blob: dc80479f602072fd1c365923264a01bf540bee3c [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkIntersections.h"
#include "SkPathOpsCubic.h"
#include "SkPathOpsLine.h"
/*
Find the interection of a line and cubic by solving for valid t values.
Analogous to line-quadratic intersection, solve line-cubic intersection by
representing the cubic as:
x = a(1-t)^3 + 2b(1-t)^2t + c(1-t)t^2 + dt^3
y = e(1-t)^3 + 2f(1-t)^2t + g(1-t)t^2 + ht^3
and the line as:
y = i*x + j (if the line is more horizontal)
or:
x = i*y + j (if the line is more vertical)
Then using Mathematica, solve for the values of t where the cubic intersects the
line:
(in) Resultant[
a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - x,
e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - i*x - j, x]
(out) -e + j +
3 e t - 3 f t -
3 e t^2 + 6 f t^2 - 3 g t^2 +
e t^3 - 3 f t^3 + 3 g t^3 - h t^3 +
i ( a -
3 a t + 3 b t +
3 a t^2 - 6 b t^2 + 3 c t^2 -
a t^3 + 3 b t^3 - 3 c t^3 + d t^3 )
if i goes to infinity, we can rewrite the line in terms of x. Mathematica:
(in) Resultant[
a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - i*y - j,
e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y]
(out) a - j -
3 a t + 3 b t +
3 a t^2 - 6 b t^2 + 3 c t^2 -
a t^3 + 3 b t^3 - 3 c t^3 + d t^3 -
i ( e -
3 e t + 3 f t +
3 e t^2 - 6 f t^2 + 3 g t^2 -
e t^3 + 3 f t^3 - 3 g t^3 + h t^3 )
Solving this with Mathematica produces an expression with hundreds of terms;
instead, use Numeric Solutions recipe to solve the cubic.
The near-horizontal case, in terms of: Ax^3 + Bx^2 + Cx + D == 0
A = (-(-e + 3*f - 3*g + h) + i*(-a + 3*b - 3*c + d) )
B = 3*(-( e - 2*f + g ) + i*( a - 2*b + c ) )
C = 3*(-(-e + f ) + i*(-a + b ) )
D = (-( e ) + i*( a ) + j )
The near-vertical case, in terms of: Ax^3 + Bx^2 + Cx + D == 0
A = ( (-a + 3*b - 3*c + d) - i*(-e + 3*f - 3*g + h) )
B = 3*( ( a - 2*b + c ) - i*( e - 2*f + g ) )
C = 3*( (-a + b ) - i*(-e + f ) )
D = ( ( a ) - i*( e ) - j )
For horizontal lines:
(in) Resultant[
a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - j,
e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y]
(out) e - j -
3 e t + 3 f t +
3 e t^2 - 6 f t^2 + 3 g t^2 -
e t^3 + 3 f t^3 - 3 g t^3 + h t^3
*/
class LineCubicIntersections {
public:
LineCubicIntersections(const SkDCubic& c, const SkDLine& l, SkIntersections& i)
: cubic(c)
, line(l)
, intersections(i)
, fAllowNear(true) {
}
void allowNear(bool allow) {
fAllowNear = allow;
}
// see parallel routine in line quadratic intersections
int intersectRay(double roots[3]) {
double adj = line[1].fX - line[0].fX;
double opp = line[1].fY - line[0].fY;
SkDCubic r;
for (int n = 0; n < 4; ++n) {
r[n].fX = (cubic[n].fY - line[0].fY) * adj - (cubic[n].fX - line[0].fX) * opp;
}
double A, B, C, D;
SkDCubic::Coefficients(&r[0].fX, &A, &B, &C, &D);
return SkDCubic::RootsValidT(A, B, C, D, roots);
}
int intersect() {
addExactEndPoints();
double rootVals[3];
int roots = intersectRay(rootVals);
for (int index = 0; index < roots; ++index) {
double cubicT = rootVals[index];
double lineT = findLineT(cubicT);
if (pinTs(&cubicT, &lineT)) {
SkDPoint pt = line.xyAtT(lineT);
#if ONE_OFF_DEBUG
SkDPoint cPt = cubic.xyAtT(cubicT);
SkDebugf("%s pt=(%1.9g,%1.9g) cPt=(%1.9g,%1.9g)\n", __FUNCTION__, pt.fX, pt.fY,
cPt.fX, cPt.fY);
#endif
intersections.insert(cubicT, lineT, pt);
}
}
if (fAllowNear) {
addNearEndPoints();
}
return intersections.used();
}
int horizontalIntersect(double axisIntercept, double roots[3]) {
double A, B, C, D;
SkDCubic::Coefficients(&cubic[0].fY, &A, &B, &C, &D);
D -= axisIntercept;
return SkDCubic::RootsValidT(A, B, C, D, roots);
}
int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) {
addExactHorizontalEndPoints(left, right, axisIntercept);
double rootVals[3];
int roots = horizontalIntersect(axisIntercept, rootVals);
for (int index = 0; index < roots; ++index) {
double cubicT = rootVals[index];
SkDPoint pt = cubic.xyAtT(cubicT);
double lineT = (pt.fX - left) / (right - left);
if (pinTs(&cubicT, &lineT)) {
intersections.insert(cubicT, lineT, pt);
}
}
if (fAllowNear) {
addNearHorizontalEndPoints(left, right, axisIntercept);
}
if (flipped) {
intersections.flip();
}
return intersections.used();
}
int verticalIntersect(double axisIntercept, double roots[3]) {
double A, B, C, D;
SkDCubic::Coefficients(&cubic[0].fX, &A, &B, &C, &D);
