| /* |
| * Copyright 2019 Google LLC |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "include/core/SkColorPriv.h" |
| #include "include/private/SkColorData.h" |
| #include "src/core/SkCpu.h" |
| #include "src/core/SkMSAN.h" |
| #include "src/core/SkVM.h" |
| #include "tests/Test.h" |
| #include "tools/Resources.h" |
| #include "tools/SkVMBuilders.h" |
| |
| using Fmt = SrcoverBuilder_F32::Fmt; |
| const char* fmt_name(Fmt fmt) { |
| switch (fmt) { |
| case Fmt::A8: return "A8"; |
| case Fmt::G8: return "G8"; |
| case Fmt::RGBA_8888: return "RGBA_8888"; |
| } |
| return ""; |
| } |
| |
| static void dump(skvm::Builder& builder, SkWStream* o) { |
| skvm::Program program = builder.done(); |
| builder.dump(o); |
| o->writeText("\n"); |
| program.dump(o); |
| o->writeText("\n"); |
| } |
| |
| // TODO: I'd like this to go away and have every test in here run both JIT and interpreter. |
| template <typename Fn> |
| static void test_interpreter_only(skiatest::Reporter* r, skvm::Program&& program, Fn&& test) { |
| REPORTER_ASSERT(r, !program.hasJIT()); |
| test((const skvm::Program&) program); |
| } |
| |
| template <typename Fn> |
| static void test_jit_and_interpreter(skiatest::Reporter* r, skvm::Program&& program, Fn&& test) { |
| static const bool can_jit = []{ |
| // This is about the simplest program we can write, setting an int buffer to a constant. |
| // If this can't JIT, the platform does not support JITing. |
| skvm::Builder b; |
| b.store32(b.varying<int>(), b.splat(42)); |
| skvm::Program p = b.done(); |
| return p.hasJIT(); |
| }(); |
| |
| if (can_jit) { |
| REPORTER_ASSERT(r, program.hasJIT()); |
| test((const skvm::Program&) program); |
| program.dropJIT(); |
| } |
| test_interpreter_only(r, std::move(program), std::move(test)); |
| } |
| |
| |
| DEF_TEST(SkVM, r) { |
| SkDynamicMemoryWStream buf; |
| |
| // Write all combinations of SrcoverBuilder_F32 |
| for (int s = 0; s < 3; s++) |
| for (int d = 0; d < 3; d++) { |
| auto srcFmt = (Fmt)s, |
| dstFmt = (Fmt)d; |
| SrcoverBuilder_F32 builder{srcFmt, dstFmt}; |
| |
| buf.writeText(fmt_name(srcFmt)); |
| buf.writeText(" over "); |
| buf.writeText(fmt_name(dstFmt)); |
| buf.writeText("\n"); |
| dump(builder, &buf); |
| } |
| |
| // Write the I32 Srcovers also. |
| { |
| SrcoverBuilder_I32_Naive builder; |
| buf.writeText("I32 (Naive) 8888 over 8888\n"); |
| dump(builder, &buf); |
| } |
| { |
| SrcoverBuilder_I32 builder; |
| buf.writeText("I32 8888 over 8888\n"); |
| dump(builder, &buf); |
| } |
| { |
| SrcoverBuilder_I32_SWAR builder; |
| buf.writeText("I32 (SWAR) 8888 over 8888\n"); |
| dump(builder, &buf); |
| } |
| |
| { |
| skvm::Builder b; |
| skvm::Arg arg = b.varying<int>(); |
| |
| // x and y can both be hoisted, |
| // and x can die at y, while y must live for the loop. |
| skvm::I32 x = b.splat(1), |
| y = b.add(x, b.splat(2)); |
| b.store32(arg, b.mul(b.load32(arg), y)); |
| |
| skvm::Program program = b.done(); |
| REPORTER_ASSERT(r, program.nregs() == 2); |
| |
| std::vector<skvm::OptimizedInstruction> insts = b.optimize(); |
| REPORTER_ASSERT(r, insts.size() == 6); |
| REPORTER_ASSERT(r, insts[0].can_hoist && insts[0].death == 2 && !insts[0].used_in_loop); |
| REPORTER_ASSERT(r, insts[1].can_hoist && insts[1].death == 2 && !insts[1].used_in_loop); |
| REPORTER_ASSERT(r, insts[2].can_hoist && insts[2].death == 4 && insts[2].used_in_loop); |
| REPORTER_ASSERT(r, !insts[3].can_hoist); |
| REPORTER_ASSERT(r, !insts[4].can_hoist); |
| REPORTER_ASSERT(r, !insts[5].can_hoist); |
| |
| dump(b, &buf); |
| |
| test_jit_and_interpreter(r, std::move(program), [&](const skvm::Program& program) { |
| int arg[] = {0,1,2,3,4,5,6,7,8,9}; |
| |
| program.eval(SK_ARRAY_COUNT(arg), arg); |
| |
| for (int i = 0; i < (int)SK_ARRAY_COUNT(arg); i++) { |
| REPORTER_ASSERT(r, arg[i] == i*3); |
| } |
| }); |
| } |
| |
| { |
| // Demonstrate the value of program reordering. |
| skvm::Builder b; |
| skvm::Arg sp = b.varying<int>(), |
| dp = b.varying<int>(); |
| |
| skvm::I32 byte = b.splat(0xff); |
| |
| skvm::I32 src = b.load32(sp), |
| sr = b.extract(src, 0, byte), |
| sg = b.extract(src, 8, byte), |
| sb = b.extract(src, 16, byte), |
| sa = b.extract(src, 24, byte); |
| |
| skvm::I32 dst = b.load32(dp), |
| dr = b.extract(dst, 0, byte), |
| dg = b.extract(dst, 8, byte), |
| db = b.extract(dst, 16, byte), |
| da = b.extract(dst, 24, byte); |
| |
| skvm::I32 R = b.add(sr, dr), |
| G = b.add(sg, dg), |
| B = b.add(sb, db), |
| A = b.add(sa, da); |
| |
| skvm::I32 rg = b.pack(R, G, 8), |
| ba = b.pack(B, A, 8), |
| rgba = b.pack(rg, ba, 16); |
| |
| b.store32(dp, rgba); |
| |
| dump(b, &buf); |
| } |
| |
| // Our checked in dump expectations assume we have FMA support. |
| const bool fma_supported = |
| #if defined(SK_CPU_X86) |
| SkCpu::Supports(SkCpu::HSW); |
| #elif defined(SK_CPU_ARM64) |
| true; |
| #else |
| false; |
| #endif |
| if (fma_supported) { |
| sk_sp<SkData> blob = buf.detachAsData(); |
| { |
| |
| sk_sp<SkData> expected = GetResourceAsData("SkVMTest.expected"); |
| REPORTER_ASSERT(r, expected, "Couldn't load SkVMTest.expected."); |
| if (expected) { |
| if (blob->size() != expected->size() |
| || 0 != memcmp(blob->data(), expected->data(), blob->size())) { |
| |
| ERRORF(r, "SkVMTest expected\n%.*s\nbut got\n%.*s\n", |
| expected->size(), expected->data(), |
| blob->size(), blob->data()); |
| } |
| |
| SkFILEWStream out(GetResourcePath("SkVMTest.expected").c_str()); |
| if (out.isValid()) { |
| out.write(blob->data(), blob->size()); |
| } |
| } |
| } |
| } |
| |
| auto test_8888 = [&](skvm::Program&& program) { |
| uint32_t src[9]; |
| uint32_t dst[SK_ARRAY_COUNT(src)]; |
| |
| test_jit_and_interpreter(r, std::move(program), [&](const skvm::Program& program) { |
| for (int i = 0; i < (int)SK_ARRAY_COUNT(src); i++) { |
| src[i] = 0xbb007733; |
| dst[i] = 0xffaaccee; |
| } |
| |
| SkPMColor expected = SkPMSrcOver(src[0], dst[0]); // 0xff2dad73 |
| |
| program.eval((int)SK_ARRAY_COUNT(src), src, dst); |
| |
| // dst is probably 0xff2dad72. |
| for (auto got : dst) { |
| auto want = expected; |
| for (int i = 0; i < 4; i++) { |
| uint8_t d = got & 0xff, |
| w = want & 0xff; |
| if (abs(d-w) >= 2) { |
| SkDebugf("d %02x, w %02x\n", d,w); |
| } |
| REPORTER_ASSERT(r, abs(d-w) < 2); |
| got >>= 8; |
| want >>= 8; |
| } |
| } |
| }); |
| }; |
| |
| test_8888(SrcoverBuilder_F32{Fmt::RGBA_8888, Fmt::RGBA_8888}.done("srcover_f32")); |
