnot_si128(cmp, ret2));
return ret;
}
static __m128i lighten_modeproc_SSE2(const __m128i& src, const __m128i& dst) {
__m128i sa = SkGetPackedA32_SSE2(src);
__m128i da = SkGetPackedA32_SSE2(dst);
__m128i a = srcover_byte_SSE2(sa, da);
__m128i r = lighten_byte_SSE2(SkGetPackedR32_SSE2(src),
SkGetPackedR32_SSE2(dst), sa, da);
__m128i g = lighten_byte_SSE2(SkGetPackedG32_SSE2(src),
SkGetPackedG32_SSE2(dst), sa, da);
__m128i b = lighten_byte_SSE2(SkGetPackedB32_SSE2(src),
SkGetPackedB32_SSE2(dst), sa, da);
return SkPackARGB32_SSE2(a, r, g, b);
}
static inline __m128i colordodge_byte_SSE2(const __m128i& sc, const __m128i& dc,
const __m128i& sa, const __m128i& da) {
__m128i diff = _mm_sub_epi32(sa, sc);
__m128i ida = _mm_sub_epi32(_mm_set1_epi32(255), da);
__m128i isa = _mm_sub_epi32(_mm_set1_epi32(255), sa);
// if (0 == dc)
__m128i cmp1 = _mm_cmpeq_epi32(dc, _mm_setzero_si128());
__m128i rc1 = _mm_and_si128(cmp1, SkAlphaMulAlpha_SSE2(sc, ida));
// else if (0 == diff)
__m128i cmp2 = _mm_cmpeq_epi32(diff, _mm_setzero_si128());
__m128i cmp = _mm_andnot_si128(cmp1, cmp2);
__m128i tmp1 = _mm_mullo_epi16(sa, da);
__m128i tmp2 = _mm_mullo_epi16(sc, ida);
__m128i tmp3 = _mm_mullo_epi16(dc, isa);
__m128i rc2 = _mm_add_epi32(tmp1, tmp2);
rc2 = _mm_add_epi32(rc2, tmp3);
rc2 = clamp_div255round_SSE2(rc2);
rc2 = _mm_and_si128(cmp, rc2);
// else
__m128i cmp3 = _mm_or_si128(cmp1, cmp2);
__m128i value = _mm_mullo_epi16(dc, sa);
diff = shim_mm_div_epi32(value, diff);
__m128i tmp4 = SkMin32_SSE2(da, diff);
tmp4 = Multiply32_SSE2(sa, tmp4);
__m128i rc3 = _mm_add_epi32(tmp4, tmp2);
rc3 = _mm_add_epi32(rc3, tmp3);
rc3 = clamp_div255round_SSE2(rc3);
rc3 = _mm_andnot_si128(cmp3, rc3);
__m128i rc = _mm_or_si128(rc1, rc2);
rc = _mm_or_si128(rc, rc3);
return rc;
}
static __m128i colordodge_modeproc_SSE2(const __m128i& src,
const __m128i& dst) {
__m128i sa = SkGetPackedA32_SSE2(src);
__m128i da = SkGetPackedA32_SSE2(dst);
__m128i a = srcover_byte_SSE2(sa, da);
__m128i r = colordodge_byte_SSE2(SkGetPackedR32_SSE2(src),
SkGetPackedR32_SSE2(dst), sa, da);
__m128i g = colordodge_byte_SSE2(SkGetPackedG32_SSE2(src),
SkGetPackedG32_SSE2(dst), sa, da);
__m128i b = colordodge_byte_SSE2(SkGetPackedB32_SSE2(src),
SkGetPackedB32_SSE2(dst), sa, da);
return SkPackARGB32_SSE2(a, r, g, b);
}
static inline __m128i colorburn_byte_SSE2(const __m128i& sc, const __m128i& dc,
const __m128i& sa, const __m128i& da) {
__m128i ida = _mm_sub_epi32(_mm_set1_epi32(255), da);
__m128i isa = _mm_sub_epi32(_mm_set1_epi32(255), sa);
// if (dc == da)
__m128i cmp1 = _mm_cmpeq_epi32(dc, da);
__m128i tmp1 = _mm_mullo_epi16(sa, da);
__m128i tmp2 = _mm_mullo_epi16(sc, ida);
__m128i tmp3 = _mm_mullo_epi16(dc, isa);
__m128i rc1 = _mm_add_epi32(tmp1, tmp2);
rc1 = _mm_add_epi32(rc1, tmp3);
rc1 = clamp_div255round_SSE2(rc1);
rc1 = _mm_and_si128(cmp1, rc1);
// else if (0 == sc)
