blob: 1c070f486cd0086fac994fb94196c37cc64922e0 [file] [log] [blame]
/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Skottie.h"
#include "SkCanvas.h"
#include "SkData.h"
#include "SkFontMgr.h"
#include "SkImage.h"
#include "SkMakeUnique.h"
#include "SkOSPath.h"
#include "SkPaint.h"
#include "SkParse.h"
#include "SkPoint.h"
#include "SkSGClipEffect.h"
#include "SkSGColor.h"
#include "SkSGColorFilter.h"
#include "SkSGDraw.h"
#include "SkSGGeometryTransform.h"
#include "SkSGGradient.h"
#include "SkSGGroup.h"
#include "SkSGImage.h"
#include "SkSGInvalidationController.h"
#include "SkSGMaskEffect.h"
#include "SkSGMerge.h"
#include "SkSGOpacityEffect.h"
#include "SkSGPath.h"
#include "SkSGRect.h"
#include "SkSGRoundEffect.h"
#include "SkSGScene.h"
#include "SkSGTransform.h"
#include "SkSGTrimEffect.h"
#include "SkStream.h"
#include "SkTArray.h"
#include "SkTHash.h"
#include "SkTLazy.h"
#include "SkTime.h"
#include "SkTo.h"
#include "SkottieAdapter.h"
#include "SkottieAnimator.h"
#include "SkottieJson.h"
#include "SkottiePriv.h"
#include "SkottieValue.h"
#include <cmath>
#include <vector>
#include "stdlib.h"
namespace skottie {
namespace internal {
void LogJSON(const skjson::Value& json, const char msg[]) {
const auto dump = json.toString();
LOG("%s: %s\n", msg, dump.c_str());
}
namespace {
// DEPRECATED: replace w/ LogJSON.
bool LogFail(const skjson::Value& json, const char* msg) {
const auto dump = json.toString();
LOG("!! %s: %s\n", msg, dump.c_str());
return false;
}
sk_sp<sksg::Matrix> AttachMatrix(const skjson::ObjectValue& t, AnimatorScope* ascope,
sk_sp<sksg::Matrix> parentMatrix) {
static const VectorValue g_default_vec_0 = { 0, 0},
g_default_vec_100 = {100, 100};
auto matrix = sksg::Matrix::Make(SkMatrix::I(), parentMatrix);
auto adapter = sk_make_sp<TransformAdapter>(matrix);
auto bound = BindProperty<VectorValue>(t["a"], ascope,
[adapter](const VectorValue& a) {
adapter->setAnchorPoint(ValueTraits<VectorValue>::As<SkPoint>(a));
}, g_default_vec_0);
bound |= BindProperty<VectorValue>(t["p"], ascope,
[adapter](const VectorValue& p) {
adapter->setPosition(ValueTraits<VectorValue>::As<SkPoint>(p));
}, g_default_vec_0);
bound |= BindProperty<VectorValue>(t["s"], ascope,
[adapter](const VectorValue& s) {
adapter->setScale(ValueTraits<VectorValue>::As<SkVector>(s));
}, g_default_vec_100);
const auto* jrotation = &t["r"];
if (jrotation->is<skjson::NullValue>()) {
// 3d rotations have separate rx,ry,rz components. While we don't fully support them,
// we can still make use of rz.
jrotation = &t["rz"];
}
bound |= BindProperty<ScalarValue>(*jrotation, ascope,
[adapter](const ScalarValue& r) {
adapter->setRotation(r);
}, 0.0f);
bound |= BindProperty<ScalarValue>(t["sk"], ascope,
[adapter](const ScalarValue& sk) {
adapter->setSkew(sk);
}, 0.0f);
bound |= BindProperty<ScalarValue>(t["sa"], ascope,
[adapter](const ScalarValue& sa) {
adapter->setSkewAxis(sa);
}, 0.0f);
return bound ? matrix : parentMatrix;
}
sk_sp<sksg::RenderNode> AttachOpacity(const skjson::ObjectValue& jtransform, AnimatorScope* ascope,
sk_sp<sksg::RenderNode> childNode) {
if (!childNode)
return nullptr;
auto opacityNode = sksg::OpacityEffect::Make(childNode);
if (!BindProperty<ScalarValue>(jtransform["o"], ascope,
[opacityNode](const ScalarValue& o) {
// BM opacity is [0..100]
opacityNode->setOpacity(o * 0.01f);
}, 100.0f)) {
// We can ignore static full opacity.
return childNode;
}
return std::move(opacityNode);
}
sk_sp<sksg::Path> AttachPath(const skjson::Value& jpath, AnimatorScope* ascope) {
auto path_node = sksg::Path::Make();
return BindProperty<ShapeValue>(jpath, ascope,
[path_node](const ShapeValue& p) {
// FillType is tracked in the SG node, not in keyframes -- make sure we preserve it.
