| /* |
| * Copyright 2013 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "GrOvalRenderer.h" |
| |
| #include "GrBatchFlushState.h" |
| #include "GrBatchTest.h" |
| #include "GrGeometryProcessor.h" |
| #include "GrInvariantOutput.h" |
| #include "GrProcessor.h" |
| #include "GrResourceProvider.h" |
| #include "GrStyle.h" |
| #include "SkRRect.h" |
| #include "SkStrokeRec.h" |
| #include "batches/GrVertexBatch.h" |
| #include "glsl/GrGLSLFragmentShaderBuilder.h" |
| #include "glsl/GrGLSLGeometryProcessor.h" |
| #include "glsl/GrGLSLProgramDataManager.h" |
| #include "glsl/GrGLSLVarying.h" |
| #include "glsl/GrGLSLVertexShaderBuilder.h" |
| #include "glsl/GrGLSLUniformHandler.h" |
| #include "glsl/GrGLSLUtil.h" |
| |
| // TODO(joshualitt) - Break this file up during GrBatch post implementation cleanup |
| |
| namespace { |
| |
| struct EllipseVertex { |
| SkPoint fPos; |
| GrColor fColor; |
| SkPoint fOffset; |
| SkPoint fOuterRadii; |
| SkPoint fInnerRadii; |
| }; |
| |
| struct DIEllipseVertex { |
| SkPoint fPos; |
| GrColor fColor; |
| SkPoint fOuterOffset; |
| SkPoint fInnerOffset; |
| }; |
| |
| inline bool circle_stays_circle(const SkMatrix& m) { |
| return m.isSimilarity(); |
| } |
| |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * The output of this effect is a modulation of the input color and coverage for a circle. It |
| * operates in a space normalized by the circle radius (outer radius in the case of a stroke) |
| * with origin at the circle center. Three vertex attributes are used: |
| * vec2f : position in device space of the bounding geometry vertices |
| * vec4ub: color |
| * vec4f : (p.xy, outerRad, innerRad) |
| * p is the position in the normalized space. |
| * outerRad is the outerRadius in device space. |
| * innerRad is the innerRadius in normalized space (ignored if not stroking). |
| * If fUsesDistanceVectorField is set in fragment processors in the same program, then |
| * an additional vertex attribute is available via args.fFragBuilder->distanceVectorName(): |
| * vec4f : (v.xy, outerDistance, innerDistance) |
| * v is a normalized vector pointing to the outer edge |
| * outerDistance is the distance to the outer edge, < 0 if we are outside of the shape |
| * if stroking, innerDistance is the distance to the inner edge, < 0 if outside |
| * Additional clip planes are supported for rendering circular arcs. The additional planes are |
| * either intersected or unioned together. Up to three planes are supported (an initial plane, |
| * a plane intersected with the initial plane, and a plane unioned with the first two). Only two |
| * are useful for any given arc, but having all three in one instance allows batching different |
| * types of arcs. |
| */ |
| |
| class CircleGeometryProcessor : public GrGeometryProcessor { |
| public: |
| CircleGeometryProcessor(bool stroke, bool clipPlane, bool isectPlane, bool unionPlane, |
| const SkMatrix& localMatrix) |
| : fLocalMatrix(localMatrix) { |
| this->initClassID<CircleGeometryProcessor>(); |
| fInPosition = &this->addVertexAttrib("inPosition", kVec2f_GrVertexAttribType, |
| kHigh_GrSLPrecision); |
| fInColor = &this->addVertexAttrib("inColor", kVec4ub_GrVertexAttribType); |
| fInCircleEdge = &this->addVertexAttrib("inCircleEdge", kVec4f_GrVertexAttribType); |
| if (clipPlane) { |
| fInClipPlane = &this->addVertexAttrib("inClipPlane", kVec3f_GrVertexAttribType); |
| } else { |
| fInClipPlane = nullptr; |
| } |
| if (isectPlane) { |
| fInIsectPlane = &this->addVertexAttrib("inIsectPlane", kVec3f_GrVertexAttribType); |
| } else { |
| fInIsectPlane = nullptr; |
| } |
| if (unionPlane) { |
| fInUnionPlane = &this->addVertexAttrib("inUnionPlane", kVec3f_GrVertexAttribType); |