D -= axisIntercept;
return SkDCubic::RootsValidT(A, B, C, D, roots);
}
int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) {
addExactVerticalEndPoints(top, bottom, axisIntercept);
double rootVals[3];
int roots = verticalIntersect(axisIntercept, rootVals);
for (int index = 0; index < roots; ++index) {
double cubicT = rootVals[index];
SkDPoint pt = cubic.xyAtT(cubicT);
double lineT = (pt.fY - top) / (bottom - top);
if (pinTs(&cubicT, &lineT)) {
intersections.insert(cubicT, lineT, pt);
}
}
if (fAllowNear) {
addNearVerticalEndPoints(top, bottom, axisIntercept);
}
if (flipped) {
intersections.flip();
}
return intersections.used();
}
protected:
void addExactEndPoints() {
for (int cIndex = 0; cIndex < 4; cIndex += 3) {
double lineT = line.exactPoint(cubic[cIndex]);
if (lineT < 0) {
continue;
}
double cubicT = (double) (cIndex >> 1);
intersections.insert(cubicT, lineT, cubic[cIndex]);
}
}
void addNearEndPoints() {
for (int cIndex = 0; cIndex < 4; cIndex += 3) {
double cubicT = (double) (cIndex >> 1);
if (intersections.hasT(cubicT)) {
continue;
}
double lineT = line.nearPoint(cubic[cIndex]);
if (lineT < 0) {
continue;
}
intersections.insert(cubicT, lineT, cubic[cIndex]);
}
}
void addExactHorizontalEndPoints(double left, double right, double y) {
for (int cIndex = 0; cIndex < 4; cIndex += 3) {
double lineT = SkDLine::ExactPointH(cubic[cIndex], left, right, y);
if (lineT < 0) {
continue;
}
double cubicT = (double) (cIndex >> 1);
intersections.insert(cubicT, lineT, cubic[cIndex]);
}
}
void addNearHorizontalEndPoints(double left, double right, double y) {
for (int cIndex = 0; cIndex < 4; cIndex += 3) {
double cubicT = (double) (cIndex >> 1);
if (intersections.hasT(cubicT)) {
continue;
}
double lineT = SkDLine::NearPointH(cubic[cIndex], left, right, y);
if (lineT < 0) {
continue;
}
intersections.insert(cubicT, lineT, cubic[cIndex]);
}
// FIXME: see if line end is nearly on cubic
}
void addExactVerticalEndPoints(double top, double bottom, double x) {
for (int cIndex = 0; cIndex < 4; cIndex += 3) {
double lineT = SkDLine::ExactPointV(cubic[cIndex], top, bottom, x);
if (lineT < 0) {
continue;
}
double cubicT = (double) (cIndex >> 1);
intersections.insert(cubicT, lineT, cubic[cIndex]);
}
}
void addNearVerticalEndPoints(double top, double bottom, double x) {
for (int cIndex = 0; cIndex < 4; cIndex += 3) {
double cubicT = (double) (cIndex >> 1);
if (intersections.hasT(cubicT)) {
continue;
}
double lineT = SkDLine::NearPointV(cubic[cIndex], top, bottom, x);
if (lineT < 0) {
continue;
}
intersections.insert(cubicT, lineT, cubic[cIndex]);
}
// FIXME: see if line end is nearly on cubic
}
double findLineT(double t) {
SkDPoint xy = cubic.xyAtT(t);
double dx = line[1].fX - line[0].fX;
double dy = line[1].fY - line[0].fY;
if (fabs(dx) > fabs(dy)) {
return (xy.fX - line[0].fX) / dx;
}
return (xy.fY - line[0].fY) / dy;
}
static bool pinTs(double* cubicT, double* lineT) {
if (!approximately_one_or_less(*lineT)) {
return false;
}
if (!approximately_zero_or_more(*lineT)) {
return false;
}
if (precisely_less_than_zero(*cubicT)) {
*cubicT = 0;
} else if (precisely_greater_than_one(*cubicT)) {
*cubicT = 1;
}
if (precisely_less_than_zero(*lineT)) {
*lineT = 0;
} else if (precisely_greater_than_one(*lineT)) {
*lineT = 1;
}
return true;
}
private:
const SkDCubic& cubic;
const SkDLine& line;
SkIntersections& intersections;
bool fAllowNear;
};
int SkIntersections::horizontal(const SkDCubic& cubic, double left, double right, double y,
bool flipped) {
LineCubicIntersections c(cubic, *(static_cast<SkDLine*>(0)), *this);
return c.horizontalIntersect(y, left, right, flipped);
}
int SkIntersections::vertical(const SkDCubic& cubic, double top, double bottom, double x,
bool flipped) {
LineCubicIntersections c(cubic, *(static_cast<SkDLine*>(0)), *this);
return c.verticalIntersect(x, top, bottom, flipped);
}
int SkIntersections::intersect(const SkDCubic& cubic, const SkDLine& line) {
LineCubicIntersections c(cubic, line, *this);
c.allowNear(fAllowNear);
return c.intersect();
}
int SkIntersections::intersectRay(const SkDCubic& cubic, const SkDLine& line) {
LineCubicIntersections c(cubic, line, *this);
fUsed = c.intersectRay(fT[0]);
for (int index = 0; index < fUsed; ++index) {
fPt[index] = cubic.xyAtT(fT[0][index]);
}
return fUsed;
}