auto path = ValueTraits<ShapeValue>::As<SkPath>(p);
path.setFillType(path_node->getFillType());
path_node->setPath(path);
})
? path_node
: nullptr;
}
sk_sp<sksg::GeometryNode> AttachPathGeometry(const skjson::ObjectValue& jpath,
AnimatorScope* ascope) {
return AttachPath(jpath["ks"], ascope);
}
sk_sp<sksg::GeometryNode> AttachRRectGeometry(const skjson::ObjectValue& jrect,
AnimatorScope* ascope) {
auto rect_node = sksg::RRect::Make();
auto adapter = sk_make_sp<RRectAdapter>(rect_node);
auto p_attached = BindProperty<VectorValue>(jrect["p"], ascope,
[adapter](const VectorValue& p) {
adapter->setPosition(ValueTraits<VectorValue>::As<SkPoint>(p));
});
auto s_attached = BindProperty<VectorValue>(jrect["s"], ascope,
[adapter](const VectorValue& s) {
adapter->setSize(ValueTraits<VectorValue>::As<SkSize>(s));
});
auto r_attached = BindProperty<ScalarValue>(jrect["r"], ascope,
[adapter](const ScalarValue& r) {
adapter->setRadius(SkSize::Make(r, r));
});
if (!p_attached && !s_attached && !r_attached) {
return nullptr;
}
return std::move(rect_node);
}
sk_sp<sksg::GeometryNode> AttachEllipseGeometry(const skjson::ObjectValue& jellipse,
AnimatorScope* ascope) {
auto rect_node = sksg::RRect::Make();
auto adapter = sk_make_sp<RRectAdapter>(rect_node);
auto p_attached = BindProperty<VectorValue>(jellipse["p"], ascope,
[adapter](const VectorValue& p) {
adapter->setPosition(ValueTraits<VectorValue>::As<SkPoint>(p));
});
auto s_attached = BindProperty<VectorValue>(jellipse["s"], ascope,
[adapter](const VectorValue& s) {
const auto sz = ValueTraits<VectorValue>::As<SkSize>(s);
adapter->setSize(sz);
adapter->setRadius(SkSize::Make(sz.width() / 2, sz.height() / 2));
});
if (!p_attached && !s_attached) {
return nullptr;
}
return std::move(rect_node);
}
sk_sp<sksg::GeometryNode> AttachPolystarGeometry(const skjson::ObjectValue& jstar,
AnimatorScope* ascope) {
static constexpr PolyStarAdapter::Type gTypes[] = {
PolyStarAdapter::Type::kStar, // "sy": 1
PolyStarAdapter::Type::kPoly, // "sy": 2
};
const auto type = ParseDefault<size_t>(jstar["sy"], 0) - 1;
if (type >= SK_ARRAY_COUNT(gTypes)) {
LogFail(jstar, "Unknown polystar type");
return nullptr;
}
auto path_node = sksg::Path::Make();
auto adapter = sk_make_sp<PolyStarAdapter>(path_node, gTypes[type]);
BindProperty<VectorValue>(jstar["p"], ascope,
[adapter](const VectorValue& p) {
adapter->setPosition(ValueTraits<VectorValue>::As<SkPoint>(p));
});
BindProperty<ScalarValue>(jstar["pt"], ascope,
[adapter](const ScalarValue& pt) {
adapter->setPointCount(pt);
});
BindProperty<ScalarValue>(jstar["ir"], ascope,
[adapter](const ScalarValue& ir) {
adapter->setInnerRadius(ir);
});
BindProperty<ScalarValue>(jstar["or"], ascope,
[adapter](const ScalarValue& otr) {
adapter->setOuterRadius(otr);
});
BindProperty<ScalarValue>(jstar["is"], ascope,
[adapter](const ScalarValue& is) {
adapter->setInnerRoundness(is);
});
BindProperty<ScalarValue>(jstar["os"], ascope,
[adapter](const ScalarValue& os) {
adapter->setOuterRoundness(os);
});
BindProperty<ScalarValue>(jstar["r"], ascope,
[adapter](const ScalarValue& r) {
adapter->setRotation(r);
});
return std::move(path_node);
}
sk_sp<sksg::Color> AttachColor(const skjson::ObjectValue& jcolor, AnimatorScope* ascope,
const char prop_name[]) {
auto color_node = sksg::Color::Make(SK_ColorBLACK);
BindProperty<VectorValue>(jcolor[prop_name], ascope,
[color_node](const VectorValue& c) {
color_node->setColor(ValueTraits<VectorValue>::As<SkColor>(c));
});
return color_node;
}
sk_sp<sksg::Gradient> AttachGradient(const skjson::ObjectValue& jgrad, AnimatorScope* ascope) {
const skjson::ObjectValue* stops = jgrad["g"];
if (!stops)
return nullptr;
const auto stopCount = ParseDefault<int>((*stops)["p"], -1);
if (stopCount < 0)
return nullptr;
sk_sp<sksg::Gradient> gradient_node;
sk_sp<GradientAdapter> adapter;
if (ParseDefault<int>(jgrad["t"], 1) == 1) {
auto linear_node = sksg::LinearGradient::Make();
adapter = sk_make_sp<LinearGradientAdapter>(linear_node, stopCount);
gradient_node = std::move(linear_node);
} else {
auto radial_node = sksg::RadialGradient::Make();
adapter = sk_make_sp<RadialGradientAdapter>(radial_node, stopCount);
// TODO: highlight, angle
gradient_node = std::move(radial_node);
}
BindProperty<VectorValue>((*stops)["k"], ascope,
[adapter](const VectorValue& stops) {
adapter->setColorStops(stops);
});
BindProperty<VectorValue>(jgrad["s"], ascope,
[adapter](const VectorValue& s) {
adapter->setStartPoint(ValueTraits<VectorValue>::As<SkPoint>(s));
});
BindProperty<VectorValue>(jgrad["e"], ascope,
[adapter](const VectorValue& e) {
adapter->setEndPoint(ValueTraits<VectorValue>::As<SkPoint>(e));
});
return gradient_node;
}
sk_sp<sksg::PaintNode> AttachPaint(const skjson::ObjectValue& jpaint, AnimatorScope* ascope,
sk_sp<sksg::PaintNode> paint_node) {
if (paint_node) {
paint_node->setAntiAlias(true);
BindProperty<ScalarValue>(jpaint["o"], ascope,
[paint_node](const ScalarValue& o) {
// BM opacity is [0..100]
paint_node->setOpacity(o * 0.01f);
});
}
return paint_node;
}
sk_sp<sksg::PaintNode> AttachStroke(const skjson::ObjectValue& jstroke, AnimatorScope* ascope,
sk_sp<sksg::PaintNode> stroke_node) {
if (!stroke_node)
return nullptr;
stroke_node->setStyle(SkPaint::kStroke_Style);
BindProperty<ScalarValue>(jstroke["w"], ascope,
[stroke_node](const ScalarValue& w) {
stroke_node->setStrokeWidth(w);
});