| } else { |
| fInUnionPlane = nullptr; |
| } |
| fStroke = stroke; |
| } |
| |
| bool implementsDistanceVector() const override { return !fInClipPlane; }; |
| |
| virtual ~CircleGeometryProcessor() {} |
| |
| const char* name() const override { return "CircleEdge"; } |
| |
| void getGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override { |
| GLSLProcessor::GenKey(*this, caps, b); |
| } |
| |
| GrGLSLPrimitiveProcessor* createGLSLInstance(const GrGLSLCaps&) const override { |
| return new GLSLProcessor(); |
| } |
| |
| private: |
| class GLSLProcessor : public GrGLSLGeometryProcessor { |
| public: |
| GLSLProcessor() {} |
| |
| void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{ |
| const CircleGeometryProcessor& cgp = args.fGP.cast<CircleGeometryProcessor>(); |
| GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; |
| GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; |
| GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; |
| GrGLSLPPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| |
| // emit attributes |
| varyingHandler->emitAttributes(cgp); |
| fragBuilder->codeAppend("vec4 circleEdge;"); |
| varyingHandler->addPassThroughAttribute(cgp.fInCircleEdge, "circleEdge"); |
| if (cgp.fInClipPlane) { |
| fragBuilder->codeAppend("vec3 clipPlane;"); |
| varyingHandler->addPassThroughAttribute(cgp.fInClipPlane, "clipPlane"); |
| } |
| if (cgp.fInIsectPlane) { |
| SkASSERT(cgp.fInClipPlane); |
| fragBuilder->codeAppend("vec3 isectPlane;"); |
| varyingHandler->addPassThroughAttribute(cgp.fInIsectPlane, "isectPlane"); |
| } |
| if (cgp.fInUnionPlane) { |
| SkASSERT(cgp.fInClipPlane); |
| fragBuilder->codeAppend("vec3 unionPlane;"); |
| varyingHandler->addPassThroughAttribute(cgp.fInUnionPlane, "unionPlane"); |
| } |
| |
| // setup pass through color |
| varyingHandler->addPassThroughAttribute(cgp.fInColor, args.fOutputColor); |
| |
| // Setup position |
| this->setupPosition(vertBuilder, gpArgs, cgp.fInPosition->fName); |
| |
| // emit transforms |
| this->emitTransforms(vertBuilder, |
| varyingHandler, |
| uniformHandler, |
| gpArgs->fPositionVar, |
| cgp.fInPosition->fName, |
| cgp.fLocalMatrix, |
| args.fTransformsIn, |
| args.fTransformsOut); |
| |
| fragBuilder->codeAppend("float d = length(circleEdge.xy);"); |
| fragBuilder->codeAppend("float distanceToOuterEdge = circleEdge.z * (1.0 - d);"); |
| fragBuilder->codeAppend("float edgeAlpha = clamp(distanceToOuterEdge, 0.0, 1.0);"); |
| if (cgp.fStroke) { |
| fragBuilder->codeAppend("float distanceToInnerEdge = circleEdge.z * (d - circleEdge.w);"); |
| fragBuilder->codeAppend("float innerAlpha = clamp(distanceToInnerEdge, 0.0, 1.0);"); |
| fragBuilder->codeAppend("edgeAlpha *= innerAlpha;"); |
| } |
| |
| if (args.fDistanceVectorName) { |
| const char* innerEdgeDistance = cgp.fStroke ? "distanceToInnerEdge" : "0.0"; |
| fragBuilder->codeAppend ("if (d == 0.0) {"); // if on the center of the circle |
| fragBuilder->codeAppendf(" %s = vec4(1.0, 0.0, distanceToOuterEdge, " |
| "%s);", // no normalize |
| args.fDistanceVectorName, innerEdgeDistance); |
| fragBuilder->codeAppend ("} else {"); |
| fragBuilder->codeAppendf(" %s = vec4(normalize(circleEdge.xy), distanceToOuterEdge, %s);", |
| args.fDistanceVectorName, innerEdgeDistance); |
| fragBuilder->codeAppend ("}"); |
| } |
| if (cgp.fInClipPlane) { |
| fragBuilder->codeAppend("float clip = clamp(circleEdge.z * dot(circleEdge.xy, clipPlane.xy) + clipPlane.z, 0.0, 1.0);"); |
| if (cgp.fInIsectPlane) { |
| fragBuilder->codeAppend("clip *= clamp(circleEdge.z * dot(circleEdge.xy, isectPlane.xy) + isectPlane.z, 0.0, 1.0);"); |
| } |
| if (cgp.fInUnionPlane) { |