__m128i cmp2 = _mm_cmpeq_epi32(sc, _mm_setzero_si128());
__m128i rc2 = SkAlphaMulAlpha_SSE2(dc, isa);
__m128i cmp = _mm_andnot_si128(cmp1, cmp2);
rc2 = _mm_and_si128(cmp, rc2);
// else
__m128i cmp3 = _mm_or_si128(cmp1, cmp2);
__m128i tmp4 = _mm_sub_epi32(da, dc);
tmp4 = Multiply32_SSE2(tmp4, sa);
tmp4 = shim_mm_div_epi32(tmp4, sc);
__m128i tmp5 = _mm_sub_epi32(da, SkMin32_SSE2(da, tmp4));
tmp5 = Multiply32_SSE2(sa, tmp5);
__m128i rc3 = _mm_add_epi32(tmp5, tmp2);
rc3 = _mm_add_epi32(rc3, tmp3);
rc3 = clamp_div255round_SSE2(rc3);
rc3 = _mm_andnot_si128(cmp3, rc3);
__m128i rc = _mm_or_si128(rc1, rc2);
rc = _mm_or_si128(rc, rc3);
return rc;
}
static __m128i colorburn_modeproc_SSE2(const __m128i& src, const __m128i& dst) {
__m128i sa = SkGetPackedA32_SSE2(src);
__m128i da = SkGetPackedA32_SSE2(dst);
__m128i a = srcover_byte_SSE2(sa, da);
__m128i r = colorburn_byte_SSE2(SkGetPackedR32_SSE2(src),
SkGetPackedR32_SSE2(dst), sa, da);
__m128i g = colorburn_byte_SSE2(SkGetPackedG32_SSE2(src),
SkGetPackedG32_SSE2(dst), sa, da);
__m128i b = colorburn_byte_SSE2(SkGetPackedB32_SSE2(src),
SkGetPackedB32_SSE2(dst), sa, da);
return SkPackARGB32_SSE2(a, r, g, b);
}
static inline __m128i hardlight_byte_SSE2(const __m128i& sc, const __m128i& dc,
const __m128i& sa, const __m128i& da) {
// if (2 * sc <= sa)
__m128i tmp1 = _mm_slli_epi32(sc, 1);
__m128i cmp1 = _mm_cmpgt_epi32(tmp1, sa);
__m128i rc1 = _mm_mullo_epi16(sc, dc); // sc * dc;
rc1 = _mm_slli_epi32(rc1, 1); // 2 * sc * dc
rc1 = _mm_andnot_si128(cmp1, rc1);
// else
tmp1 = _mm_mullo_epi16(sa, da);
__m128i tmp2 = Multiply32_SSE2(_mm_sub_epi32(da, dc),
_mm_sub_epi32(sa, sc));
tmp2 = _mm_slli_epi32(tmp2, 1);
__m128i rc2 = _mm_sub_epi32(tmp1, tmp2);
rc2 = _mm_and_si128(cmp1, rc2);
__m128i rc = _mm_or_si128(rc1, rc2);
__m128i ida = _mm_sub_epi32(_mm_set1_epi32(255), da);
tmp1 = _mm_mullo_epi16(sc, ida);
__m128i isa = _mm_sub_epi32(_mm_set1_epi32(255), sa);
tmp2 = _mm_mullo_epi16(dc, isa);
rc = _mm_add_epi32(rc, tmp1);
rc = _mm_add_epi32(rc, tmp2);
return clamp_div255round_SSE2(rc);
}
static __m128i hardlight_modeproc_SSE2(const __m128i& src, const __m128i& dst) {
__m128i sa = SkGetPackedA32_SSE2(src);
__m128i da = SkGetPackedA32_SSE2(dst);
__m128i a = srcover_byte_SSE2(sa, da);
__m128i r = hardlight_byte_SSE2(SkGetPackedR32_SSE2(src),
SkGetPackedR32_SSE2(dst), sa, da);
__m128i g = hardlight_byte_SSE2(SkGetPackedG32_SSE2(src),
SkGetPackedG32_SSE2(dst), sa, da);
__m128i b = hardlight_byte_SSE2(SkGetPackedB32_SSE2(src),
SkGetPackedB32_SSE2(dst), sa, da);
return SkPackARGB32_SSE2(a, r, g, b);
}
static __m128i sqrt_unit_byte_SSE2(const __m128i& n) {
return SkSqrtBits_SSE2(n, 15+4);
}
static inline __m128i softlight_byte_SSE2(const __m128i& sc, const __m128i& dc,
const __m128i& sa, const __m128i& da) {
__m128i tmp1, tmp2, tmp3;
// int m = da ? dc * 256 / da : 0;