stroke_node->setStrokeMiter(ParseDefault<SkScalar>(jstroke["ml"], 4.0f));
static constexpr SkPaint::Join gJoins[] = {
SkPaint::kMiter_Join,
SkPaint::kRound_Join,
SkPaint::kBevel_Join,
};
stroke_node->setStrokeJoin(gJoins[SkTMin<size_t>(ParseDefault<size_t>(jstroke["lj"], 1) - 1,
SK_ARRAY_COUNT(gJoins) - 1)]);
static constexpr SkPaint::Cap gCaps[] = {
SkPaint::kButt_Cap,
SkPaint::kRound_Cap,
SkPaint::kSquare_Cap,
};
stroke_node->setStrokeCap(gCaps[SkTMin<size_t>(ParseDefault<size_t>(jstroke["lc"], 1) - 1,
SK_ARRAY_COUNT(gCaps) - 1)]);
return stroke_node;
}
sk_sp<sksg::PaintNode> AttachColorFill(const skjson::ObjectValue& jfill, AnimatorScope* ascope) {
return AttachPaint(jfill, ascope, AttachColor(jfill, ascope, "c"));
}
sk_sp<sksg::PaintNode> AttachGradientFill(const skjson::ObjectValue& jfill, AnimatorScope* ascope) {
return AttachPaint(jfill, ascope, AttachGradient(jfill, ascope));
}
sk_sp<sksg::PaintNode> AttachColorStroke(const skjson::ObjectValue& jstroke,
AnimatorScope* ascope) {
return AttachStroke(jstroke, ascope, AttachPaint(jstroke, ascope,
AttachColor(jstroke, ascope, "c")));
}
sk_sp<sksg::PaintNode> AttachGradientStroke(const skjson::ObjectValue& jstroke,
AnimatorScope* ascope) {
return AttachStroke(jstroke, ascope, AttachPaint(jstroke, ascope,
AttachGradient(jstroke, ascope)));
}
sk_sp<sksg::Merge> Merge(std::vector<sk_sp<sksg::GeometryNode>>&& geos, sksg::Merge::Mode mode) {
std::vector<sksg::Merge::Rec> merge_recs;
merge_recs.reserve(geos.size());
for (const auto& geo : geos) {
merge_recs.push_back(
{std::move(geo), merge_recs.empty() ? sksg::Merge::Mode::kMerge : mode});
}
return sksg::Merge::Make(std::move(merge_recs));
}
std::vector<sk_sp<sksg::GeometryNode>> AttachMergeGeometryEffect(
const skjson::ObjectValue& jmerge, AnimatorScope*,
std::vector<sk_sp<sksg::GeometryNode>>&& geos) {
static constexpr sksg::Merge::Mode gModes[] = {
sksg::Merge::Mode::kMerge, // "mm": 1
sksg::Merge::Mode::kUnion, // "mm": 2
sksg::Merge::Mode::kDifference, // "mm": 3
sksg::Merge::Mode::kIntersect, // "mm": 4
sksg::Merge::Mode::kXOR , // "mm": 5
};
const auto mode = gModes[SkTMin<size_t>(ParseDefault<size_t>(jmerge["mm"], 1) - 1,
SK_ARRAY_COUNT(gModes) - 1)];
std::vector<sk_sp<sksg::GeometryNode>> merged;
merged.push_back(Merge(std::move(geos), mode));
return merged;
}
std::vector<sk_sp<sksg::GeometryNode>> AttachTrimGeometryEffect(
const skjson::ObjectValue& jtrim, AnimatorScope* ascope,
std::vector<sk_sp<sksg::GeometryNode>>&& geos) {
enum class Mode {
kMerged, // "m": 1
kSeparate, // "m": 2
} gModes[] = { Mode::kMerged, Mode::kSeparate };
const auto mode = gModes[SkTMin<size_t>(ParseDefault<size_t>(jtrim["m"], 1) - 1,
SK_ARRAY_COUNT(gModes) - 1)];
std::vector<sk_sp<sksg::GeometryNode>> inputs;
if (mode == Mode::kMerged) {
inputs.push_back(Merge(std::move(geos), sksg::Merge::Mode::kMerge));
} else {
inputs = std::move(geos);
}
std::vector<sk_sp<sksg::GeometryNode>> trimmed;
trimmed.reserve(inputs.size());
for (const auto& i : inputs) {
const auto trimEffect = sksg::TrimEffect::Make(i);
trimmed.push_back(trimEffect);
const auto adapter = sk_make_sp<TrimEffectAdapter>(std::move(trimEffect));
BindProperty<ScalarValue>(jtrim["s"], ascope,
[adapter](const ScalarValue& s) {
adapter->setStart(s);
});
BindProperty<ScalarValue>(jtrim["e"], ascope,
[adapter](const ScalarValue& e) {
adapter->setEnd(e);
});
BindProperty<ScalarValue>(jtrim["o"], ascope,
[adapter](const ScalarValue& o) {
adapter->setOffset(o);
});
}
return trimmed;
}
std::vector<sk_sp<sksg::GeometryNode>> AttachRoundGeometryEffect(
const skjson::ObjectValue& jtrim, AnimatorScope* ascope,
std::vector<sk_sp<sksg::GeometryNode>>&& geos) {
std::vector<sk_sp<sksg::GeometryNode>> rounded;
rounded.reserve(geos.size());
for (const auto& g : geos) {
const auto roundEffect = sksg::RoundEffect::Make(std::move(g));
rounded.push_back(roundEffect);
BindProperty<ScalarValue>(jtrim["r"], ascope,
[roundEffect](const ScalarValue& r) {
roundEffect->setRadius(r);
});
}
return rounded;
}
using GeometryAttacherT = sk_sp<sksg::GeometryNode> (*)(const skjson::ObjectValue&, AnimatorScope*);
static constexpr GeometryAttacherT gGeometryAttachers[] = {
AttachPathGeometry,
AttachRRectGeometry,
AttachEllipseGeometry,
AttachPolystarGeometry,
};
using PaintAttacherT = sk_sp<sksg::PaintNode> (*)(const skjson::ObjectValue&, AnimatorScope*);
static constexpr PaintAttacherT gPaintAttachers[] = {
AttachColorFill,
AttachColorStroke,
AttachGradientFill,
AttachGradientStroke,
};
using GeometryEffectAttacherT =
std::vector<sk_sp<sksg::GeometryNode>> (*)(const skjson::ObjectValue&,
AnimatorScope*,
std::vector<sk_sp<sksg::GeometryNode>>&&);
static constexpr GeometryEffectAttacherT gGeometryEffectAttachers[] = {
AttachMergeGeometryEffect,
AttachTrimGeometryEffect,
AttachRoundGeometryEffect,
};
enum class ShapeType {
kGeometry,
kGeometryEffect,
kPaint,
kGroup,
kTransform,
};
struct ShapeInfo {
const char* fTypeString;
ShapeType fShapeType;
uint32_t fAttacherIndex; // index into respective attacher tables
};
const ShapeInfo* FindShapeInfo(const skjson::ObjectValue& jshape) {
static constexpr ShapeInfo gShapeInfo[] = {
{ "el", ShapeType::kGeometry , 2 }, // ellipse -> AttachEllipseGeometry
{ "fl", ShapeType::kPaint , 0 }, // fill -> AttachColorFill
{ "gf", ShapeType::kPaint , 2 }, // gfill -> AttachGradientFill
{ "gr", ShapeType::kGroup , 0 }, // group -> Inline handler