| fragBuilder->codeAppend("clip += (1.0 - clip)*clamp(circleEdge.z * dot(circleEdge.xy, unionPlane.xy) + unionPlane.z, 0.0, 1.0);"); |
| } |
| fragBuilder->codeAppend("edgeAlpha *= clip;"); |
| } |
| fragBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage); |
| } |
| |
| static void GenKey(const GrGeometryProcessor& gp, |
| const GrGLSLCaps&, |
| GrProcessorKeyBuilder* b) { |
| const CircleGeometryProcessor& cgp = gp.cast<CircleGeometryProcessor>(); |
| uint16_t key; |
| key = cgp.fStroke ? 0x01 : 0x0; |
| key |= cgp.fLocalMatrix.hasPerspective() ? 0x02 : 0x0; |
| key |= cgp.fInClipPlane ? 0x04 : 0x0; |
| key |= cgp.fInIsectPlane ? 0x08 : 0x0; |
| key |= cgp.fInUnionPlane ? 0x10 : 0x0; |
| b->add32(key); |
| } |
| |
| void setData(const GrGLSLProgramDataManager&, const GrPrimitiveProcessor&) override {} |
| |
| void setTransformData(const GrPrimitiveProcessor& primProc, |
| const GrGLSLProgramDataManager& pdman, |
| int index, |
| const SkTArray<const GrCoordTransform*, true>& transforms) override { |
| this->setTransformDataHelper(primProc.cast<CircleGeometryProcessor>().fLocalMatrix, |
| pdman, index, transforms); |
| } |
| |
| private: |
| typedef GrGLSLGeometryProcessor INHERITED; |
| }; |
| |
| SkMatrix fLocalMatrix; |
| const Attribute* fInPosition; |
| const Attribute* fInColor; |
| const Attribute* fInCircleEdge; |
| const Attribute* fInClipPlane; |
| const Attribute* fInIsectPlane; |
| const Attribute* fInUnionPlane; |
| bool fStroke; |
| |
| GR_DECLARE_GEOMETRY_PROCESSOR_TEST; |
| |
| typedef GrGeometryProcessor INHERITED; |
| }; |
| |
| GR_DEFINE_GEOMETRY_PROCESSOR_TEST(CircleGeometryProcessor); |
| |
| sk_sp<GrGeometryProcessor> CircleGeometryProcessor::TestCreate(GrProcessorTestData* d) { |
| return sk_sp<GrGeometryProcessor>( |
| new CircleGeometryProcessor(d->fRandom->nextBool(), d->fRandom->nextBool(), |
| d->fRandom->nextBool(), d->fRandom->nextBool(), |
| GrTest::TestMatrix(d->fRandom))); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * The output of this effect is a modulation of the input color and coverage for an axis-aligned |
| * ellipse, specified as a 2D offset from center, and the reciprocals of the outer and inner radii, |
| * in both x and y directions. |
| * |
| * We are using an implicit function of x^2/a^2 + y^2/b^2 - 1 = 0. |
| */ |
| |
| class EllipseGeometryProcessor : public GrGeometryProcessor { |
| public: |
| EllipseGeometryProcessor(bool stroke, const SkMatrix& localMatrix) |
| : fLocalMatrix(localMatrix) { |
| this->initClassID<EllipseGeometryProcessor>(); |
| fInPosition = &this->addVertexAttrib("inPosition", kVec2f_GrVertexAttribType); |
| fInColor = &this->addVertexAttrib("inColor", kVec4ub_GrVertexAttribType); |
| fInEllipseOffset = &this->addVertexAttrib("inEllipseOffset", kVec2f_GrVertexAttribType); |
| fInEllipseRadii = &this->addVertexAttrib("inEllipseRadii", kVec4f_GrVertexAttribType); |
| fStroke = stroke; |
| } |
| |
| virtual ~EllipseGeometryProcessor() {} |
| |
| const char* name() const override { return "EllipseEdge"; } |
| |
| void getGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override { |
| GLSLProcessor::GenKey(*this, caps, b); |
| } |
| |
| GrGLSLPrimitiveProcessor* createGLSLInstance(const GrGLSLCaps&) const override { |
| return new GLSLProcessor(); |
| } |
| |
| private: |
| class GLSLProcessor : public GrGLSLGeometryProcessor { |
| public: |
| GLSLProcessor() {} |
| |
| void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override{ |
| const EllipseGeometryProcessor& egp = args.fGP.cast<EllipseGeometryProcessor>(); |
| GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; |
| GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; |
| GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; |
| |
| // emit attributes |
| varyingHandler->emitAttributes(egp); |
| |
| GrGLSLVertToFrag ellipseOffsets(kVec2f_GrSLType); |
| varyingHandler->addVarying("EllipseOffsets", &ellipseOffsets); |
| vertBuilder->codeAppendf("%s = %s;", ellipseOffsets.vsOut(), |
| egp.fInEllipseOffset->fName); |
| |
| GrGLSLVertToFrag ellipseRadii(kVec4f_GrSLType); |
| varyingHandler->addVarying("EllipseRadii", &ellipseRadii); |
| vertBuilder->codeAppendf("%s = %s;", ellipseRadii.vsOut(), |
| egp.fInEllipseRadii->fName); |
| |
| GrGLSLPPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| // setup pass through color |
| varyingHandler->addPassThroughAttribute(egp.fInColor, args.fOutputColor); |
| |
| // Setup position |
| this->setupPosition(vertBuilder, gpArgs, egp.fInPosition->fName); |
| |
| // emit transforms |
| this->emitTransforms(vertBuilder, |
| varyingHandler, |
| uniformHandler, |
| gpArgs->fPositionVar, |
| egp.fInPosition->fName, |
| egp.fLocalMatrix, |
| args.fTransformsIn, |
| args.fTransformsOut); |
| |
| // for outer curve |
| fragBuilder->codeAppendf("vec2 scaledOffset = %s*%s.xy;", ellipseOffsets.fsIn(), |
| ellipseRadii.fsIn()); |
| fragBuilder->codeAppend("float test = dot(scaledOffset, scaledOffset) - 1.0;"); |
| fragBuilder->codeAppendf("vec2 grad = 2.0*scaledOffset*%s.xy;", ellipseRadii.fsIn()); |
| fragBuilder->codeAppend("float grad_dot = dot(grad, grad);"); |
| |
| // avoid calling inversesqrt on zero. |
| fragBuilder->codeAppend("grad_dot = max(grad_dot, 1.0e-4);"); |
| fragBuilder->codeAppend("float invlen = inversesqrt(grad_dot);"); |
| fragBuilder->codeAppend("float edgeAlpha = clamp(0.5-test*invlen, 0.0, 1.0);"); |
| |
| // for inner curve |
| if (egp.fStroke) { |
| fragBuilder->codeAppendf("scaledOffset = %s*%s.zw;", |
| ellipseOffsets.fsIn(), ellipseRadii.fsIn()); |
| fragBuilder->codeAppend("test = dot(scaledOffset, scaledOffset) - 1.0;"); |
| fragBuilder->codeAppendf("grad = 2.0*scaledOffset*%s.zw;", |
| ellipseRadii.fsIn()); |
| fragBuilder->codeAppend("invlen = inversesqrt(dot(grad, grad));"); |
| fragBuilder->codeAppend("edgeAlpha *= clamp(0.5+test*invlen, 0.0, 1.0);"); |
| } |
| |
| fragBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage); |
| } |
| |
| static void GenKey(const GrGeometryProcessor& gp, |
| const GrGLSLCaps&, |
| GrProcessorKeyBuilder* b) { |
| const EllipseGeometryProcessor& egp = gp.cast<EllipseGeometryProcessor>(); |
| uint16_t key = egp.fStroke ? 0x1 : 0x0; |
| key |= egp.fLocalMatrix.hasPerspective() ? 0x2 : 0x0; |
| b->add32(key); |
| } |
| |
| void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& gp) override { |
| } |
| |
| void setTransformData(const GrPrimitiveProcessor& primProc, |
| const GrGLSLProgramDataManager& pdman, |
| int index, |
| const SkTArray<const GrCoordTransform*, true>& transforms) override { |
| this->setTransformDataHelper(primProc.cast<EllipseGeometryProcessor>().fLocalMatrix, |
| pdman, index, transforms); |
| } |
| |
| private: |
| typedef GrGLSLGeometryProcessor INHERITED; |
| }; |
| |
| const Attribute* fInPosition; |
| const Attribute* fInColor; |
| const Attribute* fInEllipseOffset; |
| const Attribute* fInEllipseRadii; |
| SkMatrix fLocalMatrix; |
| bool fStroke; |
| |
| GR_DECLARE_GEOMETRY_PROCESSOR_TEST; |
| |
| typedef GrGeometryProcessor INHERITED; |
| }; |
| |
| GR_DEFINE_GEOMETRY_PROCESSOR_TEST(EllipseGeometryProcessor); |
| |
| sk_sp<GrGeometryProcessor> EllipseGeometryProcessor::TestCreate(GrProcessorTestData* d) { |
| return sk_sp<GrGeometryProcessor>( |
| new EllipseGeometryProcessor(d->fRandom->nextBool(), GrTest::TestMatrix(d->fRandom))); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * The output of this effect is a modulation of the input color and coverage for an ellipse, |