__m128i cmp = _mm_cmpeq_epi32(da, _mm_setzero_si128());
__m128i m = _mm_slli_epi32(dc, 8);
__m128 x = _mm_cvtepi32_ps(m);
__m128 y = _mm_cvtepi32_ps(da);
m = _mm_cvttps_epi32(_mm_div_ps(x, y));
m = _mm_andnot_si128(cmp, m);
// if (2 * sc <= sa)
tmp1 = _mm_slli_epi32(sc, 1); // 2 * sc
__m128i cmp1 = _mm_cmpgt_epi32(tmp1, sa);
tmp1 = _mm_sub_epi32(tmp1, sa); // 2 * sc - sa
tmp2 = _mm_sub_epi32(_mm_set1_epi32(256), m); // 256 - m
tmp1 = Multiply32_SSE2(tmp1, tmp2);
tmp1 = _mm_srai_epi32(tmp1, 8);
tmp1 = _mm_add_epi32(sa, tmp1);
tmp1 = Multiply32_SSE2(dc, tmp1);
__m128i rc1 = _mm_andnot_si128(cmp1, tmp1);
// else if (4 * dc <= da)
tmp2 = _mm_slli_epi32(dc, 2); // dc * 4
__m128i cmp2 = _mm_cmpgt_epi32(tmp2, da);
__m128i i = _mm_slli_epi32(m, 2); // 4 * m
__m128i j = _mm_add_epi32(i, _mm_set1_epi32(256)); // 4 * m + 256
__m128i k = Multiply32_SSE2(i, j); // 4 * m * (4 * m + 256)
__m128i t = _mm_sub_epi32(m, _mm_set1_epi32(256)); // m - 256
i = Multiply32_SSE2(k, t); // 4 * m * (4 * m + 256) * (m - 256)
i = _mm_srai_epi32(i, 16); // >> 16
j = Multiply32_SSE2(_mm_set1_epi32(7), m); // 7 * m
tmp2 = _mm_add_epi32(i, j);
i = Multiply32_SSE2(dc, sa); // dc * sa
j = _mm_slli_epi32(sc, 1); // 2 * sc
j = _mm_sub_epi32(j, sa); // 2 * sc - sa
j = Multiply32_SSE2(da, j); // da * (2 * sc - sa)
tmp2 = Multiply32_SSE2(j, tmp2); // * tmp
tmp2 = _mm_srai_epi32(tmp2, 8); // >> 8
tmp2 = _mm_add_epi32(i, tmp2);
cmp = _mm_andnot_si128(cmp2, cmp1);
__m128i rc2 = _mm_and_si128(cmp, tmp2);
__m128i rc = _mm_or_si128(rc1, rc2);
// else
tmp3 = sqrt_unit_byte_SSE2(m);
tmp3 = _mm_sub_epi32(tmp3, m);
tmp3 = Multiply32_SSE2(j, tmp3); // j = da * (2 * sc - sa)
tmp3 = _mm_srai_epi32(tmp3, 8);
tmp3 = _mm_add_epi32(i, tmp3); // i = dc * sa
cmp = _mm_and_si128(cmp1, cmp2);
__m128i rc3 = _mm_and_si128(cmp, tmp3);
rc = _mm_or_si128(rc, rc3);
tmp1 = _mm_sub_epi32(_mm_set1_epi32(255), da); // 255 - da
tmp1 = _mm_mullo_epi16(sc, tmp1);
tmp2 = _mm_sub_epi32(_mm_set1_epi32(255), sa); // 255 - sa
tmp2 = _mm_mullo_epi16(dc, tmp2);
rc = _mm_add_epi32(rc, tmp1);
rc = _mm_add_epi32(rc, tmp2);
return clamp_div255round_SSE2(rc);
}
static __m128i softlight_modeproc_SSE2(const __m128i& src, const __m128i& dst) {
__m128i sa = SkGetPackedA32_SSE2(src);
__m128i da = SkGetPackedA32_SSE2(dst);
__m128i a = srcover_byte_SSE2(sa, da);
__m128i r = softlight_byte_SSE2(SkGetPackedR32_SSE2(src),
SkGetPackedR32_SSE2(dst), sa, da);
__m128i g = softlight_byte_SSE2(SkGetPackedG32_SSE2(src),
SkGetPackedG32_SSE2(dst), sa, da);
__m128i b = softlight_byte_SSE2(SkGetPackedB32_SSE2(src),
SkGetPackedB32_SSE2(dst), sa, da);
return SkPackARGB32_SSE2(a, r, g, b);
}
static inline __m128i difference_byte_SSE2(const __m128i& sc, const __m128i& dc,
const __m128i& sa, const __m128i& da) {
__m128i tmp1 = _mm_mullo_epi16(sc, da);
__m128i tmp2 = _mm_mullo_epi16(dc, sa);
__m128i tmp = SkMin32_SSE2(tmp1, tmp2);
__m128i ret1 = _mm_add_epi32(sc, dc);
__m128i ret2 = _mm_slli_epi32(SkDiv255Round_SSE2(tmp), 1);
__m128i ret = _mm_sub_epi32(ret1, ret2);
ret = clamp_signed_byte_SSE2(ret);