{ "gs", ShapeType::kPaint , 3 }, // gstroke -> AttachGradientStroke
{ "mm", ShapeType::kGeometryEffect, 0 }, // merge -> AttachMergeGeometryEffect
{ "rc", ShapeType::kGeometry , 1 }, // rrect -> AttachRRectGeometry
{ "rd", ShapeType::kGeometryEffect, 2 }, // round -> AttachRoundGeometryEffect
{ "sh", ShapeType::kGeometry , 0 }, // shape -> AttachPathGeometry
{ "sr", ShapeType::kGeometry , 3 }, // polystar -> AttachPolyStarGeometry
{ "st", ShapeType::kPaint , 1 }, // stroke -> AttachColorStroke
{ "tm", ShapeType::kGeometryEffect, 1 }, // trim -> AttachTrimGeometryEffect
{ "tr", ShapeType::kTransform , 0 }, // transform -> Inline handler
};
const skjson::StringValue* type = jshape["ty"];
if (!type) {
return nullptr;
}
const auto* info = bsearch(type->begin(),
gShapeInfo,
SK_ARRAY_COUNT(gShapeInfo),
sizeof(ShapeInfo),
[](const void* key, const void* info) {
return strcmp(static_cast<const char*>(key),
static_cast<const ShapeInfo*>(info)->fTypeString);
});
return static_cast<const ShapeInfo*>(info);
}
struct GeometryEffectRec {
const skjson::ObjectValue& fJson;
GeometryEffectAttacherT fAttach;
};
struct AttachShapeContext {
AttachShapeContext(AnimatorScope* ascope,
std::vector<sk_sp<sksg::GeometryNode>>* geos,
std::vector<GeometryEffectRec>* effects,
size_t committedAnimators)
: fScope(ascope)
, fGeometryStack(geos)
, fGeometryEffectStack(effects)
, fCommittedAnimators(committedAnimators) {}
AnimatorScope* fScope;
std::vector<sk_sp<sksg::GeometryNode>>* fGeometryStack;
std::vector<GeometryEffectRec>* fGeometryEffectStack;
size_t fCommittedAnimators;
};
sk_sp<sksg::RenderNode> AttachShape(const skjson::ArrayValue* jshape,
AttachShapeContext* shapeCtx) {
if (!jshape)
return nullptr;
SkDEBUGCODE(const auto initialGeometryEffects = shapeCtx->fGeometryEffectStack->size();)
sk_sp<sksg::Group> shape_group = sksg::Group::Make();
sk_sp<sksg::RenderNode> shape_wrapper = shape_group;
sk_sp<sksg::Matrix> shape_matrix;
struct ShapeRec {
const skjson::ObjectValue& fJson;
const ShapeInfo& fInfo;
};
// First pass (bottom->top):
//
// * pick up the group transform and opacity
// * push local geometry effects onto the stack
// * store recs for next pass
//
std::vector<ShapeRec> recs;
for (size_t i = 0; i < jshape->size(); ++i) {
const skjson::ObjectValue* shape = (*jshape)[jshape->size() - 1 - i];
if (!shape) continue;
const auto* info = FindShapeInfo(*shape);
if (!info) {
LogFail((*shape)["ty"], "Unknown shape");
continue;
}
recs.push_back({ *shape, *info });
switch (info->fShapeType) {
case ShapeType::kTransform:
if ((shape_matrix = AttachMatrix(*shape, shapeCtx->fScope, nullptr))) {
shape_wrapper = sksg::Transform::Make(std::move(shape_wrapper), shape_matrix);
}
shape_wrapper = AttachOpacity(*shape, shapeCtx->fScope, std::move(shape_wrapper));
break;
case ShapeType::kGeometryEffect:
SkASSERT(info->fAttacherIndex < SK_ARRAY_COUNT(gGeometryEffectAttachers));
shapeCtx->fGeometryEffectStack->push_back(
{ *shape, gGeometryEffectAttachers[info->fAttacherIndex] });
break;
default:
break;
}
}
// Second pass (top -> bottom, after 2x reverse):
//
// * track local geometry
// * emit local paints
//
std::vector<sk_sp<sksg::GeometryNode>> geos;
std::vector<sk_sp<sksg::RenderNode >> draws;
for (auto rec = recs.rbegin(); rec != recs.rend(); ++rec) {
switch (rec->fInfo.fShapeType) {
case ShapeType::kGeometry: {
SkASSERT(rec->fInfo.fAttacherIndex < SK_ARRAY_COUNT(gGeometryAttachers));
if (auto geo = gGeometryAttachers[rec->fInfo.fAttacherIndex](rec->fJson,
shapeCtx->fScope)) {
geos.push_back(std::move(geo));
}
} break;
case ShapeType::kGeometryEffect: {
// Apply the current effect and pop from the stack.
SkASSERT(rec->fInfo.fAttacherIndex < SK_ARRAY_COUNT(gGeometryEffectAttachers));
if (!geos.empty()) {
geos = gGeometryEffectAttachers[rec->fInfo.fAttacherIndex](rec->fJson,
shapeCtx->fScope,
std::move(geos));
}
SkASSERT(&shapeCtx->fGeometryEffectStack->back().fJson == &rec->fJson);
SkASSERT(shapeCtx->fGeometryEffectStack->back().fAttach ==
gGeometryEffectAttachers[rec->fInfo.fAttacherIndex]);
shapeCtx->fGeometryEffectStack->pop_back();
} break;
case ShapeType::kGroup: {
AttachShapeContext groupShapeCtx(shapeCtx->fScope,
&geos,
shapeCtx->fGeometryEffectStack,
shapeCtx->fCommittedAnimators);
if (auto subgroup = AttachShape(rec->fJson["it"], &groupShapeCtx)) {
draws.push_back(std::move(subgroup));
SkASSERT(groupShapeCtx.fCommittedAnimators >= shapeCtx->fCommittedAnimators);
shapeCtx->fCommittedAnimators = groupShapeCtx.fCommittedAnimators;
}
} break;
case ShapeType::kPaint: {
SkASSERT(rec->fInfo.fAttacherIndex < SK_ARRAY_COUNT(gPaintAttachers));
auto paint = gPaintAttachers[rec->fInfo.fAttacherIndex](rec->fJson, shapeCtx->fScope);
if (!paint || geos.empty())
break;
auto drawGeos = geos;
// Apply all pending effects from the stack.
for (auto it = shapeCtx->fGeometryEffectStack->rbegin();
it != shapeCtx->fGeometryEffectStack->rend(); ++it) {
drawGeos = it->fAttach(it->fJson, shapeCtx->fScope, std::move(drawGeos));
}
// If we still have multiple geos, reduce using 'merge'.
auto geo = drawGeos.size() > 1
? Merge(std::move(drawGeos), sksg::Merge::Mode::kMerge)
: drawGeos[0];
SkASSERT(geo);
draws.push_back(sksg::Draw::Make(std::move(geo), std::move(paint)));
shapeCtx->fCommittedAnimators = shapeCtx->fScope->size();
} break;
default:
break;
}
}
// By now we should have popped all local geometry effects.