| * specified as a 2D offset from center for both the outer and inner paths (if stroked). The |
| * implict equation used is for a unit circle (x^2 + y^2 - 1 = 0) and the edge corrected by |
| * using differentials. |
| * |
| * The result is device-independent and can be used with any affine matrix. |
| */ |
| |
| enum class DIEllipseStyle { kStroke = 0, kHairline, kFill }; |
| |
| class DIEllipseGeometryProcessor : public GrGeometryProcessor { |
| public: |
| DIEllipseGeometryProcessor(const SkMatrix& viewMatrix, DIEllipseStyle style) |
| : fViewMatrix(viewMatrix) { |
| this->initClassID<DIEllipseGeometryProcessor>(); |
| fInPosition = &this->addVertexAttrib("inPosition", kVec2f_GrVertexAttribType, |
| kHigh_GrSLPrecision); |
| fInColor = &this->addVertexAttrib("inColor", kVec4ub_GrVertexAttribType); |
| fInEllipseOffsets0 = &this->addVertexAttrib("inEllipseOffsets0", kVec2f_GrVertexAttribType); |
| fInEllipseOffsets1 = &this->addVertexAttrib("inEllipseOffsets1", kVec2f_GrVertexAttribType); |
| fStyle = style; |
| } |
| |
| |
| virtual ~DIEllipseGeometryProcessor() {} |
| |
| const char* name() const override { return "DIEllipseEdge"; } |
| |
| void getGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override { |
| GLSLProcessor::GenKey(*this, caps, b); |
| } |
| |
| GrGLSLPrimitiveProcessor* createGLSLInstance(const GrGLSLCaps&) const override { |
| return new GLSLProcessor(); |
| } |
| |
| private: |
| class GLSLProcessor : public GrGLSLGeometryProcessor { |
| public: |
| GLSLProcessor() |
| : fViewMatrix(SkMatrix::InvalidMatrix()) {} |
| |
| void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override { |
| const DIEllipseGeometryProcessor& diegp = args.fGP.cast<DIEllipseGeometryProcessor>(); |
| GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; |
| GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; |
| GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; |
| |
| // emit attributes |
| varyingHandler->emitAttributes(diegp); |
| |
| GrGLSLVertToFrag offsets0(kVec2f_GrSLType); |
| varyingHandler->addVarying("EllipseOffsets0", &offsets0); |
| vertBuilder->codeAppendf("%s = %s;", offsets0.vsOut(), |
| diegp.fInEllipseOffsets0->fName); |
| |
| GrGLSLVertToFrag offsets1(kVec2f_GrSLType); |
| varyingHandler->addVarying("EllipseOffsets1", &offsets1); |
| vertBuilder->codeAppendf("%s = %s;", offsets1.vsOut(), |
| diegp.fInEllipseOffsets1->fName); |
| |
| GrGLSLPPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| varyingHandler->addPassThroughAttribute(diegp.fInColor, args.fOutputColor); |
| |
| // Setup position |
| this->setupPosition(vertBuilder, |
| uniformHandler, |
| gpArgs, |
| diegp.fInPosition->fName, |
| diegp.fViewMatrix, |
| &fViewMatrixUniform); |
| |
| // emit transforms |
| this->emitTransforms(vertBuilder, |
| varyingHandler, |
| uniformHandler, |
| gpArgs->fPositionVar, |
| diegp.fInPosition->fName, |
| args.fTransformsIn, |
| args.fTransformsOut); |
| |
| SkAssertResult(fragBuilder->enableFeature( |
| GrGLSLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature)); |
| // for outer curve |
| fragBuilder->codeAppendf("vec2 scaledOffset = %s.xy;", offsets0.fsIn()); |
| fragBuilder->codeAppend("float test = dot(scaledOffset, scaledOffset) - 1.0;"); |
| fragBuilder->codeAppendf("vec2 duvdx = dFdx(%s);", offsets0.fsIn()); |
| fragBuilder->codeAppendf("vec2 duvdy = dFdy(%s);", offsets0.fsIn()); |
| fragBuilder->codeAppendf("vec2 grad = vec2(2.0*%s.x*duvdx.x + 2.0*%s.y*duvdx.y," |
| " 2.0*%s.x*duvdy.x + 2.0*%s.y*duvdy.y);", |
| offsets0.fsIn(), offsets0.fsIn(), offsets0.fsIn(), |
| offsets0.fsIn()); |