return ret;
}
static __m128i difference_modeproc_SSE2(const __m128i& src,
const __m128i& dst) {
__m128i sa = SkGetPackedA32_SSE2(src);
__m128i da = SkGetPackedA32_SSE2(dst);
__m128i a = srcover_byte_SSE2(sa, da);
__m128i r = difference_byte_SSE2(SkGetPackedR32_SSE2(src),
SkGetPackedR32_SSE2(dst), sa, da);
__m128i g = difference_byte_SSE2(SkGetPackedG32_SSE2(src),
SkGetPackedG32_SSE2(dst), sa, da);
__m128i b = difference_byte_SSE2(SkGetPackedB32_SSE2(src),
SkGetPackedB32_SSE2(dst), sa, da);
return SkPackARGB32_SSE2(a, r, g, b);
}
static inline __m128i exclusion_byte_SSE2(const __m128i& sc, const __m128i& dc,
const __m128i&, __m128i&) {
__m128i tmp1 = _mm_mullo_epi16(_mm_set1_epi32(255), sc); // 255 * sc
__m128i tmp2 = _mm_mullo_epi16(_mm_set1_epi32(255), dc); // 255 * dc
tmp1 = _mm_add_epi32(tmp1, tmp2);
tmp2 = _mm_mullo_epi16(sc, dc); // sc * dc
tmp2 = _mm_slli_epi32(tmp2, 1); // 2 * sc * dc
__m128i r = _mm_sub_epi32(tmp1, tmp2);
return clamp_div255round_SSE2(r);
}
static __m128i exclusion_modeproc_SSE2(const __m128i& src, const __m128i& dst) {
__m128i sa = SkGetPackedA32_SSE2(src);
__m128i da = SkGetPackedA32_SSE2(dst);
__m128i a = srcover_byte_SSE2(sa, da);
__m128i r = exclusion_byte_SSE2(SkGetPackedR32_SSE2(src),
SkGetPackedR32_SSE2(dst), sa, da);
__m128i g = exclusion_byte_SSE2(SkGetPackedG32_SSE2(src),
SkGetPackedG32_SSE2(dst), sa, da);
__m128i b = exclusion_byte_SSE2(SkGetPackedB32_SSE2(src),
SkGetPackedB32_SSE2(dst), sa, da);
return SkPackARGB32_SSE2(a, r, g, b);
}
////////////////////////////////////////////////////////////////////////////////
typedef __m128i (*SkXfermodeProcSIMD)(const __m128i& src, const __m128i& dst);
extern SkXfermodeProcSIMD gSSE2XfermodeProcs[];
void SkSSE2ProcCoeffXfermode::xfer32(SkPMColor dst[], const SkPMColor src[],
int count, const SkAlpha aa[]) const {
SkASSERT(dst && src && count >= 0);
SkXfermodeProc proc = this->getProc();
SkXfermodeProcSIMD procSIMD = reinterpret_cast<SkXfermodeProcSIMD>(fProcSIMD);
SkASSERT(procSIMD != NULL);
if (NULL == aa) {
if (count >= 4) {
while (((size_t)dst & 0x0F) != 0) {
*dst = proc(*src, *dst);
dst++;
src++;
count--;
}
const __m128i* s = reinterpret_cast<const __m128i*>(src);
__m128i* d = reinterpret_cast<__m128i*>(dst);
while (count >= 4) {
__m128i src_pixel = _mm_loadu_si128(s++);
__m128i dst_pixel = _mm_load_si128(d);
dst_pixel = procSIMD(src_pixel, dst_pixel);
_mm_store_si128(d++, dst_pixel);
count -= 4;
}
src = reinterpret_cast<const SkPMColor*>(s);
dst = reinterpret_cast<SkPMColor*>(d);
}
for (int i = count - 1; i >= 0; --i) {
*dst = proc(*src, *dst);
dst++;
src++;
}
} else {
for (int i = count - 1; i >= 0; --i) {
unsigned a = aa[i];
if (0 != a) {
SkPMColor dstC = dst[i];
SkPMColor C = proc(src[i], dstC);
if (a != 0xFF) {
C = SkFourByteInterp(C, dstC, a);
}
dst[i] = C;
}
}
}
}