SkASSERT(shapeCtx->fGeometryEffectStack->size() == initialGeometryEffects);
// Push transformed local geometries to parent list, for subsequent paints.
for (const auto& geo : geos) {
shapeCtx->fGeometryStack->push_back(shape_matrix
? sksg::GeometryTransform::Make(std::move(geo), shape_matrix)
: std::move(geo));
}
// Emit local draws reversed (bottom->top, per spec).
for (auto it = draws.rbegin(); it != draws.rend(); ++it) {
shape_group->addChild(std::move(*it));
}
return draws.empty() ? nullptr : shape_wrapper;
}
} // namespace
sk_sp<sksg::RenderNode> AnimationBuilder::attachNestedAnimation(const char* name,
AnimatorScope* ascope) {
class SkottieSGAdapter final : public sksg::RenderNode {
public:
explicit SkottieSGAdapter(sk_sp<Animation> animation)
: fAnimation(std::move(animation)) {
SkASSERT(fAnimation);
}
protected:
SkRect onRevalidate(sksg::InvalidationController*, const SkMatrix&) override {
return SkRect::MakeSize(fAnimation->size());
}
void onRender(SkCanvas* canvas, const RenderContext* ctx) const override {
const auto local_scope =
ScopedRenderContext(canvas, ctx).setIsolation(this->bounds(), true);
fAnimation->render(canvas);
}
private:
const sk_sp<Animation> fAnimation;
};
class SkottieAnimatorAdapter final : public sksg::Animator {
public:
SkottieAnimatorAdapter(sk_sp<Animation> animation, float time_scale)
: fAnimation(std::move(animation))
, fTimeScale(time_scale) {
SkASSERT(fAnimation);
}
protected:
void onTick(float t) {
// TODO: we prolly need more sophisticated timeline mapping for nested animations.
fAnimation->seek(t * fTimeScale);
}
private:
const sk_sp<Animation> fAnimation;
const float fTimeScale;
};
const auto data = fResourceProvider.load("", name);
if (!data) {
LOG("!! Could not load: %s\n", name);
return nullptr;
}
auto animation = Animation::Make(static_cast<const char*>(data->data()), data->size(),
&fResourceProvider);
if (!animation) {
LOG("!! Could not parse nested animation: %s\n", name);
return nullptr;
}
ascope->push_back(
skstd::make_unique<SkottieAnimatorAdapter>(animation, animation->duration() / fDuration));
return sk_make_sp<SkottieSGAdapter>(std::move(animation));
}
sk_sp<sksg::RenderNode> AnimationBuilder::attachAssetRef(
const skjson::ObjectValue& jlayer, AnimatorScope* ascope,
sk_sp<sksg::RenderNode>(AnimationBuilder::* attach_proc)(const skjson::ObjectValue& comp,
AnimatorScope* ascope)) {
const auto refId = ParseDefault<SkString>(jlayer["refId"], SkString());
if (refId.isEmpty()) {
LOG("!! Layer missing refId\n");
return nullptr;
}
if (refId.startsWith("$")) {
return this->attachNestedAnimation(refId.c_str() + 1, ascope);
}
const auto* asset_info = fAssets.find(refId);
if (!asset_info) {
LOG("!! Asset not found: '%s'\n", refId.c_str());
return nullptr;
}
if (asset_info->fIsAttaching) {
LOG("!! Asset cycle detected for: '%s'\n", refId.c_str());
return nullptr;
}
asset_info->fIsAttaching = true;
auto asset = (this->*attach_proc)(*asset_info->fAsset, ascope);
asset_info->fIsAttaching = false;
return asset;
}
sk_sp<sksg::RenderNode> AnimationBuilder::attachPrecompLayer(const skjson::ObjectValue& jlayer,
AnimatorScope* ascope) {
const skjson::ObjectValue* time_remap = jlayer["tm"];
const auto start_time = ParseDefault<float>(jlayer["st"], 0.0f),
stretch_time = ParseDefault<float>(jlayer["sr"], 1.0f);
const auto requires_time_mapping = !SkScalarNearlyEqual(start_time , 0) ||
!SkScalarNearlyEqual(stretch_time, 1) ||
time_remap;
AnimatorScope local_animators;
auto comp_layer = this->attachAssetRef(jlayer,
requires_time_mapping ? &local_animators : ascope,
&AnimationBuilder::attachComposition);
// Applies a bias/scale/remap t-adjustment to child animators.
class CompTimeMapper final : public sksg::GroupAnimator {
public:
CompTimeMapper(sksg::AnimatorList&& layer_animators, float time_bias, float time_scale)
: INHERITED(std::move(layer_animators))
, fTimeBias(time_bias)
, fTimeScale(time_scale) {}
void onTick(float t) override {
// When time remapping is active, |t| is driven externally.
if (fRemappedTime.isValid()) {
t = *fRemappedTime.get();
}
this->INHERITED::onTick((t + fTimeBias) * fTimeScale);
}
void remapTime(float t) { fRemappedTime.set(t); }
private:
const float fTimeBias,
fTimeScale;
SkTLazy<float> fRemappedTime;
using INHERITED = sksg::GroupAnimator;
};
if (requires_time_mapping) {
const auto t_bias = -start_time,
t_scale = sk_ieee_float_divide(1, stretch_time);
auto time_mapper = skstd::make_unique<CompTimeMapper>(std::move(local_animators),
t_bias, t_scale);
if (time_remap) {
// The lambda below captures a raw pointer to the mapper object. That should be safe,
// because both the lambda and the mapper are scoped/owned by ctx->fAnimators.
auto* raw_mapper = time_mapper.get();
auto frame_rate = fFrameRate;
BindProperty<ScalarValue>(*time_remap, ascope,
[raw_mapper, frame_rate](const ScalarValue& t) {
raw_mapper->remapTime(t * frame_rate);
});
}
ascope->push_back(std::move(time_mapper));
}
return comp_layer;
}
sk_sp<sksg::RenderNode> AnimationBuilder::attachSolidLayer(const skjson::ObjectValue& jlayer,
AnimatorScope*) {
const auto size = SkSize::Make(ParseDefault<float>(jlayer["sw"], 0.0f),
ParseDefault<float>(jlayer["sh"], 0.0f));
const skjson::StringValue* hex_str = jlayer["sc"];
uint32_t c;
if (size.isEmpty() ||
*hex_str->begin() != '#' ||
!SkParse::FindHex(hex_str->begin() + 1, &c)) {
LogFail(jlayer, "Could not parse solid layer");
return nullptr;
}
const SkColor color = 0xff000000 | c;
return sksg::Draw::Make(sksg::Rect::Make(SkRect::MakeSize(size)),
sksg::Color::Make(color));
}
sk_sp<sksg::RenderNode> AnimationBuilder::attachImageAsset(const skjson::ObjectValue& jimage,
AnimatorScope*) {
const skjson::StringValue* name = jimage["p"];
const skjson::StringValue* path = jimage["u"];
if (!name) {
return nullptr;
}
const auto name_cstr = name->begin(),
path_cstr = path ? path->begin() : "";
const auto res_id = SkStringPrintf("%s|%s", path_cstr, name_cstr);
if (auto* attached_image = fAssetCache.find(res_id)) {
return *attached_image;
}
const auto data = fResourceProvider.load(path_cstr, name_cstr);
if (!data) {
LOG("!! Could not load image resource: %s/%s\n", path_cstr, name_cstr);
return nullptr;
}
// TODO: non-intrisic image sizing
return *fAssetCache.set(res_id, sksg::Image::Make(SkImage::MakeFromEncoded(data)));
}
sk_sp<sksg::RenderNode> AnimationBuilder::attachImageLayer(const skjson::ObjectValue& jlayer,
AnimatorScope* ascope) {
return this->attachAssetRef(jlayer, ascope, &AnimationBuilder::attachImageAsset);
}
sk_sp<sksg::RenderNode> AnimationBuilder::attachNullLayer(const skjson::ObjectValue& layer,
AnimatorScope*) {
// Null layers are used solely to drive dependent transforms,
// but we use free-floating sksg::Matrices for that purpose.