| |
| fragBuilder->codeAppend("float grad_dot = dot(grad, grad);"); |
| // avoid calling inversesqrt on zero. |
| fragBuilder->codeAppend("grad_dot = max(grad_dot, 1.0e-4);"); |
| fragBuilder->codeAppend("float invlen = inversesqrt(grad_dot);"); |
| if (DIEllipseStyle::kHairline == diegp.fStyle) { |
| // can probably do this with one step |
| fragBuilder->codeAppend("float edgeAlpha = clamp(1.0-test*invlen, 0.0, 1.0);"); |
| fragBuilder->codeAppend("edgeAlpha *= clamp(1.0+test*invlen, 0.0, 1.0);"); |
| } else { |
| fragBuilder->codeAppend("float edgeAlpha = clamp(0.5-test*invlen, 0.0, 1.0);"); |
| } |
| |
| // for inner curve |
| if (DIEllipseStyle::kStroke == diegp.fStyle) { |
| fragBuilder->codeAppendf("scaledOffset = %s.xy;", offsets1.fsIn()); |
| fragBuilder->codeAppend("test = dot(scaledOffset, scaledOffset) - 1.0;"); |
| fragBuilder->codeAppendf("duvdx = dFdx(%s);", offsets1.fsIn()); |
| fragBuilder->codeAppendf("duvdy = dFdy(%s);", offsets1.fsIn()); |
| fragBuilder->codeAppendf("grad = vec2(2.0*%s.x*duvdx.x + 2.0*%s.y*duvdx.y," |
| " 2.0*%s.x*duvdy.x + 2.0*%s.y*duvdy.y);", |
| offsets1.fsIn(), offsets1.fsIn(), offsets1.fsIn(), |
| offsets1.fsIn()); |
| fragBuilder->codeAppend("invlen = inversesqrt(dot(grad, grad));"); |
| fragBuilder->codeAppend("edgeAlpha *= clamp(0.5+test*invlen, 0.0, 1.0);"); |
| } |
| |
| fragBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage); |
| } |
| |
| static void GenKey(const GrGeometryProcessor& gp, |
| const GrGLSLCaps&, |
| GrProcessorKeyBuilder* b) { |
| const DIEllipseGeometryProcessor& diegp = gp.cast<DIEllipseGeometryProcessor>(); |
| uint16_t key = static_cast<uint16_t>(diegp.fStyle); |
| key |= ComputePosKey(diegp.fViewMatrix) << 10; |
| b->add32(key); |
| } |
| |
| void setData(const GrGLSLProgramDataManager& pdman, |
| const GrPrimitiveProcessor& gp) override { |
| const DIEllipseGeometryProcessor& diegp = gp.cast<DIEllipseGeometryProcessor>(); |
| |
| if (!diegp.fViewMatrix.isIdentity() && !fViewMatrix.cheapEqualTo(diegp.fViewMatrix)) { |
| fViewMatrix = diegp.fViewMatrix; |
| float viewMatrix[3 * 3]; |
| GrGLSLGetMatrix<3>(viewMatrix, fViewMatrix); |
| pdman.setMatrix3f(fViewMatrixUniform, viewMatrix); |
| } |
| } |
| |
| private: |
| SkMatrix fViewMatrix; |
| UniformHandle fViewMatrixUniform; |
| |
| typedef GrGLSLGeometryProcessor INHERITED; |
| }; |
| |
| const Attribute* fInPosition; |
| const Attribute* fInColor; |
| const Attribute* fInEllipseOffsets0; |
| const Attribute* fInEllipseOffsets1; |
| SkMatrix fViewMatrix; |
| DIEllipseStyle fStyle; |
| |
| GR_DECLARE_GEOMETRY_PROCESSOR_TEST; |
| |
| typedef GrGeometryProcessor INHERITED; |
| }; |
| |
| GR_DEFINE_GEOMETRY_PROCESSOR_TEST(DIEllipseGeometryProcessor); |
| |
| sk_sp<GrGeometryProcessor> DIEllipseGeometryProcessor::TestCreate(GrProcessorTestData* d) { |
| return sk_sp<GrGeometryProcessor>( |
| new DIEllipseGeometryProcessor(GrTest::TestMatrix(d->fRandom), |
| (DIEllipseStyle)(d->fRandom->nextRangeU(0,2)))); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| class CircleBatch : public GrVertexBatch { |
| public: |
| DEFINE_BATCH_CLASS_ID |
| |
| /** Optional extra params to render a partial arc rather than a full circle. */ |
| struct ArcParams { |
| SkScalar fStartAngleRadians; |
| SkScalar fSweepAngleRadians; |
| bool fUseCenter; |
| }; |
| static GrDrawBatch* Create(GrColor color, const SkMatrix& viewMatrix, SkPoint center, |
| SkScalar radius, const GrStyle& style, |
| const ArcParams* arcParams = nullptr) { |
| SkASSERT(circle_stays_circle(viewMatrix)); |
| const SkStrokeRec& stroke = style.strokeRec(); |
| if (style.hasPathEffect()) { |
| return nullptr; |
| } |
| SkStrokeRec::Style recStyle = stroke.getStyle(); |