| test_8888(SrcoverBuilder_I32_Naive{}.done("srcover_i32_naive")); |
| test_8888(SrcoverBuilder_I32{}.done("srcover_i32")); |
| test_8888(SrcoverBuilder_I32_SWAR{}.done("srcover_i32_SWAR")); |
| |
| test_jit_and_interpreter(r, SrcoverBuilder_F32{Fmt::RGBA_8888, Fmt::G8}.done(), |
| [&](const skvm::Program& program) { |
| uint32_t src[9]; |
| uint8_t dst[SK_ARRAY_COUNT(src)]; |
| |
| for (int i = 0; i < (int)SK_ARRAY_COUNT(src); i++) { |
| src[i] = 0xbb007733; |
| dst[i] = 0x42; |
| } |
| |
| SkPMColor over = SkPMSrcOver(SkPackARGB32(0xbb, 0x33, 0x77, 0x00), |
| 0xff424242); |
| |
| uint8_t want = SkComputeLuminance(SkGetPackedR32(over), |
| SkGetPackedG32(over), |
| SkGetPackedB32(over)); |
| program.eval((int)SK_ARRAY_COUNT(src), src, dst); |
| |
| for (auto got : dst) { |
| REPORTER_ASSERT(r, abs(got-want) < 3); |
| } |
| }); |
| |
| test_jit_and_interpreter(r, SrcoverBuilder_F32{Fmt::A8, Fmt::A8}.done(), |
| [&](const skvm::Program& program) { |
| uint8_t src[256], |
| dst[256]; |
| for (int i = 0; i < 256; i++) { |
| src[i] = 255 - i; |
| dst[i] = i; |
| } |
| |
| program.eval(256, src, dst); |
| |
| for (int i = 0; i < 256; i++) { |
| uint8_t want = SkGetPackedA32(SkPMSrcOver(SkPackARGB32(src[i], 0,0,0), |
| SkPackARGB32( i, 0,0,0))); |
| REPORTER_ASSERT(r, abs(dst[i]-want) < 2); |
| } |
| }); |
| } |
| |
| DEF_TEST(SkVM_Pointless, r) { |
| // Let's build a program with no memory arguments. |
| // It should all be pegged as dead code, but we should be able to "run" it. |
| skvm::Builder b; |
| { |
| b.add(b.splat(5.0f), |
| b.splat(4.0f)); |
| } |
| |
| test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) { |
| for (int N = 0; N < 64; N++) { |
| program.eval(N); |
| } |
| }); |
| |
| for (const skvm::OptimizedInstruction& inst : b.optimize()) { |
| REPORTER_ASSERT(r, inst.death == 0 && inst.can_hoist == true); |
| } |
| } |
| |
| #if defined(SKVM_LLVM) |
| DEF_TEST(SkVM_LLVM_memset, r) { |
| skvm::Builder b; |
| b.store32(b.varying<int>(), b.splat(42)); |
| |
| skvm::Program p = b.done(); |
| REPORTER_ASSERT(r, p.hasJIT()); |
| |
| int buf[18]; |
| buf[17] = 47; |
| |
| p.eval(17, buf); |
| for (int i = 0; i < 17; i++) { |
| REPORTER_ASSERT(r, buf[i] == 42); |
| } |
| REPORTER_ASSERT(r, buf[17] == 47); |
| } |
| |
| DEF_TEST(SkVM_LLVM_memcpy, r) { |
| skvm::Builder b; |
| { |
| auto src = b.varying<int>(), |
| dst = b.varying<int>(); |
| b.store32(dst, b.load32(src)); |
| } |
| |
| skvm::Program p = b.done(); |
| REPORTER_ASSERT(r, p.hasJIT()); |
| |
| int src[] = {1,2,3,4,5,6,7,8,9}, |
| dst[] = {0,0,0,0,0,0,0,0,0}; |
| |
| p.eval(SK_ARRAY_COUNT(src)-1, src, dst); |
| for (size_t i = 0; i < SK_ARRAY_COUNT(src)-1; i++) { |
| REPORTER_ASSERT(r, dst[i] == src[i]); |
| } |
| size_t i = SK_ARRAY_COUNT(src)-1; |
| REPORTER_ASSERT(r, dst[i] == 0); |
| } |
| #endif |
| |
| DEF_TEST(SkVM_LoopCounts, r) { |
| // Make sure we cover all the exact N we want. |
| |
| // buf[i] += 1 |
| skvm::Builder b; |
| skvm::Arg arg = b.varying<int>(); |
| b.store32(arg, |
| b.add(b.splat(1), |
| b.load32(arg))); |
| |
| test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) { |
| int buf[64]; |
| for (int N = 0; N <= (int)SK_ARRAY_COUNT(buf); N++) { |
| for (int i = 0; i < (int)SK_ARRAY_COUNT(buf); i++) { |
| buf[i] = i; |
| } |
| program.eval(N, buf); |
| |
| for (int i = 0; i < N; i++) { |
| REPORTER_ASSERT(r, buf[i] == i+1); |
| } |
| for (int i = N; i < (int)SK_ARRAY_COUNT(buf); i++) { |
| REPORTER_ASSERT(r, buf[i] == i); |
| } |
| } |
| }); |
| } |
| |
| DEF_TEST(SkVM_gather32, r) { |
| skvm::Builder b; |
| { |
| skvm::Arg uniforms = b.uniform(), |
| buf = b.varying<int>(); |
| skvm::I32 x = b.load32(buf); |
| b.store32(buf, b.gather32(uniforms,0, b.bit_and(x, b.splat(7)))); |
| } |
| |
| #if defined(SK_CPU_X86) |
| test_jit_and_interpreter |
| #else |
| test_interpreter_only |
| #endif |
| (r, b.done(), [&](const skvm::Program& program) { |
| const int img[] = {12,34,56,78, 90,98,76,54}; |
| |
| int buf[20]; |
| for (int i = 0; i < 20; i++) { |
| buf[i] = i; |
| } |
| |
| struct Uniforms { |
| const int* img; |
| } uniforms{img}; |
| |
| program.eval(20, &uniforms, buf); |
| int i = 0; |
| REPORTER_ASSERT(r, buf[i] == 12); i++; |
| REPORTER_ASSERT(r, buf[i] == 34); i++; |
| REPORTER_ASSERT(r, buf[i] == 56); i++; |
| REPORTER_ASSERT(r, buf[i] == 78); i++; |
| REPORTER_ASSERT(r, buf[i] == 90); i++; |
| REPORTER_ASSERT(r, buf[i] == 98); i++; |
| REPORTER_ASSERT(r, buf[i] == 76); i++; |
| REPORTER_ASSERT(r, buf[i] == 54); i++; |
| |
| REPORTER_ASSERT(r, buf[i] == 12); i++; |
| REPORTER_ASSERT(r, buf[i] == 34); i++; |
| REPORTER_ASSERT(r, buf[i] == 56); i++; |
| REPORTER_ASSERT(r, buf[i] == 78); i++; |
| REPORTER_ASSERT(r, buf[i] == 90); i++; |
| REPORTER_ASSERT(r, buf[i] == 98); i++; |
| REPORTER_ASSERT(r, buf[i] == 76); i++; |
| REPORTER_ASSERT(r, buf[i] == 54); i++; |
| |
| REPORTER_ASSERT(r, buf[i] == 12); i++; |
| REPORTER_ASSERT(r, buf[i] == 34); i++; |
| REPORTER_ASSERT(r, buf[i] == 56); i++; |
| REPORTER_ASSERT(r, buf[i] == 78); i++; |
| }); |
| } |
| |
| DEF_TEST(SkVM_gathers, r) { |
| skvm::Builder b; |
| { |
| skvm::Arg uniforms = b.uniform(), |
| buf32 = b.varying<int>(), |
| buf16 = b.varying<uint16_t>(), |
| buf8 = b.varying<uint8_t>(); |
| |
| skvm::I32 x = b.load32(buf32); |
| |
| b.store32(buf32, b.gather32(uniforms,0, b.bit_and(x, b.splat( 7)))); |
| b.store16(buf16, b.gather16(uniforms,0, b.bit_and(x, b.splat(15)))); |
| b.store8 (buf8 , b.gather8 (uniforms,0, b.bit_and(x, b.splat(31)))); |
| } |
| |
| #if defined(SKVM_LLVM) |
| test_jit_and_interpreter |
| #else |
| test_interpreter_only |
| #endif |
| (r, b.done(), [&](const skvm::Program& program) { |
| const int img[] = {12,34,56,78, 90,98,76,54}; |
| |
| constexpr int N = 20; |
| int buf32[N]; |
| uint16_t buf16[N]; |
| uint8_t buf8 [N]; |
| |
| for (int i = 0; i < 20; i++) { |
| buf32[i] = i; |
| } |
| |
| struct Uniforms { |
| const int* img; |
| } uniforms{img}; |
| |
| program.eval(N, &uniforms, buf32, buf16, buf8); |
| int i = 0; |
| REPORTER_ASSERT(r, buf32[i] == 12 && buf16[i] == 12 && buf8[i] == 12); i++; |
| REPORTER_ASSERT(r, buf32[i] == 34 && buf16[i] == 0 && buf8[i] == 0); i++; |
| REPORTER_ASSERT(r, buf32[i] == 56 && buf16[i] == 34 && buf8[i] == 0); i++; |
| REPORTER_ASSERT(r, buf32[i] == 78 && buf16[i] == 0 && buf8[i] == 0); i++; |
| REPORTER_ASSERT(r, buf32[i] == 90 && buf16[i] == 56 && buf8[i] == 34); i++; |
| REPORTER_ASSERT(r, buf32[i] == 98 && buf16[i] == 0 && buf8[i] == 0); i++; |