return nullptr;
}
sk_sp<sksg::RenderNode> AnimationBuilder::attachShapeLayer(const skjson::ObjectValue& layer,
AnimatorScope* ascope) {
std::vector<sk_sp<sksg::GeometryNode>> geometryStack;
std::vector<GeometryEffectRec> geometryEffectStack;
AttachShapeContext shapeCtx(ascope, &geometryStack, &geometryEffectStack, ascope->size());
auto shapeNode = AttachShape(layer["shapes"], &shapeCtx);
// Trim uncommitted animators: AttachShape consumes effects on the fly, and greedily attaches
// geometries => at the end, we can end up with unused geometries, which are nevertheless alive
// due to attached animators. To avoid this, we track committed animators and discard the
// orphans here.
SkASSERT(shapeCtx.fCommittedAnimators <= ascope->size());
ascope->resize(shapeCtx.fCommittedAnimators);
return shapeNode;
}
struct AnimationBuilder::AttachLayerContext {
AttachLayerContext(const skjson::ArrayValue& jlayers, AnimatorScope* scope)
: fLayerList(jlayers), fScope(scope) {}
const skjson::ArrayValue& fLayerList;
AnimatorScope* fScope;
SkTHashMap<int, sk_sp<sksg::Matrix>> fLayerMatrixMap;
sk_sp<sksg::RenderNode> fCurrentMatte;
sk_sp<sksg::Matrix> AttachLayerMatrix(const skjson::ObjectValue& jlayer) {
const auto layer_index = ParseDefault<int>(jlayer["ind"], -1);
if (layer_index < 0)
return nullptr;
if (auto* m = fLayerMatrixMap.find(layer_index))
return *m;
return this->AttachLayerMatrixImpl(jlayer, layer_index);
}
private:
sk_sp<sksg::Matrix> AttachParentLayerMatrix(const skjson::ObjectValue& jlayer,
int layer_index) {
const auto parent_index = ParseDefault<int>(jlayer["parent"], -1);
if (parent_index < 0 || parent_index == layer_index)
return nullptr;
if (auto* m = fLayerMatrixMap.find(parent_index))
return *m;
for (const skjson::ObjectValue* l : fLayerList) {
if (!l) continue;
if (ParseDefault<int>((*l)["ind"], -1) == parent_index) {
return this->AttachLayerMatrixImpl(*l, parent_index);
}
}
return nullptr;
}
sk_sp<sksg::Matrix> AttachLayerMatrixImpl(const skjson::ObjectValue& jlayer, int layer_index) {
SkASSERT(!fLayerMatrixMap.find(layer_index));
// Add a stub entry to break recursion cycles.
fLayerMatrixMap.set(layer_index, nullptr);
auto parent_matrix = this->AttachParentLayerMatrix(jlayer, layer_index);
if (const skjson::ObjectValue* jtransform = jlayer["ks"]) {
return *fLayerMatrixMap.set(layer_index, AttachMatrix(*jtransform, fScope,
std::move(parent_matrix)));
}
return nullptr;
}
};
namespace {
struct MaskInfo {
SkBlendMode fBlendMode; // used when masking with layers/blending
sksg::Merge::Mode fMergeMode; // used when clipping
bool fInvertGeometry;
};
const MaskInfo* GetMaskInfo(char mode) {
static constexpr MaskInfo k_add_info =
{ SkBlendMode::kSrcOver , sksg::Merge::Mode::kUnion , false };
static constexpr MaskInfo k_int_info =
{ SkBlendMode::kSrcIn , sksg::Merge::Mode::kIntersect , false };
// AE 'subtract' is the same as 'intersect' + inverted geometry
// (draws the opacity-adjusted paint *outside* the shape).
static constexpr MaskInfo k_sub_info =
{ SkBlendMode::kSrcIn , sksg::Merge::Mode::kIntersect , true };
static constexpr MaskInfo k_dif_info =
{ SkBlendMode::kDifference, sksg::Merge::Mode::kDifference, false };
switch (mode) {
case 'a': return &k_add_info;
case 'f': return &k_dif_info;
case 'i': return &k_int_info;
case 's': return &k_sub_info;
default: break;
}
return nullptr;
}
sk_sp<sksg::RenderNode> AttachMask(const skjson::ArrayValue* jmask,
AnimatorScope* ascope,
sk_sp<sksg::RenderNode> childNode) {
if (!jmask) return childNode;
struct MaskRecord {
sk_sp<sksg::Path> mask_path; // for clipping and masking
sk_sp<sksg::Color> mask_paint; // for masking
sksg::Merge::Mode merge_mode; // for clipping
};
SkSTArray<4, MaskRecord, true> mask_stack;
bool has_opacity = false;
for (const skjson::ObjectValue* m : *jmask) {
if (!m) continue;
const skjson::StringValue* jmode = (*m)["mode"];
if (!jmode || jmode->size() != 1) {
LogFail((*m)["mode"], "Invalid mask mode");
continue;
}
const auto mode = *jmode->begin();
if (mode == 'n') {
// "None" masks have no effect.
continue;
}
const auto* mask_info = GetMaskInfo(mode);
if (!mask_info) {
LOG("?? Unsupported mask mode: '%c'\n", mode);
continue;
}
auto mask_path = AttachPath((*m)["pt"], ascope);
if (!mask_path) {
LogFail(*m, "Could not parse mask path");
continue;
}
// "inv" is cumulative with mask info fInvertGeometry
const auto inverted =
(mask_info->fInvertGeometry != ParseDefault<bool>((*m)["inv"], false));
mask_path->setFillType(inverted ? SkPath::kInverseWinding_FillType
: SkPath::kWinding_FillType);
auto mask_paint = sksg::Color::Make(SK_ColorBLACK);
mask_paint->setAntiAlias(true);
// First mask in the stack initializes the mask buffer.
mask_paint->setBlendMode(mask_stack.empty() ? SkBlendMode::kSrc
: mask_info->fBlendMode);
has_opacity |= BindProperty<ScalarValue>((*m)["o"], ascope,
[mask_paint](const ScalarValue& o) {
mask_paint->setOpacity(o * 0.01f);
}, 100.0f);
mask_stack.push_back({mask_path, mask_paint, mask_info->fMergeMode});
}
if (mask_stack.empty())
return childNode;
// If the masks are fully opaque, we can clip.
if (!has_opacity) {
sk_sp<sksg::GeometryNode> clip_node;
if (mask_stack.count() == 1) {
// Single path -> just clip.
clip_node = std::move(mask_stack.front().mask_path);
} else {
// Multiple clip paths -> merge.