void SkSSE2ProcCoeffXfermode::xfer16(uint16_t dst[], const SkPMColor src[],
int count, const SkAlpha aa[]) const {
SkASSERT(dst && src && count >= 0);
SkXfermodeProc proc = this->getProc();
SkXfermodeProcSIMD procSIMD = reinterpret_cast<SkXfermodeProcSIMD>(fProcSIMD);
SkASSERT(procSIMD != NULL);
if (NULL == aa) {
if (count >= 8) {
while (((size_t)dst & 0x0F) != 0) {
SkPMColor dstC = SkPixel16ToPixel32(*dst);
*dst = SkPixel32ToPixel16_ToU16(proc(*src, dstC));
dst++;
src++;
count--;
}
const __m128i* s = reinterpret_cast<const __m128i*>(src);
__m128i* d = reinterpret_cast<__m128i*>(dst);
while (count >= 8) {
__m128i src_pixel1 = _mm_loadu_si128(s++);
__m128i src_pixel2 = _mm_loadu_si128(s++);
__m128i dst_pixel = _mm_load_si128(d);
__m128i dst_pixel1 = _mm_unpacklo_epi16(dst_pixel, _mm_setzero_si128());
__m128i dst_pixel2 = _mm_unpackhi_epi16(dst_pixel, _mm_setzero_si128());
__m128i dstC1 = SkPixel16ToPixel32_SSE2(dst_pixel1);
__m128i dstC2 = SkPixel16ToPixel32_SSE2(dst_pixel2);
dst_pixel1 = procSIMD(src_pixel1, dstC1);
dst_pixel2 = procSIMD(src_pixel2, dstC2);
dst_pixel = SkPixel32ToPixel16_ToU16_SSE2(dst_pixel1, dst_pixel2);
_mm_store_si128(d++, dst_pixel);
count -= 8;
}
src = reinterpret_cast<const SkPMColor*>(s);
dst = reinterpret_cast<uint16_t*>(d);
}
for (int i = count - 1; i >= 0; --i) {
SkPMColor dstC = SkPixel16ToPixel32(*dst);
*dst = SkPixel32ToPixel16_ToU16(proc(*src, dstC));
dst++;
src++;
}
} else {
for (int i = count - 1; i >= 0; --i) {
unsigned a = aa[i];
if (0 != a) {
SkPMColor dstC = SkPixel16ToPixel32(dst[i]);
SkPMColor C = proc(src[i], dstC);
if (0xFF != a) {
C = SkFourByteInterp(C, dstC, a);
}
dst[i] = SkPixel32ToPixel16_ToU16(C);
}
}
}
}
#ifndef SK_IGNORE_TO_STRING
void SkSSE2ProcCoeffXfermode::toString(SkString* str) const {
this->INHERITED::toString(str);
}
#endif
////////////////////////////////////////////////////////////////////////////////
// 4 pixels modeprocs with SSE2
SkXfermodeProcSIMD gSSE2XfermodeProcs[] = {
NULL, // kClear_Mode
NULL, // kSrc_Mode
NULL, // kDst_Mode
srcover_modeproc_SSE2,
dstover_modeproc_SSE2,
srcin_modeproc_SSE2,
dstin_modeproc_SSE2,
srcout_modeproc_SSE2,
dstout_modeproc_SSE2,
srcatop_modeproc_SSE2,
dstatop_modeproc_SSE2,
xor_modeproc_SSE2,
plus_modeproc_SSE2,
modulate_modeproc_SSE2,
screen_modeproc_SSE2,
overlay_modeproc_SSE2,
darken_modeproc_SSE2,
lighten_modeproc_SSE2,
colordodge_modeproc_SSE2,
colorburn_modeproc_SSE2,
hardlight_modeproc_SSE2,
softlight_modeproc_SSE2,
difference_modeproc_SSE2,
exclusion_modeproc_SSE2,
multiply_modeproc_SSE2,
NULL, // kHue_Mode
NULL, // kSaturation_Mode
NULL, // kColor_Mode
NULL, // kLuminosity_Mode
};
SkProcCoeffXfermode* SkPlatformXfermodeFactory_impl_SSE2(const ProcCoeff& rec,
SkXfermode::Mode mode) {
void* procSIMD = reinterpret_cast<void*>(gSSE2XfermodeProcs[mode]);
if (procSIMD != NULL) {
return SkNEW_ARGS(SkSSE2ProcCoeffXfermode, (rec, mode, procSIMD));
}
return NULL;
}