| REPORTER_ASSERT(r, buf32[i] == 76 && buf16[i] == 78 && buf8[i] == 0); i++; |
| REPORTER_ASSERT(r, buf32[i] == 54 && buf16[i] == 0 && buf8[i] == 0); i++; |
| |
| REPORTER_ASSERT(r, buf32[i] == 12 && buf16[i] == 90 && buf8[i] == 56); i++; |
| REPORTER_ASSERT(r, buf32[i] == 34 && buf16[i] == 0 && buf8[i] == 0); i++; |
| REPORTER_ASSERT(r, buf32[i] == 56 && buf16[i] == 98 && buf8[i] == 0); i++; |
| REPORTER_ASSERT(r, buf32[i] == 78 && buf16[i] == 0 && buf8[i] == 0); i++; |
| REPORTER_ASSERT(r, buf32[i] == 90 && buf16[i] == 76 && buf8[i] == 78); i++; |
| REPORTER_ASSERT(r, buf32[i] == 98 && buf16[i] == 0 && buf8[i] == 0); i++; |
| REPORTER_ASSERT(r, buf32[i] == 76 && buf16[i] == 54 && buf8[i] == 0); i++; |
| REPORTER_ASSERT(r, buf32[i] == 54 && buf16[i] == 0 && buf8[i] == 0); i++; |
| |
| REPORTER_ASSERT(r, buf32[i] == 12 && buf16[i] == 12 && buf8[i] == 90); i++; |
| REPORTER_ASSERT(r, buf32[i] == 34 && buf16[i] == 0 && buf8[i] == 0); i++; |
| REPORTER_ASSERT(r, buf32[i] == 56 && buf16[i] == 34 && buf8[i] == 0); i++; |
| REPORTER_ASSERT(r, buf32[i] == 78 && buf16[i] == 0 && buf8[i] == 0); i++; |
| }); |
| } |
| |
| DEF_TEST(SkVM_bitops, r) { |
| skvm::Builder b; |
| { |
| skvm::Arg ptr = b.varying<int>(); |
| |
| skvm::I32 x = b.load32(ptr); |
| |
| x = b.bit_and (x, b.splat(0xf1)); // 0x40 |
| x = b.bit_or (x, b.splat(0x80)); // 0xc0 |
| x = b.bit_xor (x, b.splat(0xfe)); // 0x3e |
| x = b.bit_clear(x, b.splat(0x30)); // 0x0e |
| |
| x = b.shl(x, 28); // 0xe000'0000 |
| x = b.sra(x, 28); // 0xffff'fffe |
| x = b.shr(x, 1); // 0x7fff'ffff |
| |
| b.store32(ptr, x); |
| } |
| |
| test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) { |
| int x = 0x42; |
| program.eval(1, &x); |
| REPORTER_ASSERT(r, x == 0x7fff'ffff); |
| }); |
| } |
| |
| DEF_TEST(SkVM_f32, r) { |
| skvm::Builder b; |
| { |
| skvm::Arg arg = b.varying<float>(); |
| |
| skvm::F32 x = b.loadF(arg), |
| y = b.add(x,x), // y = 2x |
| z = b.sub(y,x), // z = 2x-x = x |
| w = b.div(z,x); // w = x/x = 1 |
| b.storeF(arg, w); |
| } |
| |
| test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) { |
| float buf[] = { 1,2,3,4,5,6,7,8,9 }; |
| program.eval(SK_ARRAY_COUNT(buf), buf); |
| for (float v : buf) { |
| REPORTER_ASSERT(r, v == 1.0f); |
| } |
| }); |
| } |
| |
| DEF_TEST(SkVM_cmp_i32, r) { |
| skvm::Builder b; |
| { |
| skvm::I32 x = b.load32(b.varying<int>()); |
| |
| auto to_bit = [&](int shift, skvm::I32 mask) { |
| return b.shl(b.bit_and(mask, b.splat(0x1)), shift); |
| }; |
| |
| skvm::I32 m = b.splat(0); |
| m = b.bit_or(m, to_bit(0, b. eq(x, b.splat(0)))); |
| m = b.bit_or(m, to_bit(1, b.neq(x, b.splat(1)))); |
| m = b.bit_or(m, to_bit(2, b. lt(x, b.splat(2)))); |
| m = b.bit_or(m, to_bit(3, b.lte(x, b.splat(3)))); |
| m = b.bit_or(m, to_bit(4, b. gt(x, b.splat(4)))); |
| m = b.bit_or(m, to_bit(5, b.gte(x, b.splat(5)))); |
| |
| b.store32(b.varying<int>(), m); |
| } |
| #if defined(SKVM_LLVM) |
| test_jit_and_interpreter |
| #else |
| test_interpreter_only |
| #endif |
| (r, b.done(), [&](const skvm::Program& program) { |
| int in[] = { 0,1,2,3,4,5,6,7,8,9 }; |
| int out[SK_ARRAY_COUNT(in)]; |
| |
| program.eval(SK_ARRAY_COUNT(in), in, out); |
| |
| REPORTER_ASSERT(r, out[0] == 0b001111); |
| REPORTER_ASSERT(r, out[1] == 0b001100); |
| REPORTER_ASSERT(r, out[2] == 0b001010); |
| REPORTER_ASSERT(r, out[3] == 0b001010); |
| REPORTER_ASSERT(r, out[4] == 0b000010); |
| for (int i = 5; i < (int)SK_ARRAY_COUNT(out); i++) { |
| REPORTER_ASSERT(r, out[i] == 0b110010); |
| } |
| }); |
| } |
| |
| DEF_TEST(SkVM_cmp_f32, r) { |
| skvm::Builder b; |
| { |
| skvm::F32 x = b.loadF(b.varying<float>()); |
| |
| auto to_bit = [&](int shift, skvm::I32 mask) { |
| return b.shl(b.bit_and(mask, b.splat(0x1)), shift); |
| }; |
| |
| skvm::I32 m = b.splat(0); |
| m = b.bit_or(m, to_bit(0, b. eq(x, b.splat(0.0f)))); |
| m = b.bit_or(m, to_bit(1, b.neq(x, b.splat(1.0f)))); |
| m = b.bit_or(m, to_bit(2, b. lt(x, b.splat(2.0f)))); |
| m = b.bit_or(m, to_bit(3, b.lte(x, b.splat(3.0f)))); |
| m = b.bit_or(m, to_bit(4, b. gt(x, b.splat(4.0f)))); |
| m = b.bit_or(m, to_bit(5, b.gte(x, b.splat(5.0f)))); |
| |
| b.store32(b.varying<int>(), m); |
| } |
| |
| test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) { |
| float in[] = { 0,1,2,3,4,5,6,7,8,9 }; |
| int out[SK_ARRAY_COUNT(in)]; |
| |
| program.eval(SK_ARRAY_COUNT(in), in, out); |
| |
| REPORTER_ASSERT(r, out[0] == 0b001111); |
| REPORTER_ASSERT(r, out[1] == 0b001100); |
| REPORTER_ASSERT(r, out[2] == 0b001010); |
| REPORTER_ASSERT(r, out[3] == 0b001010); |
| REPORTER_ASSERT(r, out[4] == 0b000010); |
| for (int i = 5; i < (int)SK_ARRAY_COUNT(out); i++) { |
| REPORTER_ASSERT(r, out[i] == 0b110010); |
| } |
| }); |
| } |
| |
| DEF_TEST(SkVM_index, r) { |
| skvm::Builder b; |
| b.store32(b.varying<int>(), b.index()); |
| |
| #if defined(SKVM_LLVM) || defined(SK_CPU_X86) |
| test_jit_and_interpreter |
| #else |
| test_interpreter_only |
| #endif |
| (r, b.done(), [&](const skvm::Program& program) { |
| int buf[23]; |
| program.eval(SK_ARRAY_COUNT(buf), buf); |
| for (int i = 0; i < (int)SK_ARRAY_COUNT(buf); i++) { |
| REPORTER_ASSERT(r, buf[i] == (int)SK_ARRAY_COUNT(buf)-i); |
| } |
| }); |
| } |
| |
| DEF_TEST(SkVM_i16x2, r) { |
| skvm::Builder b; |
| { |
| skvm::Arg buf = b.varying<int>(); |
| |
| skvm::I32 x = b.load32(buf), |
| y = b.add_16x2(x,x), // y = 2x |
| z = b.mul_16x2(x,y), // z = 2x^2 |
| w = b.sub_16x2(z,x), // w = x(2x-1) |
| v = b.shl_16x2(w,7), // These shifts will be a no-op |
| u = b.sra_16x2(v,7); // for all but x=12 and x=13. |
| b.store32(buf, u); |
| } |
| |
| #if defined(SKVM_LLVM) |
| test_jit_and_interpreter |
| #else |
| test_interpreter_only |
| #endif |
| (r, b.done(), [&](const skvm::Program& program) { |
| uint16_t buf[] = { 0,1,2,3,4,5,6,7,8,9,10,11,12,13 }; |
| |
| program.eval(SK_ARRAY_COUNT(buf)/2, buf); |
| for (int i = 0; i < 12; i++) { |
| REPORTER_ASSERT(r, buf[i] == i*(2*i-1)); |
| } |
| REPORTER_ASSERT(r, buf[12] == 0xff14); // 12*23 = 0x114 |
| REPORTER_ASSERT(r, buf[13] == 0xff45); // 13*25 = 0x145 |
| }); |
| } |
| |
| DEF_TEST(SkVM_cmp_i16, r) { |
| skvm::Builder b; |
| { |
| skvm::Arg buf = b.varying<int>(); |
| skvm::I32 x = b.load32(buf); |
| |
| auto to_bit = [&](int shift, skvm::I32 mask) { |
| return b.shl_16x2(b.bit_and(mask, b.splat(0x0001'0001)), shift); |
| }; |
| |
| skvm::I32 m = b.splat(0); |