std::vector<sksg::Merge::Rec> merge_recs;
merge_recs.reserve(SkToSizeT(mask_stack.count()));
for (const auto& mask : mask_stack) {
const auto mode = merge_recs.empty() ? sksg::Merge::Mode::kMerge : mask.merge_mode;
merge_recs.push_back({std::move(mask.mask_path), mode});
}
clip_node = sksg::Merge::Make(std::move(merge_recs));
}
return sksg::ClipEffect::Make(std::move(childNode), std::move(clip_node), true);
}
auto mask_group = sksg::Group::Make();
for (const auto& rec : mask_stack) {
mask_group->addChild(sksg::Draw::Make(std::move(rec.mask_path),
std::move(rec.mask_paint)));
}
return sksg::MaskEffect::Make(std::move(childNode), std::move(mask_group));
}
sk_sp<sksg::RenderNode> AttachFillLayerEffect(const skjson::ArrayValue* jeffect_props,
AnimatorScope* ascope,
sk_sp<sksg::RenderNode> layer) {
if (!jeffect_props) return layer;
sk_sp<sksg::Color> color_node;
for (const skjson::ObjectValue* jprop : *jeffect_props) {
if (!jprop) continue;
switch (const auto ty = ParseDefault<int>((*jprop)["ty"], -1)) {
case 2: // color
color_node = AttachColor(*jprop, ascope, "v");
break;
default:
LOG("?? Ignoring unsupported fill effect poperty type: %d\n", ty);
break;
}
}
return color_node
? sksg::ColorModeFilter::Make(std::move(layer), std::move(color_node), SkBlendMode::kSrcIn)
: nullptr;
}
} // namespace
sk_sp<sksg::RenderNode> AnimationBuilder::attachLayerEffects(const skjson::ArrayValue& jeffects,
AnimatorScope* ascope,
sk_sp<sksg::RenderNode> layer) {
for (const skjson::ObjectValue* jeffect : jeffects) {
if (!jeffect) continue;
switch (const auto ty = ParseDefault<int>((*jeffect)["ty"], -1)) {
case 21: // Fill
layer = AttachFillLayerEffect((*jeffect)["ef"], ascope, std::move(layer));
break;
default:
LOG("?? Unsupported layer effect type: %d\n", ty);
break;
}
}
return layer;
}
sk_sp<sksg::RenderNode> AnimationBuilder::attachLayer(const skjson::ObjectValue* jlayer,
AttachLayerContext* layerCtx) {
if (!jlayer) return nullptr;
using LayerAttacher = sk_sp<sksg::RenderNode> (AnimationBuilder::*)(const skjson::ObjectValue&,
AnimatorScope*);
static constexpr LayerAttacher gLayerAttachers[] = {
&AnimationBuilder::attachPrecompLayer, // 'ty': 0
&AnimationBuilder::attachSolidLayer, // 'ty': 1
&AnimationBuilder::attachImageLayer, // 'ty': 2
&AnimationBuilder::attachNullLayer, // 'ty': 3
&AnimationBuilder::attachShapeLayer, // 'ty': 4
&AnimationBuilder::attachTextLayer, // 'ty': 5
};
int type = ParseDefault<int>((*jlayer)["ty"], -1);
if (type < 0 || type >= SkTo<int>(SK_ARRAY_COUNT(gLayerAttachers))) {
return nullptr;
}
AnimatorScope layer_animators;
// Layer content.
auto layer = (this->*(gLayerAttachers[type]))(*jlayer, &layer_animators);
// Clip layers with explicit dimensions.
float w = 0, h = 0;
if (Parse<float>((*jlayer)["w"], &w) && Parse<float>((*jlayer)["h"], &h)) {
layer = sksg::ClipEffect::Make(std::move(layer),
sksg::Rect::Make(SkRect::MakeWH(w, h)),
true);
}
// Optional layer mask.
layer = AttachMask((*jlayer)["masksProperties"], &layer_animators, std::move(layer));
// Optional layer transform.
if (auto layerMatrix = layerCtx->AttachLayerMatrix(*jlayer)) {
layer = sksg::Transform::Make(std::move(layer), std::move(layerMatrix));
}
// Optional layer opacity.
// TODO: de-dupe this "ks" lookup with matrix above.
if (const skjson::ObjectValue* jtransform = (*jlayer)["ks"]) {
layer = AttachOpacity(*jtransform, &layer_animators, std::move(layer));
}
// Optional layer effects.
if (const skjson::ArrayValue* jeffects = (*jlayer)["ef"]) {
layer = this->attachLayerEffects(*jeffects, &layer_animators, std::move(layer));
}
class LayerController final : public sksg::GroupAnimator {
public:
LayerController(sksg::AnimatorList&& layer_animators,
sk_sp<sksg::OpacityEffect> controlNode,
float in, float out)
: INHERITED(std::move(layer_animators))
, fControlNode(std::move(controlNode))
, fIn(in)
, fOut(out) {}
void onTick(float t) override {
const auto active = (t >= fIn && t <= fOut);
// Keep the layer fully transparent except for its [in..out] lifespan.
// (note: opacity == 0 disables rendering, while opacity == 1 is a noop)
fControlNode->setOpacity(active ? 1 : 0);
// Dispatch ticks only while active.
if (active) this->INHERITED::onTick(t);
}
private:
const sk_sp<sksg::OpacityEffect> fControlNode;
const float fIn,
fOut;
using INHERITED = sksg::GroupAnimator;
};
auto controller_node = sksg::OpacityEffect::Make(std::move(layer));
const auto in = ParseDefault<float>((*jlayer)["ip"], 0.0f),
out = ParseDefault<float>((*jlayer)["op"], in);
if (in >= out || !controller_node)
return nullptr;
layerCtx->fScope->push_back(
skstd::make_unique<LayerController>(std::move(layer_animators), controller_node, in, out));
if (ParseDefault<bool>((*jlayer)["td"], false)) {
// This layer is a matte. We apply it as a mask to the next layer.
layerCtx->fCurrentMatte = std::move(controller_node);
return nullptr;
}
if (layerCtx->fCurrentMatte) {
// There is a pending matte. Apply and reset.
static constexpr sksg::MaskEffect::Mode gMaskModes[] = {
sksg::MaskEffect::Mode::kNormal, // tt: 1
sksg::MaskEffect::Mode::kInvert, // tt: 2
};
const auto matteType = ParseDefault<size_t>((*jlayer)["tt"], 1) - 1;
if (matteType < SK_ARRAY_COUNT(gMaskModes)) {
return sksg::MaskEffect::Make(std::move(controller_node),
std::move(layerCtx->fCurrentMatte),
gMaskModes[matteType]);
}
layerCtx->fCurrentMatte.reset();
}
return std::move(controller_node);
}
sk_sp<sksg::RenderNode> AnimationBuilder::attachComposition(const skjson::ObjectValue& comp,
AnimatorScope* scope) {
const skjson::ArrayValue* jlayers = comp["layers"];
if (!jlayers) return nullptr;
SkSTArray<16, sk_sp<sksg::RenderNode>, true> layers;
AttachLayerContext layerCtx(*jlayers, scope);
for (const auto& l : *jlayers) {
if (auto layer_fragment = this->attachLayer(l, &layerCtx)) {
layers.push_back(std::move(layer_fragment));
}
}
if (layers.empty()) {
return nullptr;
}
// Layers are painted in bottom->top order.