| if (arcParams) { |
| // Arc support depends on the style. |
| switch (recStyle) { |
| case SkStrokeRec::kStrokeAndFill_Style: |
| // This produces a strange result that this batch doesn't implement. |
| return nullptr; |
| case SkStrokeRec::kFill_Style: |
| // This supports all fills. |
| break; |
| case SkStrokeRec::kStroke_Style: // fall through |
| case SkStrokeRec::kHairline_Style: |
| // Strokes that don't use the center point are supported with butt cap. |
| if (arcParams->fUseCenter || stroke.getCap() != SkPaint::kButt_Cap) { |
| return nullptr; |
| } |
| break; |
| } |
| } |
| |
| viewMatrix.mapPoints(¢er, 1); |
| radius = viewMatrix.mapRadius(radius); |
| SkScalar strokeWidth = viewMatrix.mapRadius(stroke.getWidth()); |
| |
| bool isStrokeOnly = SkStrokeRec::kStroke_Style == recStyle || |
| SkStrokeRec::kHairline_Style == recStyle; |
| bool hasStroke = isStrokeOnly || SkStrokeRec::kStrokeAndFill_Style == recStyle; |
| |
| SkScalar innerRadius = 0.0f; |
| SkScalar outerRadius = radius; |
| SkScalar halfWidth = 0; |
| if (hasStroke) { |
| if (SkScalarNearlyZero(strokeWidth)) { |
| halfWidth = SK_ScalarHalf; |
| } else { |
| halfWidth = SkScalarHalf(strokeWidth); |
| } |
| |
| outerRadius += halfWidth; |
| if (isStrokeOnly) { |
| innerRadius = radius - halfWidth; |
| } |
| } |
| |
| // The radii are outset for two reasons. First, it allows the shader to simply perform |
| // simpler computation because the computed alpha is zero, rather than 50%, at the radius. |
| // Second, the outer radius is used to compute the verts of the bounding box that is |
| // rendered and the outset ensures the box will cover all partially covered by the circle. |
| outerRadius += SK_ScalarHalf; |
| innerRadius -= SK_ScalarHalf; |
| CircleBatch* batch = new CircleBatch(); |
| batch->fViewMatrixIfUsingLocalCoords = viewMatrix; |
| |
| // This makes every point fully inside the intersection plane. |
| static constexpr SkScalar kUnusedIsectPlane[] = {0.f, 0.f, 1.f}; |
| // This makes every point fully outside the union plane. |
| static constexpr SkScalar kUnusedUnionPlane[] = {0.f, 0.f, 0.f}; |
| SkRect devBounds = SkRect::MakeLTRB(center.fX - outerRadius, center.fY - outerRadius, |
| center.fX + outerRadius, center.fY + outerRadius); |
| |
| if (arcParams) { |
| // The shader operates in a space where the circle is translated to be centered at the |
| // origin. Here we compute points on the unit circle at the starting and ending angles. |
| SkPoint startPoint, stopPoint; |
| startPoint.fY = SkScalarSinCos(arcParams->fStartAngleRadians, &startPoint.fX); |
| SkScalar endAngle = arcParams->fStartAngleRadians + arcParams->fSweepAngleRadians; |
| stopPoint.fY = SkScalarSinCos(endAngle, &stopPoint.fX); |
| // Like a fill without useCenter, butt-cap stroke can be implemented by clipping against |
| // radial lines. However, in both cases we have to be careful about the half-circle. |
| // case. In that case the two radial lines are equal and so that edge gets clipped |
| // twice. Since the shared edge goes through the center we fall back on the useCenter |
| // case. |
| bool useCenter = (arcParams->fUseCenter || isStrokeOnly) && |
| !SkScalarNearlyEqual(SkScalarAbs(arcParams->fSweepAngleRadians), |
| SK_ScalarPI); |
| if (useCenter) { |
| SkVector norm0 = {startPoint.fY, -startPoint.fX}; |
| SkVector norm1 = {stopPoint.fY, -stopPoint.fX}; |
| if (arcParams->fSweepAngleRadians > 0) { |
| norm0.negate(); |
| } else { |
| norm1.negate(); |
| } |
| batch->fClipPlane = true; |
| if (SkScalarAbs(arcParams->fSweepAngleRadians) > SK_ScalarPI) { |
| batch->fGeoData.emplace_back(Geometry { |
| color, |
| innerRadius, |
| outerRadius, |