| m = b.bit_or(m, to_bit(0, b. eq_16x2(x, b.splat(0x0000'0000)))); |
| m = b.bit_or(m, to_bit(1, b.neq_16x2(x, b.splat(0x0001'0001)))); |
| m = b.bit_or(m, to_bit(2, b. lt_16x2(x, b.splat(0x0002'0002)))); |
| m = b.bit_or(m, to_bit(3, b.lte_16x2(x, b.splat(0x0003'0003)))); |
| m = b.bit_or(m, to_bit(4, b. gt_16x2(x, b.splat(0x0004'0004)))); |
| m = b.bit_or(m, to_bit(5, b.gte_16x2(x, b.splat(0x0005'0005)))); |
| |
| b.store32(buf, m); |
| } |
| |
| #if defined(SKVM_LLVM) |
| test_jit_and_interpreter |
| #else |
| test_interpreter_only |
| #endif |
| (r, b.done(), [&](const skvm::Program& program) { |
| int16_t buf[] = { 0,1, 2,3, 4,5, 6,7, 8,9 }; |
| |
| program.eval(SK_ARRAY_COUNT(buf)/2, buf); |
| |
| REPORTER_ASSERT(r, buf[0] == 0b001111); |
| REPORTER_ASSERT(r, buf[1] == 0b001100); |
| REPORTER_ASSERT(r, buf[2] == 0b001010); |
| REPORTER_ASSERT(r, buf[3] == 0b001010); |
| REPORTER_ASSERT(r, buf[4] == 0b000010); |
| for (int i = 5; i < (int)SK_ARRAY_COUNT(buf); i++) { |
| REPORTER_ASSERT(r, buf[i] == 0b110010); |
| } |
| }); |
| } |
| |
| |
| DEF_TEST(SkVM_mad, r) { |
| // This program is designed to exercise the tricky corners of instruction |
| // and register selection for Op::mad_f32. |
| |
| skvm::Builder b; |
| { |
| skvm::Arg arg = b.varying<int>(); |
| |
| skvm::F32 x = b.to_f32(b.load32(arg)), |
| y = b.mad(x,x,x), // x is needed in the future, so r[x] != r[y]. |
| z = b.mad(y,y,x), // y is needed in the future, but r[z] = r[x] is ok. |
| w = b.mad(z,z,y), // w can alias z but not y. |
| v = b.mad(w,y,w); // Got to stop somewhere. |
| b.store32(arg, b.trunc(v)); |
| } |
| |
| test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) { |
| int x = 2; |
| program.eval(1, &x); |
| // x = 2 |
| // y = 2*2 + 2 = 6 |
| // z = 6*6 + 2 = 38 |
| // w = 38*38 + 6 = 1450 |
| // v = 1450*6 + 1450 = 10150 |
| REPORTER_ASSERT(r, x == 10150); |
| }); |
| } |
| |
| DEF_TEST(SkVM_fms, r) { |
| // Create a pattern that can be peepholed into an Op::fms_f32. |
| skvm::Builder b; |
| { |
| skvm::Arg arg = b.varying<int>(); |
| |
| skvm::F32 x = b.to_f32(b.load32(arg)), |
| v = b.sub(b.mul(x, b.splat(2.0f)), |
| b.splat(1.0f)); |
| b.store32(arg, b.trunc(v)); |
| } |
| |
| test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) { |
| int buf[] = {0,1,2,3,4,5,6,7,8,9,10}; |
| program.eval((int)SK_ARRAY_COUNT(buf), &buf); |
| |
| for (int i = 0; i < (int)SK_ARRAY_COUNT(buf); i++) { |
| REPORTER_ASSERT(r, buf[i] = 2*i-1); |
| } |
| }); |
| } |
| |
| DEF_TEST(SkVM_fnma, r) { |
| // Create a pattern that can be peepholed into an Op::fnma_f32. |
| skvm::Builder b; |
| { |
| skvm::Arg arg = b.varying<int>(); |
| |
| skvm::F32 x = b.to_f32(b.load32(arg)), |
| v = b.sub(b.splat(1.0f), |
| b.mul(x, b.splat(2.0f))); |
| b.store32(arg, b.trunc(v)); |
| } |
| |
| test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) { |
| int buf[] = {0,1,2,3,4,5,6,7,8,9,10}; |
| program.eval((int)SK_ARRAY_COUNT(buf), &buf); |
| |
| for (int i = 0; i < (int)SK_ARRAY_COUNT(buf); i++) { |
| REPORTER_ASSERT(r, buf[i] = 1-2*i); |
| } |
| }); |
| } |
| |
| DEF_TEST(SkVM_madder, r) { |
| skvm::Builder b; |
| { |
| skvm::Arg arg = b.varying<float>(); |
| |
| skvm::F32 x = b.loadF(arg), |
| y = b.mad(x,x,x), // x is needed in the future, so r[x] != r[y]. |
| z = b.mad(y,x,y), // r[x] can be reused after this instruction, but not r[y]. |
| w = b.mad(y,y,z); |
| b.storeF(arg, w); |
| } |
| |
| test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) { |
| float x = 2.0f; |
| // y = 2*2 + 2 = 6 |
| // z = 6*2 + 6 = 18 |
| // w = 6*6 + 18 = 54 |
| program.eval(1, &x); |
| REPORTER_ASSERT(r, x == 54.0f); |
| }); |
| } |
| |
| DEF_TEST(SkVM_floor, r) { |
| skvm::Builder b; |
| { |
| skvm::Arg arg = b.varying<float>(); |
| b.storeF(arg, b.floor(b.loadF(arg))); |
| } |
| |
| #if defined(SK_CPU_X86) |
| test_jit_and_interpreter |
| #else |
| test_interpreter_only |
| #endif |
| (r, b.done(), [&](const skvm::Program& program) { |
| float buf[] = { -2.0f, -1.5f, -1.0f, 0.0f, 1.0f, 1.5f, 2.0f }; |
| float want[] = { -2.0f, -2.0f, -1.0f, 0.0f, 1.0f, 1.0f, 2.0f }; |
| program.eval(SK_ARRAY_COUNT(buf), buf); |
| for (int i = 0; i < (int)SK_ARRAY_COUNT(buf); i++) { |
| REPORTER_ASSERT(r, buf[i] == want[i]); |
| } |
| }); |
| } |
| |
| DEF_TEST(SkVM_round, r) { |
| skvm::Builder b; |
| { |
| skvm::Arg src = b.varying<float>(); |
| skvm::Arg dst = b.varying<int>(); |
| b.store32(dst, b.round(b.loadF(src))); |
| } |
| |
| // The test cases on exact 0.5f boundaries assume the current rounding mode is nearest even. |
| // We haven't explicitly guaranteed that here... it just probably is. |
| test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) { |
| float buf[] = { -1.5f, -0.5f, 0.0f, 0.5f, 0.2f, 0.6f, 1.0f, 1.4f, 1.5f, 2.0f }; |
| int want[] = { -2 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 2 , 2 }; |
| int dst[SK_ARRAY_COUNT(buf)]; |
| |
| program.eval(SK_ARRAY_COUNT(buf), buf, dst); |
| for (int i = 0; i < (int)SK_ARRAY_COUNT(dst); i++) { |
| REPORTER_ASSERT(r, dst[i] == want[i]); |
| } |
| }); |
| } |
| |
| DEF_TEST(SkVM_min, r) { |
| skvm::Builder b; |
| { |
| skvm::Arg src1 = b.varying<float>(); |
| skvm::Arg src2 = b.varying<float>(); |
| skvm::Arg dst = b.varying<float>(); |
| |
| b.storeF(dst, b.min(b.loadF(src1), b.loadF(src2))); |
| } |
| |
| test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) { |
| float s1[] = { 0.0f, 1.0f, 4.0f, -1.0f, -1.0f}; |
| float s2[] = { 0.0f, 2.0f, 3.0f, 1.0f, -2.0f}; |
| float want[] = { 0.0f, 1.0f, 3.0f, -1.0f, -2.0f}; |
| float d[SK_ARRAY_COUNT(s1)]; |
| program.eval(SK_ARRAY_COUNT(d), s1, s2, d); |
| for (int i = 0; i < (int)SK_ARRAY_COUNT(d); i++) { |
| REPORTER_ASSERT(r, d[i] == want[i]); |
| } |
| }); |
| } |
| |
| DEF_TEST(SkVM_max, r) { |
| skvm::Builder b; |
| { |
| skvm::Arg src1 = b.varying<float>(); |
| skvm::Arg src2 = b.varying<float>(); |
| skvm::Arg dst = b.varying<float>(); |
| |
| b.storeF(dst, b.max(b.loadF(src1), b.loadF(src2))); |
| } |
| |
| test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) { |
| float s1[] = { 0.0f, 1.0f, 4.0f, -1.0f, -1.0f}; |
| float s2[] = { 0.0f, 2.0f, 3.0f, 1.0f, -2.0f}; |
| float want[] = { 0.0f, 2.0f, 4.0f, 1.0f, -1.0f}; |
| float d[SK_ARRAY_COUNT(s1)]; |
| program.eval(SK_ARRAY_COUNT(d), s1, s2, d); |
| for (int i = 0; i < (int)SK_ARRAY_COUNT(d); i++) { |
| REPORTER_ASSERT(r, d[i] == want[i]); |
| } |
| }); |
| } |
| |
| DEF_TEST(SkVM_hoist, r) { |