auto comp_group = sksg::Group::Make();
for (int i = layers.count() - 1; i >= 0; --i) {
comp_group->addChild(std::move(layers[i]));
}
return std::move(comp_group);
}
AnimationBuilder::AnimationBuilder(const ResourceProvider& rp, sk_sp<SkFontMgr> fontmgr,
Animation::Stats* stats, float duration, float framerate)
: fResourceProvider(rp)
, fFontMgr(std::move(fontmgr))
, fStats(stats)
, fDuration(duration)
, fFrameRate(framerate) {}
std::unique_ptr<sksg::Scene> AnimationBuilder::parse(const skjson::ObjectValue& jroot) {
this->parseAssets(jroot["assets"]);
this->parseFonts(jroot["fonts"], jroot["chars"]);
AnimatorScope animators;
auto root = this->attachComposition(jroot, &animators);
fStats->fAnimatorCount = animators.size();
return sksg::Scene::Make(std::move(root), std::move(animators));
}
void AnimationBuilder::parseAssets(const skjson::ArrayValue* jassets) {
if (!jassets) {
return;
}
for (const skjson::ObjectValue* asset : *jassets) {
if (asset) {
fAssets.set(ParseDefault<SkString>((*asset)["id"], SkString()), { asset, false });
}
}
}
} // namespace internal
sk_sp<Animation> Animation::Make(SkStream* stream, const ResourceProvider* provider, Stats* stats) {
if (!stream->hasLength()) {
// TODO: handle explicit buffering?
LOG("!! cannot parse streaming content\n");
return nullptr;
}
auto data = SkData::MakeFromStream(stream, stream->getLength());
if (!data) {
SkDebugf("!! Failed to read the input stream.\n");
return nullptr;
}
return Make(static_cast<const char*>(data->data()), data->size(), provider, stats);
}
sk_sp<Animation> Animation::Make(const char* data, size_t data_len,
const ResourceProvider* provider, Stats* stats) {
Stats stats_storage;
if (!stats)
stats = &stats_storage;
memset(stats, 0, sizeof(struct Stats));
stats->fJsonSize = data_len;
const auto t0 = SkTime::GetMSecs();
const skjson::DOM dom(data, data_len);
if (!dom.root().is<skjson::ObjectValue>()) {
// TODO: more error info.
SkDebugf("!! Failed to parse JSON input.\n");
return nullptr;
}
const auto& json = dom.root().as<skjson::ObjectValue>();
const auto t1 = SkTime::GetMSecs();
stats->fJsonParseTimeMS = t1 - t0;
const auto version = ParseDefault<SkString>(json["v"], SkString());
const auto size = SkSize::Make(ParseDefault<float>(json["w"], 0.0f),
ParseDefault<float>(json["h"], 0.0f));
const auto fps = ParseDefault<float>(json["fr"], -1.0f),
inPoint = ParseDefault<float>(json["ip"], 0.0f),
outPoint = SkTMax(ParseDefault<float>(json["op"], SK_ScalarMax), inPoint);
if (size.isEmpty() || version.isEmpty() || fps <= 0 ||
!SkScalarIsFinite(inPoint) || !SkScalarIsFinite(outPoint)) {
LOG("!! invalid animation params (version: %s, size: [%f %f], frame rate: %f, "
"in-point: %f, out-point: %f)\n",
version.c_str(), size.width(), size.height(), fps, inPoint, outPoint);
return nullptr;
}
class NullResourceProvider final : public ResourceProvider {
sk_sp<SkData> load(const char[], const char[]) const override { return nullptr; }
};
NullResourceProvider null_provider;
const auto anim = sk_sp<Animation>(new Animation(provider ? *provider : null_provider,
std::move(version), size, fps,
inPoint, outPoint, json, stats));
const auto t2 = SkTime::GetMSecs();
stats->fSceneParseTimeMS = t2 - t1;
stats->fTotalLoadTimeMS = t2 - t0;
return anim;
}
sk_sp<Animation> Animation::MakeFromFile(const char path[], const ResourceProvider* res,
Stats* stats) {
class DirectoryResourceProvider final : public ResourceProvider {
public:
explicit DirectoryResourceProvider(SkString dir) : fDir(std::move(dir)) {}
sk_sp<SkData> load(const char resource_path[], const char resource_name[]) const override {
const auto full_dir = SkOSPath::Join(fDir.c_str(), resource_path),
full_path = SkOSPath::Join(full_dir.c_str(), resource_name);
return SkData::MakeFromFileName(full_path.c_str());
}
private:
const SkString fDir;
};
const auto data = SkData::MakeFromFileName(path);
if (!data)
return nullptr;
std::unique_ptr<ResourceProvider> defaultProvider;
if (!res) {
defaultProvider = skstd::make_unique<DirectoryResourceProvider>(SkOSPath::Dirname(path));
}
return Make(static_cast<const char*>(data->data()), data->size(),
res ? res : defaultProvider.get(), stats);
}
Animation::Animation(const ResourceProvider& resources,
SkString version, const SkSize& size,
SkScalar fps, SkScalar in, SkScalar out,
const skjson::ObjectValue& json, Stats* stats)
: fVersion(std::move(version))
, fSize(size)
, fFrameRate(fps)
, fInPoint(in)
, fOutPoint(out) {
internal::AnimationBuilder builder(resources, SkFontMgr::RefDefault(), stats,
this->duration(), fps);
fScene = builder.parse(json);
// In case the client calls render before the first tick.
this->seek(0);
}
Animation::~Animation() = default;
void Animation::setShowInval(bool show) {
if (fScene) {
fScene->setShowInval(show);
}
}
void Animation::render(SkCanvas* canvas, const SkRect* dstR) const {
if (!fScene)
return;
SkAutoCanvasRestore restore(canvas, true);
const SkRect srcR = SkRect::MakeSize(this->size());
if (dstR) {
canvas->concat(SkMatrix::MakeRectToRect(srcR, *dstR, SkMatrix::kCenter_ScaleToFit));
}
canvas->clipRect(srcR);
fScene->render(canvas);
}
void Animation::seek(SkScalar t) {
if (!fScene)
return;
fScene->animate(fInPoint + SkTPin(t, 0.0f, 1.0f) * (fOutPoint - fInPoint));
}
} // namespace skottie