| // This program uses enough constants that it will fail to JIT if we hoist them. |
| // The JIT will try again without hoisting, and that'll just need 2 registers. |
| skvm::Builder b; |
| { |
| skvm::Arg arg = b.varying<int>(); |
| skvm::I32 x = b.load32(arg); |
| for (int i = 0; i < 32; i++) { |
| x = b.add(x, b.splat(i)); |
| } |
| b.store32(arg, x); |
| } |
| |
| test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) { |
| int x = 4; |
| program.eval(1, &x); |
| // x += 0 + 1 + 2 + 3 + ... + 30 + 31 |
| // x += 496 |
| REPORTER_ASSERT(r, x == 500); |
| }); |
| } |
| |
| DEF_TEST(SkVM_select, r) { |
| skvm::Builder b; |
| { |
| skvm::Arg buf = b.varying<int>(); |
| |
| skvm::I32 x = b.load32(buf); |
| |
| x = b.select( b.gt(x, b.splat(4)), x, b.splat(42) ); |
| |
| b.store32(buf, x); |
| } |
| |
| test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) { |
| int buf[] = { 0,1,2,3,4,5,6,7,8 }; |
| program.eval(SK_ARRAY_COUNT(buf), buf); |
| for (int i = 0; i < (int)SK_ARRAY_COUNT(buf); i++) { |
| REPORTER_ASSERT(r, buf[i] == (i > 4 ? i : 42)); |
| } |
| }); |
| } |
| |
| DEF_TEST(SkVM_NewOps, r) { |
| // Exercise a somewhat arbitrary set of new ops. |
| skvm::Builder b; |
| { |
| skvm::Arg buf = b.varying<int16_t>(), |
| uniforms = b.uniform(); |
| |
| skvm::I32 x = b.load16(buf); |
| |
| const size_t kPtr = sizeof(const int*); |
| |
| x = b.add(x, b.uniform32(uniforms, kPtr+0)); |
| x = b.mul(x, b.uniform8 (uniforms, kPtr+4)); |
| x = b.sub(x, b.uniform16(uniforms, kPtr+6)); |
| |
| skvm::I32 limit = b.uniform32(uniforms, kPtr+8); |
| x = b.select(b.lt(x, b.splat(0)), b.splat(0), x); |
| x = b.select(b.gt(x, limit ), limit , x); |
| |
| x = b.gather8(uniforms,0, x); |
| |
| b.store16(buf, x); |
| } |
| |
| if ((false)) { |
| SkDynamicMemoryWStream buf; |
| dump(b, &buf); |
| sk_sp<SkData> blob = buf.detachAsData(); |
| SkDebugf("%.*s\n", blob->size(), blob->data()); |
| } |
| |
| #if defined(SKVM_LLVM) |
| test_jit_and_interpreter |
| #else |
| test_interpreter_only |
| #endif |
| (r, b.done(), [&](const skvm::Program& program) { |
| const int N = 31; |
| int16_t buf[N]; |
| for (int i = 0; i < N; i++) { |
| buf[i] = i; |
| } |
| |
| const int M = 16; |
| uint8_t img[M]; |
| for (int i = 0; i < M; i++) { |
| img[i] = i*i; |
| } |
| |
| struct { |
| const uint8_t* img; |
| int add = 5; |
| uint8_t mul = 3; |
| uint16_t sub = 18; |
| int limit = M-1; |
| } uniforms{img}; |
| |
| program.eval(N, buf, &uniforms); |
| |
| for (int i = 0; i < N; i++) { |
| // Our first math calculates x = (i+5)*3 - 18 a.k.a 3*(i-1). |
| int x = 3*(i-1); |
| |
| // Then that's pinned to the limits of img. |
| if (i < 2) { x = 0; } // Notice i == 1 hits x == 0 exactly... |
| if (i > 5) { x = 15; } // ...and i == 6 hits x == 15 exactly |
| REPORTER_ASSERT(r, buf[i] == img[x]); |
| } |
| }); |
| } |
| |
| DEF_TEST(SkVM_sqrt, r) { |
| skvm::Builder b; |
| auto buf = b.varying<int>(); |
| b.storeF(buf, b.sqrt(b.loadF(buf))); |
| |
| #if defined(SKVM_LLVM) || defined(SK_CPU_X86) |
| test_jit_and_interpreter |
| #else |
| test_interpreter_only |
| #endif |
| (r, b.done(), [&](const skvm::Program& program) { |
| constexpr int K = 17; |
| float buf[K]; |
| for (int i = 0; i < K; i++) { |
| buf[i] = (float)(i*i); |
| } |
| |
| // x^2 -> x |
| program.eval(K, buf); |
| |
| for (int i = 0; i < K; i++) { |
| REPORTER_ASSERT(r, buf[i] == (float)i); |
| } |
| }); |
| } |
| |
| DEF_TEST(SkVM_MSAN, r) { |
| // This little memset32() program should be able to JIT, but if we run that |
| // JIT code in an MSAN build, it won't see the writes initialize buf. So |
| // this tests that we're using the interpreter instead. |
| skvm::Builder b; |
| b.store32(b.varying<int>(), b.splat(42)); |
| |
| test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) { |
| constexpr int K = 17; |
| int buf[K]; // Intentionally uninitialized. |
| program.eval(K, buf); |
| sk_msan_assert_initialized(buf, buf+K); |
| for (int x : buf) { |
| REPORTER_ASSERT(r, x == 42); |
| } |
| }); |
| } |
| |
| DEF_TEST(SkVM_assert, r) { |
| skvm::Builder b; |
| b.assert_true(b.lt(b.load32(b.varying<int>()), |
| b.splat(42))); |
| |
| test_jit_and_interpreter(r, b.done(), [&](const skvm::Program& program) { |
| int buf[] = { 0,1,2,3,4,5,6,7,8,9 }; |
| program.eval(SK_ARRAY_COUNT(buf), buf); |
| }); |
| } |
| |
| DEF_TEST(SkVM_premul, reporter) { |
| // Test that premul is short-circuited when alpha is known opaque. |
| { |
| skvm::Builder p; |
| auto rptr = p.varying<int>(), |
| aptr = p.varying<int>(); |
| |
| skvm::F32 r = p.loadF(rptr), |
| g = p.splat(0.0f), |
| b = p.splat(0.0f), |
| a = p.loadF(aptr); |
| |
| p.premul(&r, &g, &b, a); |
| p.storeF(rptr, r); |
| |
| // load red, load alpha, red *= alpha, store red |
| REPORTER_ASSERT(reporter, p.done().instructions().size() == 4); |
| } |
| |
| { |
| skvm::Builder p; |
| auto rptr = p.varying<int>(); |
| |
| skvm::F32 r = p.loadF(rptr), |
| g = p.splat(0.0f), |
| b = p.splat(0.0f), |
| a = p.splat(1.0f); |
| |
| p.premul(&r, &g, &b, a); |
| p.storeF(rptr, r); |
| |
| // load red, store red |
| REPORTER_ASSERT(reporter, p.done().instructions().size() == 2); |
| } |
| |
| // Same deal for unpremul. |
| { |
| skvm::Builder p; |
| auto rptr = p.varying<int>(), |
| aptr = p.varying<int>(); |
| |
| skvm::F32 r = p.loadF(rptr), |
| g = p.splat(0.0f), |
| b = p.splat(0.0f), |
| a = p.loadF(aptr); |
| |
| p.unpremul(&r, &g, &b, a); |
| p.storeF(rptr, r); |
| |
| // load red, load alpha, a bunch of unpremul instructions, store red |
| REPORTER_ASSERT(reporter, p.done().instructions().size() >= 4); |
| } |
| |
| { |
| skvm::Builder p; |
| auto rptr = p.varying<int>(); |
| |
| skvm::F32 r = p.loadF(rptr), |
| g = p.splat(0.0f), |
| b = p.splat(0.0f), |
| a = p.splat(1.0f); |
| |
| p.unpremul(&r, &g, &b, a); |
| p.storeF(rptr, r); |
| |
| // load red, store red |
| REPORTER_ASSERT(reporter, p.done().instructions().size() == 2); |
| } |
| } |
| |
| template <typename Fn> |
| static void test_asm(skiatest::Reporter* r, Fn&& fn, std::initializer_list<uint8_t> expected) { |
| uint8_t buf[4096]; |
| skvm::Assembler a{buf}; |
| fn(a); |
| |
| REPORTER_ASSERT(r, a.size() == expected.size()); |
| |
| auto got = (const uint8_t*)buf, |
| want = expected.begin(); |
| for (int i = 0; i < (int)std::min(a.size(), expected.size()); i++) { |
| REPORTER_ASSERT(r, got[i] == want[i], |
| "byte %d was %02x, want %02x", i, got[i], want[i]); |
| } |
| } |
| |
| DEF_TEST(SkVM_Assembler, r) { |
| // Easiest way to generate test cases is |
| // |
| // echo '...some asm...' | llvm-mc -show-encoding -x86-asm-syntax=intel |
| // |
| // The -x86-asm-syntax=intel bit is optional, controlling the |
| // input syntax only; the output will always be AT&T op x,y,dst style. |
| // Our APIs read more like Intel op dst,x,y as op(dst,x,y), so I find |
| // that a bit easier to use here, despite maybe favoring AT&T overall. |
| |
| using A = skvm::Assembler; |
| // Our exit strategy from AVX code. |
| test_asm(r, [&](A& a) { |
| a.int3(); |
| a.vzeroupper(); |
| a.ret(); |
| },{ |
| 0xcc, |
| 0xc5, 0xf8, 0x77, |
| 0xc3, |
| }); |
| |
| // Align should pad with zero |
| test_asm(r, [&](A& a) { |
| a.ret(); |
| a.align(4); |
| },{ |
| 0xc3, |
| 0x00, 0x00, 0x00, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.add(A::rax, 8); // Always good to test rax. |
| a.sub(A::rax, 32); |
| |
| a.add(A::rdi, 12); // Last 0x48 REX |
| a.sub(A::rdi, 8); |
| |
| a.add(A::r8 , 7); // First 0x49 REX |
| a.sub(A::r8 , 4); |
| |
| a.add(A::rsi, 128); // Requires 4 byte immediate. |
| a.sub(A::r8 , 1000000); |
| },{ |
| 0x48, 0x83, 0b11'000'000, 0x08, |
| 0x48, 0x83, 0b11'101'000, 0x20, |
| |
| 0x48, 0x83, 0b11'000'111, 0x0c, |
| 0x48, 0x83, 0b11'101'111, 0x08, |
| |
| 0x49, 0x83, 0b11'000'000, 0x07, |
| 0x49, 0x83, 0b11'101'000, 0x04, |
| |
| 0x48, 0x81, 0b11'000'110, 0x80, 0x00, 0x00, 0x00, |
| 0x49, 0x81, 0b11'101'000, 0x40, 0x42, 0x0f, 0x00, |
| }); |
| |
| |
| test_asm(r, [&](A& a) { |
| a.vpaddd (A::ymm0, A::ymm1, A::ymm2); // Low registers and 0x0f map -> 2-byte VEX. |
| a.vpaddd (A::ymm8, A::ymm1, A::ymm2); // A high dst register is ok -> 2-byte VEX. |
| a.vpaddd (A::ymm0, A::ymm8, A::ymm2); // A high first argument register -> 2-byte VEX. |
| a.vpaddd (A::ymm0, A::ymm1, A::ymm8); // A high second argument -> 3-byte VEX. |
| a.vpmulld(A::ymm0, A::ymm1, A::ymm2); // Using non-0x0f map instruction -> 3-byte VEX. |
| a.vpsubd (A::ymm0, A::ymm1, A::ymm2); // Test vpsubd to ensure argument order is right. |
| },{ |
| /* VEX */ /*op*/ /*modRM*/ |
| 0xc5, 0xf5, 0xfe, 0xc2, |
| 0xc5, 0x75, 0xfe, 0xc2, |
| 0xc5, 0xbd, 0xfe, 0xc2, |
| 0xc4, 0xc1, 0x75, 0xfe, 0xc0, |
| 0xc4, 0xe2, 0x75, 0x40, 0xc2, |
| 0xc5, 0xf5, 0xfa, 0xc2, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.vpcmpeqd (A::ymm0, A::ymm1, A::ymm2); |
| a.vpcmpgtd (A::ymm0, A::ymm1, A::ymm2); |
| a.vcmpeqps (A::ymm0, A::ymm1, A::ymm2); |
| a.vcmpltps (A::ymm0, A::ymm1, A::ymm2); |
| a.vcmpleps (A::ymm0, A::ymm1, A::ymm2); |
| a.vcmpneqps(A::ymm0, A::ymm1, A::ymm2); |
| },{ |
| 0xc5,0xf5,0x76,0xc2, |
| 0xc5,0xf5,0x66,0xc2, |
| 0xc5,0xf4,0xc2,0xc2,0x00, |
| 0xc5,0xf4,0xc2,0xc2,0x01, |
| 0xc5,0xf4,0xc2,0xc2,0x02, |
| 0xc5,0xf4,0xc2,0xc2,0x04, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.vminps(A::ymm0, A::ymm1, A::ymm2); |
| a.vmaxps(A::ymm0, A::ymm1, A::ymm2); |
| },{ |
| 0xc5,0xf4,0x5d,0xc2, |
| 0xc5,0xf4,0x5f,0xc2, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.vpblendvb(A::ymm0, A::ymm1, A::ymm2, A::ymm3); |
| },{ |
| 0xc4,0xe3,0x75, 0x4c, 0xc2, 0x30, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.vpsrld(A::ymm15, A::ymm2, 8); |
| a.vpsrld(A::ymm0 , A::ymm8, 5); |
| },{ |
| 0xc5, 0x85, 0x72,0xd2, 0x08, |
| 0xc4,0xc1,0x7d, 0x72,0xd0, 0x05, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.vpermq(A::ymm1, A::ymm2, 5); |
| },{ |
| 0xc4,0xe3,0xfd, 0x00,0xca, 0x05, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.vroundps(A::ymm1, A::ymm2, A::NEAREST); |
| a.vroundps(A::ymm1, A::ymm2, A::FLOOR); |
| a.vroundps(A::ymm1, A::ymm2, A::CEIL); |
| a.vroundps(A::ymm1, A::ymm2, A::TRUNC); |
| },{ |
| 0xc4,0xe3,0x7d,0x08,0xca,0x00, |
| 0xc4,0xe3,0x7d,0x08,0xca,0x01, |
| 0xc4,0xe3,0x7d,0x08,0xca,0x02, |
| 0xc4,0xe3,0x7d,0x08,0xca,0x03, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| A::Label l = a.here(); |
| a.byte(1); |
| a.byte(2); |
| a.byte(3); |
| a.byte(4); |
| |
| a.vbroadcastss(A::ymm0 , &l); |
| a.vbroadcastss(A::ymm1 , &l); |
| a.vbroadcastss(A::ymm8 , &l); |
| a.vbroadcastss(A::ymm15, &l); |
| |
| a.vpshufb(A::ymm4, A::ymm3, &l); |
| a.vpaddd (A::ymm4, A::ymm3, &l); |
| a.vpsubd (A::ymm4, A::ymm3, &l); |
| |
| a.vptest(A::ymm4, &l); |
| |
| a.vmulps (A::ymm4, A::ymm3, &l); |
| },{ |
| 0x01, 0x02, 0x03, 0x4, |
| |
| /* VEX */ /*op*/ /* ModRM */ /* offset */ |
| 0xc4, 0xe2, 0x7d, 0x18, 0b00'000'101, 0xf3,0xff,0xff,0xff, // 0xfffffff3 == -13 |
| 0xc4, 0xe2, 0x7d, 0x18, 0b00'001'101, 0xea,0xff,0xff,0xff, // 0xffffffea == -22 |
| 0xc4, 0x62, 0x7d, 0x18, 0b00'000'101, 0xe1,0xff,0xff,0xff, // 0xffffffe1 == -31 |
| 0xc4, 0x62, 0x7d, 0x18, 0b00'111'101, 0xd8,0xff,0xff,0xff, // 0xffffffd8 == -40 |
| |
| 0xc4, 0xe2, 0x65, 0x00, 0b00'100'101, 0xcf,0xff,0xff,0xff, // 0xffffffcf == -49 |
| |
| 0xc5, 0xe5, 0xfe, 0b00'100'101, 0xc7,0xff,0xff,0xff, // 0xffffffc7 == -57 |
| 0xc5, 0xe5, 0xfa, 0b00'100'101, 0xbf,0xff,0xff,0xff, // 0xffffffbf == -65 |
| |
| 0xc4, 0xe2, 0x7d, 0x17, 0b00'100'101, 0xb6,0xff,0xff,0xff, // 0xffffffb6 == -74 |
| |
| 0xc5, 0xe4, 0x59, 0b00'100'101, 0xae,0xff,0xff,0xff, // 0xffffffaf == -82 |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.vbroadcastss(A::ymm0, A::rdi, 0); |
| a.vbroadcastss(A::ymm13, A::r14, 7); |
| a.vbroadcastss(A::ymm8, A::rdx, -12); |
| a.vbroadcastss(A::ymm8, A::rdx, 400); |
| |
| a.vbroadcastss(A::ymm8, A::xmm0); |
| a.vbroadcastss(A::ymm0, A::xmm13); |
| },{ |
| /* VEX */ /*op*/ /*ModRM*/ /*offset*/ |
| 0xc4,0xe2,0x7d, 0x18, 0b00'000'111, |
| 0xc4,0x42,0x7d, 0x18, 0b01'101'110, 0x07, |
| 0xc4,0x62,0x7d, 0x18, 0b01'000'010, 0xf4, |
| 0xc4,0x62,0x7d, 0x18, 0b10'000'010, 0x90,0x01,0x00,0x00, |
| |
| 0xc4,0x62,0x7d, 0x18, 0b11'000'000, |
| 0xc4,0xc2,0x7d, 0x18, 0b11'000'101, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| A::Label l = a.here(); |
| a.jne(&l); |
| a.jne(&l); |
| a.je (&l); |
| a.jmp(&l); |
| a.jl (&l); |
| a.jc (&l); |
| |
| a.cmp(A::rdx, 0); |
| a.cmp(A::rax, 12); |
| a.cmp(A::r14, 2000000000); |
| },{ |
| 0x0f,0x85, 0xfa,0xff,0xff,0xff, // near jne -6 bytes |
| 0x0f,0x85, 0xf4,0xff,0xff,0xff, // near jne -12 bytes |
| 0x0f,0x84, 0xee,0xff,0xff,0xff, // near je -18 bytes |
| 0xe9, 0xe9,0xff,0xff,0xff, // near jmp -23 bytes |
| 0x0f,0x8c, 0xe3,0xff,0xff,0xff, // near jl -29 bytes |
| 0x0f,0x82, 0xdd,0xff,0xff,0xff, // near jc -35 bytes |
| |
| 0x48,0x83,0xfa,0x00, |
| 0x48,0x83,0xf8,0x0c, |
| 0x49,0x81,0xfe,0x00,0x94,0x35,0x77, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.vmovups(A::ymm5, A::rsi); |
| a.vmovups(A::rsi, A::ymm5); |
| |
| a.vmovups(A::rsi, A::xmm5); |
| |
| a.vpmovzxwd(A::ymm4, A::rsi); |
| a.vpmovzxbd(A::ymm4, A::rsi); |
| |
| a.vmovq(A::rdx, A::xmm15); |
| },{ |
| /* VEX */ /*Op*/ /* ModRM */ |
| 0xc5, 0xfc, 0x10, 0b00'101'110, |
| 0xc5, 0xfc, 0x11, 0b00'101'110, |
| |
| 0xc5, 0xf8, 0x11, 0b00'101'110, |
| |
| 0xc4,0xe2,0x7d, 0x33, 0b00'100'110, |
| 0xc4,0xe2,0x7d, 0x31, 0b00'100'110, |
| |
| 0xc5, 0x79, 0xd6, 0b00'111'010, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.movzbl(A::rax, A::rsi, 0); // Low registers for src and dst. |
| a.movzbl(A::rax, A::r8, 0); // High src register. |
| a.movzbl(A::r8 , A::rsi, 0); // High dst register. |
| a.movzbl(A::r8, A::rsi, 12); |
| a.movzbl(A::r8, A::rsi, 400); |
| |
| a.vmovd(A::rax, A::xmm0); |
| a.vmovd(A::rax, A::xmm8); |
| a.vmovd(A::r8, A::xmm0); |
| |
| a.vmovd(A::xmm0, A::rax); |
| a.vmovd(A::xmm8, A::rax); |
| a.vmovd(A::xmm0, A::r8); |
| |
| a.vmovd(A::xmm0 , A::FOUR, A::rcx, A::rax); |
| a.vmovd(A::xmm15, A::TWO, A::r8, A::rax); |
| a.vmovd(A::xmm0 , A::ONE, A::rcx, A::r8); |
| |
| a.vmovd_direct(A::rax, A::xmm0); |
| a.vmovd_direct(A::rax, A::xmm8); |
| a.vmovd_direct(A::r8, A::xmm0); |
| |
| a.vmovd_direct(A::xmm0, A::rax); |
| a.vmovd_direct(A::xmm8, A::rax); |
| a.vmovd_direct(A::xmm0, A::r8); |
| |
| a.movb(A::rdx, A::rax); |
| a.movb(A::rdx, A::r8); |
| a.movb(A::r8 , A::rax); |
| },{ |
| 0x0f,0xb6,0x06, |
| 0x41,0x0f,0xb6,0x00, |
| 0x44,0x0f,0xb6,0x06, |
| 0x44,0x0f,0xb6,0x46, 12, |
| 0x44,0x0f,0xb6,0x86, 0x90,0x01,0x00,0x00, |
| |
| 0xc5,0xf9,0x7e,0x00, |
| 0xc5,0x79,0x7e,0x00, |
| 0xc4,0xc1,0x79,0x7e,0x00, |
| |
| 0xc5,0xf9,0x6e,0x00, |
| 0xc5,0x79,0x6e,0x00, |
| 0xc4,0xc1,0x79,0x6e,0x00, |
| |
| 0xc5,0xf9,0x6e,0x04,0x88, |
| 0xc4,0x21,0x79,0x6e,0x3c,0x40, |
| 0xc4,0xc1,0x79,0x6e,0x04,0x08, |
| |
| 0xc5,0xf9,0x7e,0xc0, |
| 0xc5,0x79,0x7e,0xc0, |
| 0xc4,0xc1,0x79,0x7e,0xc0, |
| |
| 0xc5,0xf9,0x6e,0xc0, |
| 0xc5,0x79,0x6e,0xc0, |
| 0xc4,0xc1,0x79,0x6e,0xc0, |
| |
| 0x88, 0x02, |
| 0x44, 0x88, 0x02, |
| 0x41, 0x88, 0x00, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.vpinsrw(A::xmm1, A::xmm8, A::rsi, 4); |
| a.vpinsrw(A::xmm8, A::xmm1, A::r8, 12); |
| |
| a.vpinsrb(A::xmm1, A::xmm8, A::rsi, 4); |
| a.vpinsrb(A::xmm8, A::xmm1, A::r8, 12); |
| |
| a.vpextrw(A::rsi, A::xmm8, 7); |
| a.vpextrw(A::r8, A::xmm1, 15); |
| |
| a.vpextrb(A::rsi, A::xmm8, 7); |
| a.vpextrb(A::r8, A::xmm1, 15); |
| },{ |
| 0xc5,0xb9, 0xc4, 0x0e, 4, |
| 0xc4,0x41,0x71, 0xc4, 0x00, 12, |
| |
| 0xc4,0xe3,0x39, 0x20, 0x0e, 4, |
| 0xc4,0x43,0x71, 0x20, 0x00, 12, |
| |
| 0xc4,0x63,0x79, 0x15, 0x06, 7, |
| 0xc4,0xc3,0x79, 0x15, 0x08, 15, |
| |
| 0xc4,0x63,0x79, 0x14, 0x06, 7, |
| 0xc4,0xc3,0x79, 0x14, 0x08, 15, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.vpandn(A::ymm3, A::ymm12, A::ymm2); |
| },{ |
| 0xc5, 0x9d, 0xdf, 0xda, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.vmovdqa (A::ymm3, A::ymm2); |
| a.vcvttps2dq(A::ymm3, A::ymm2); |
| a.vcvtdq2ps (A::ymm3, A::ymm2); |
| a.vcvtps2dq (A::ymm3, A::ymm2); |
| a.vsqrtps (A::ymm3, A::ymm2); |
| },{ |
| 0xc5,0xfd,0x6f,0xda, |
| 0xc5,0xfe,0x5b,0xda, |
| 0xc5,0xfc,0x5b,0xda, |
| 0xc5,0xfd,0x5b,0xda, |
| 0xc5,0xfc,0x51,0xda, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.vgatherdps(A::ymm1 , A::FOUR , A::ymm0 , A::rdi, A::ymm2 ); |
| a.vgatherdps(A::ymm0 , A::ONE , A::ymm2 , A::rax, A::ymm1 ); |
| a.vgatherdps(A::ymm10, A::ONE , A::ymm2 , A::rax, A::ymm1 ); |
| a.vgatherdps(A::ymm0 , A::ONE , A::ymm12, A::rax, A::ymm1 ); |
| a.vgatherdps(A::ymm0 , A::ONE , A::ymm2 , A::r9 , A::ymm1 ); |
| a.vgatherdps(A::ymm0 , A::ONE , A::ymm2 , A::rax, A::ymm12); |
| a.vgatherdps(A::ymm0 , A::EIGHT, A::ymm2 , A::rax, A::ymm12); |
| },{ |
| 0xc4,0xe2,0x6d,0x92,0x0c,0x87, |
| 0xc4,0xe2,0x75,0x92,0x04,0x10, |
| 0xc4,0x62,0x75,0x92,0x14,0x10, |
| 0xc4,0xa2,0x75,0x92,0x04,0x20, |
| 0xc4,0xc2,0x75,0x92,0x04,0x11, |
| 0xc4,0xe2,0x1d,0x92,0x04,0x10, |
| 0xc4,0xe2,0x1d,0x92,0x04,0xd0, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.movq(A::rax, A::rdi, 0); |
| a.movq(A::rax, A::rdi, 1); |
| a.movq(A::rax, A::rdi, 512); |
| a.movq(A::r15, A::r13, 42); |
| a.movq(A::rax, A::r13, 42); |
| a.movq(A::r15, A::rax, 42); |
| },{ |
| 0x48, 0x8b, 0x07, |
| 0x48, 0x8b, 0x47, 0x01, |
| 0x48, 0x8b, 0x87, 0x00,0x02,0x00,0x00, |
| 0x4d, 0x8b, 0x7d, 0x2a, |
| 0x49, 0x8b, 0x45, 0x2a, |
| 0x4c, 0x8b, 0x78, 0x2a, |
| }); |
| |
| // echo "fmul v4.4s, v3.4s, v1.4s" | llvm-mc -show-encoding -arch arm64 |
| |
| test_asm(r, [&](A& a) { |
| a.and16b(A::v4, A::v3, A::v1); |
| a.orr16b(A::v4, A::v3, A::v1); |
| a.eor16b(A::v4, A::v3, A::v1); |
| a.bic16b(A::v4, A::v3, A::v1); |
| a.bsl16b(A::v4, A::v3, A::v1); |
| a.not16b(A::v4, A::v3); |
| |
| a.add4s(A::v4, A::v3, A::v1); |
| a.sub4s(A::v4, A::v3, A::v1); |
| a.mul4s(A::v4, A::v3, A::v1); |
| |
| a.cmeq4s(A::v4, A::v3, A::v1); |
| a.cmgt4s(A::v4, A::v3, A::v1); |
| |
| a.sub8h(A::v4, A::v3, A::v1); |
| a.mul8h(A::v4, A::v3, A::v1); |
| |
| a.fadd4s(A::v4, A::v3, A::v1); |
| a.fsub4s(A::v4, A::v3, A::v1); |
| a.fmul4s(A::v4, A::v3, A::v1); |
| a.fdiv4s(A::v4, A::v3, A::v1); |
| a.fmin4s(A::v4, A::v3, A::v1); |
| a.fmax4s(A::v4, A::v3, A::v1); |
| a.fneg4s(A::v4, A::v3); |
| |
| a.fmla4s(A::v4, A::v3, A::v1); |
| a.fmls4s(A::v4, A::v3, A::v1); |
| |
| a.fcmeq4s(A::v4, A::v3, A::v1); |
| a.fcmgt4s(A::v4, A::v3, A::v1); |
| a.fcmge4s(A::v4, A::v3, A::v1); |
| },{ |
| 0x64,0x1c,0x21,0x4e, |
| 0x64,0x1c,0xa1,0x4e, |
| 0x64,0x1c,0x21,0x6e, |
| 0x64,0x1c,0x61,0x4e, |
| 0x64,0x1c,0x61,0x6e, |
| 0x64,0x58,0x20,0x6e, |
| |
| 0x64,0x84,0xa1,0x4e, |
| 0x64,0x84,0xa1,0x6e, |
| 0x64,0x9c,0xa1,0x4e, |
| |
| 0x64,0x8c,0xa1,0x6e, |
| 0x64,0x34,0xa1,0x4e, |
| |
| 0x64,0x84,0x61,0x6e, |
| 0x64,0x9c,0x61,0x4e, |
| |
| 0x64,0xd4,0x21,0x4e, |
| 0x64,0xd4,0xa1,0x4e, |
| 0x64,0xdc,0x21,0x6e, |
| 0x64,0xfc,0x21,0x6e, |
| 0x64,0xf4,0xa1,0x4e, |
| 0x64,0xf4,0x21,0x4e, |
| 0x64,0xf8,0xa0,0x6e, |
| |
| 0x64,0xcc,0x21,0x4e, |
| 0x64,0xcc,0xa1,0x4e, |
| |
| 0x64,0xe4,0x21,0x4e, |
| 0x64,0xe4,0xa1,0x6e, |
| 0x64,0xe4,0x21,0x6e, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.shl4s(A::v4, A::v3, 0); |
| a.shl4s(A::v4, A::v3, 1); |
| a.shl4s(A::v4, A::v3, 8); |
| a.shl4s(A::v4, A::v3, 16); |
| a.shl4s(A::v4, A::v3, 31); |
| |
| a.sshr4s(A::v4, A::v3, 1); |
| a.sshr4s(A::v4, A::v3, 8); |
| a.sshr4s(A::v4, A::v3, 31); |
| |
| a.ushr4s(A::v4, A::v3, 1); |
| a.ushr4s(A::v4, A::v3, 8); |
| a.ushr4s(A::v4, A::v3, 31); |
| |
| a.ushr8h(A::v4, A::v3, 1); |
| a.ushr8h(A::v4, A::v3, 8); |
| a.ushr8h(A::v4, A::v3, 15); |
| },{ |
| 0x64,0x54,0x20,0x4f, |
| 0x64,0x54,0x21,0x4f, |
| 0x64,0x54,0x28,0x4f, |
| 0x64,0x54,0x30,0x4f, |
| 0x64,0x54,0x3f,0x4f, |
| |
| 0x64,0x04,0x3f,0x4f, |
| 0x64,0x04,0x38,0x4f, |
| 0x64,0x04,0x21,0x4f, |
| |
| 0x64,0x04,0x3f,0x6f, |
| 0x64,0x04,0x38,0x6f, |
| 0x64,0x04,0x21,0x6f, |
| |
| 0x64,0x04,0x1f,0x6f, |
| 0x64,0x04,0x18,0x6f, |
| 0x64,0x04,0x11,0x6f, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.sli4s(A::v4, A::v3, 0); |
| a.sli4s(A::v4, A::v3, 1); |
| a.sli4s(A::v4, A::v3, 8); |
| a.sli4s(A::v4, A::v3, 16); |
| a.sli4s(A::v4, A::v3, 31); |
| },{ |
| 0x64,0x54,0x20,0x6f, |
| 0x64,0x54,0x21,0x6f, |
| 0x64,0x54,0x28,0x6f, |
| 0x64,0x54,0x30,0x6f, |
| 0x64,0x54,0x3f,0x6f, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.scvtf4s (A::v4, A::v3); |
| a.fcvtzs4s(A::v4, A::v3); |
| a.fcvtns4s(A::v4, A::v3); |
| },{ |
| 0x64,0xd8,0x21,0x4e, |
| 0x64,0xb8,0xa1,0x4e, |
| 0x64,0xa8,0x21,0x4e, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.brk(0); |
| a.brk(65535); |
| |
| a.ret(A::x30); // Conventional ret using link register. |
| a.ret(A::x13); // Can really return using any register if we like. |
| |
| a.add(A::x2, A::x2, 4); |
| a.add(A::x3, A::x2, 32); |
| |
| a.sub(A::x2, A::x2, 4); |
| a.sub(A::x3, A::x2, 32); |
| |
| a.subs(A::x2, A::x2, 4); |
| a.subs(A::x3, A::x2, 32); |
| |
| a.subs(A::xzr, A::x2, 4); // These are actually the same instruction! |
| a.cmp(A::x2, 4); |
| |
| A::Label l = a.here(); |
| a.bne(&l); |
| a.bne(&l); |
| a.blt(&l); |
| a.b(&l); |
| a.cbnz(A::x2, &l); |
| a.cbz(A::x2, &l); |
| },{ |
| 0x00,0x00,0x20,0xd4, |
| 0xe0,0xff,0x3f,0xd4, |
| |
| 0xc0,0x03,0x5f,0xd6, |
| 0xa0,0x01,0x5f,0xd6, |
| |
| 0x42,0x10,0x00,0x91, |
| 0x43,0x80,0x00,0x91, |
| |
| 0x42,0x10,0x00,0xd1, |
| 0x43,0x80,0x00,0xd1, |
| |
| 0x42,0x10,0x00,0xf1, |
| 0x43,0x80,0x00,0xf1, |
| |
| 0x5f,0x10,0x00,0xf1, |
| 0x5f,0x10,0x00,0xf1, |
| |
| 0x01,0x00,0x00,0x54, // b.ne #0 |
| 0xe1,0xff,0xff,0x54, // b.ne #-4 |
| 0xcb,0xff,0xff,0x54, // b.lt #-8 |
| 0xae,0xff,0xff,0x54, // b.al #-12 |
| 0x82,0xff,0xff,0xb5, // cbnz x2, #-16 |
| 0x62,0xff,0xff,0xb4, // cbz x2, #-20 |
| }); |
| |
| // Can we cbz() to a not-yet-defined label? |
| test_asm(r, [&](A& a) { |
| A::Label l; |
| a.cbz(A::x2, &l); |
| a.add(A::x3, A::x2, 32); |
| a.label(&l); |
| a.ret(A::x30); |
| },{ |
| 0x42,0x00,0x00,0xb4, // cbz x2, #8 |
| 0x43,0x80,0x00,0x91, // add x3, x2, #32 |
| 0xc0,0x03,0x5f,0xd6, // ret |
| }); |
| |
| // If we start a label as a backward label, |
| // can we redefine it to be a future label? |
| // (Not sure this is useful... just want to test it works.) |
| test_asm(r, [&](A& a) { |
| A::Label l1 = a.here(); |
| a.add(A::x3, A::x2, 32); |
| a.cbz(A::x2, &l1); // This will jump backward... nothing sneaky. |
| |
| A::Label l2 = a.here(); // Start off the same... |
| a.add(A::x3, A::x2, 32); |
| a.cbz(A::x2, &l2); // Looks like this will go backward... |
| a.add(A::x2, A::x2, 4); |
| a.add(A::x3, A::x2, 32); |
| a.label(&l2); // But no... actually forward! What a switcheroo! |
| },{ |
| 0x43,0x80,0x00,0x91, // add x3, x2, #32 |
| 0xe2,0xff,0xff,0xb4, // cbz x2, #-4 |
| |
| 0x43,0x80,0x00,0x91, // add x3, x2, #32 |
| 0x62,0x00,0x00,0xb4, // cbz x2, #12 |
| 0x42,0x10,0x00,0x91, // add x2, x2, #4 |
| 0x43,0x80,0x00,0x91, // add x3, x2, #32 |
| }); |
| |
| // Loading from a label on ARM. |
| test_asm(r, [&](A& a) { |
| A::Label fore,aft; |
| a.label(&fore); |
| a.word(0x01234567); |
| a.ldrq(A::v1, &fore); |
| a.ldrq(A::v2, &aft); |
| a.label(&aft); |
| a.word(0x76543210); |
| },{ |
| 0x67,0x45,0x23,0x01, |
| 0xe1,0xff,0xff,0x9c, // ldr q1, #-4 |
| 0x22,0x00,0x00,0x9c, // ldr q2, #4 |
| 0x10,0x32,0x54,0x76, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.ldrq(A::v0, A::x8); |
| a.strq(A::v0, A::x8); |
| },{ |
| 0x00,0x01,0xc0,0x3d, |
| 0x00,0x01,0x80,0x3d, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.xtns2h(A::v0, A::v0); |
| a.xtnh2b(A::v0, A::v0); |
| a.strs (A::v0, A::x0); |
| |
| a.ldrs (A::v0, A::x0); |
| a.uxtlb2h(A::v0, A::v0); |
| a.uxtlh2s(A::v0, A::v0); |
| |
| a.uminv4s(A::v3, A::v4); |
| a.fmovs (A::x3, A::v4); // fmov w3,s4 |
| },{ |
| 0x00,0x28,0x61,0x0e, |
| 0x00,0x28,0x21,0x0e, |
| 0x00,0x00,0x00,0xbd, |
| |
| 0x00,0x00,0x40,0xbd, |
| 0x00,0xa4,0x08,0x2f, |
| 0x00,0xa4,0x10,0x2f, |
| |
| 0x83,0xa8,0xb1,0x6e, |
| 0x83,0x00,0x26,0x1e, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.ldrb(A::v0, A::x8); |
| a.strb(A::v0, A::x8); |
| },{ |
| 0x00,0x01,0x40,0x3d, |
| 0x00,0x01,0x00,0x3d, |
| }); |
| |
| test_asm(r, [&](A& a) { |
| a.tbl(A::v0, A::v1, A::v2); |
| },{ |
| 0x20,0x00,0x02,0x4e, |
| }); |
| } |
| |
| DEF_TEST(SkVM_approx_math, r) { |
| auto eval = [](int N, float values[], auto fn) { |
| skvm::Builder b; |
| skvm::Arg inout = b.varying<float>(); |
| |
| b.storeF(inout, fn(&b, b.loadF(inout))); |
| |
| b.done().eval(N, values); |
| }; |
| |
| auto compare = [r](int N, const float values[], const float expected[]) { |
| for (int i = 0; i < N; ++i) { |
| REPORTER_ASSERT(r, SkScalarNearlyEqual(values[i], expected[i], 0.001f)); |
| } |
| }; |
| |
| // log2 |
| { |
| float values[] = {0.25f, 0.5f, 1, 2, 4, 8}; |
| constexpr int N = SK_ARRAY_COUNT(values); |
| eval(N, values, [](skvm::Builder* b, skvm::F32 v) { |
| return b->approx_log2(v); |
| }); |
| const float expected[] = {-2, -1, 0, 1, 2, 3}; |
| compare(N, values, expected); |
| } |
| |
| // pow2 |
| { |
| float values[] = {-2, -1, 0, 1, 2, 3}; |
| constexpr int N = SK_ARRAY_COUNT(values); |
| eval(N, values, [](skvm::Builder* b, skvm::F32 v) { |
| return b->approx_pow2(v); |
| }); |
| const float expected[] = {0.25f, 0.5f, 1, 2, 4, 8}; |
| compare(N, values, expected); |
| } |
| |
| // powf -- x^0.5 |
| { |
| float bases[] = {0, 1, 4, 9, 16}; |
| constexpr int N = SK_ARRAY_COUNT(bases); |
| eval(N, bases, [](skvm::Builder* b, skvm::F32 base) { |
| return b->approx_powf(base, b->splat(0.5f)); |
| }); |
| const float expected[] = {0, 1, 2, 3, 4}; |
| compare(N, bases, expected); |
| } |
| // powf -- 3^x |
| { |
| float exps[] = {-2, -1, 0, 1, 2}; |
| constexpr int N = SK_ARRAY_COUNT(exps); |
| eval(N, exps, [](skvm::Builder* b, skvm::F32 exp) { |
| return b->approx_powf(b->splat(3.0f), exp); |
| }); |
| const float expected[] = {1/9.0f, 1/3.0f, 1, 3, 9}; |
| compare(N, exps, expected); |
| } |
| } |