| {norm0.fX, norm0.fY, 0.5f}, |
| {kUnusedIsectPlane[0], kUnusedIsectPlane[1], kUnusedIsectPlane[2]}, |
| {norm1.fX, norm1.fY, 0.5f}, |
| devBounds |
| }); |
| batch->fClipPlaneIsect = false; |
| batch->fClipPlaneUnion = true; |
| } else { |
| batch->fGeoData.emplace_back(Geometry { |
| color, |
| innerRadius, |
| outerRadius, |
| {norm0.fX, norm0.fY, 0.5f}, |
| {norm1.fX, norm1.fY, 0.5f}, |
| {kUnusedUnionPlane[0], kUnusedUnionPlane[1], kUnusedUnionPlane[2]}, |
| devBounds |
| }); |
| batch->fClipPlaneIsect = true; |
| batch->fClipPlaneUnion = false; |
| } |
| } else { |
| // We clip to a secant of the original circle. |
| startPoint.scale(radius); |
| stopPoint.scale(radius); |
| SkVector norm = {startPoint.fY - stopPoint.fY, stopPoint.fX - startPoint.fX}; |
| norm.normalize(); |
| if (arcParams->fSweepAngleRadians > 0) { |
| norm.negate(); |
| } |
| SkScalar d = -norm.dot(startPoint) + 0.5f; |
| |
| batch->fGeoData.emplace_back(Geometry { |
| color, |
| innerRadius, |
| outerRadius, |
| {norm.fX, norm.fY, d}, |
| {kUnusedIsectPlane[0], kUnusedIsectPlane[1], kUnusedIsectPlane[2]}, |
| {kUnusedUnionPlane[0], kUnusedUnionPlane[1], kUnusedUnionPlane[2]}, |
| devBounds |
| }); |
| batch->fClipPlane = true; |
| batch->fClipPlaneIsect = false; |
| batch->fClipPlaneUnion = false; |
| } |
| } else { |
| batch->fGeoData.emplace_back(Geometry { |
| color, |
| innerRadius, |
| outerRadius, |
| {kUnusedIsectPlane[0], kUnusedIsectPlane[1], kUnusedIsectPlane[2]}, |
| {kUnusedIsectPlane[0], kUnusedIsectPlane[1], kUnusedIsectPlane[2]}, |
| {kUnusedUnionPlane[0], kUnusedUnionPlane[1], kUnusedUnionPlane[2]}, |
| devBounds |
| }); |
| batch->fClipPlane = false; |
| batch->fClipPlaneIsect = false; |
| batch->fClipPlaneUnion = false; |
| } |
| // Use the original radius and stroke radius for the bounds so that it does not include the |
| // AA bloat. |
| radius += halfWidth; |
| batch->setBounds({center.fX - radius, center.fY - radius, |
| center.fX + radius, center.fY + radius}, |
| HasAABloat::kYes, IsZeroArea::kNo); |
| batch->fStroked = isStrokeOnly && innerRadius > 0; |
| return batch; |
| } |
| |
| const char* name() const override { return "CircleBatch"; } |
| |
| SkString dumpInfo() const override { |
| SkString string; |
| for (int i = 0; i < fGeoData.count(); ++i) { |
| string.appendf("Color: 0x%08x Rect [L: %.2f, T: %.2f, R: %.2f, B: %.2f]," |
| "InnerRad: %.2f, OuterRad: %.2f\n", |
| fGeoData[i].fColor, |
| fGeoData[i].fDevBounds.fLeft, fGeoData[i].fDevBounds.fTop, |
| fGeoData[i].fDevBounds.fRight, fGeoData[i].fDevBounds.fBottom, |
| fGeoData[i].fInnerRadius, |
| fGeoData[i].fOuterRadius); |
| } |
| string.append(INHERITED::dumpInfo()); |
| return string; |
| } |
| |
| void computePipelineOptimizations(GrInitInvariantOutput* color, |
| GrInitInvariantOutput* coverage, |
| GrBatchToXPOverrides* overrides) const override { |
| // When this is called on a batch, there is only one geometry bundle |
| color->setKnownFourComponents(fGeoData[0].fColor); |
| coverage->setUnknownSingleComponent(); |
| } |
| |
| private: |
| CircleBatch() : INHERITED(ClassID()) {} |
| void initBatchTracker(const GrXPOverridesForBatch& overrides) override { |
| // Handle any overrides that affect our GP. |
| overrides.getOverrideColorIfSet(&fGeoData[0].fColor); |
| if (!overrides.readsLocalCoords()) { |
| fViewMatrixIfUsingLocalCoords.reset(); |
| } |
| } |
| |
| void onPrepareDraws(Target* target) const override { |
| SkMatrix localMatrix; |
| if (!fViewMatrixIfUsingLocalCoords.invert(&localMatrix)) { |
| return; |
| } |
| |
| // Setup geometry processor |
| SkAutoTUnref<GrGeometryProcessor> gp(new CircleGeometryProcessor(fStroked, fClipPlane, |
| fClipPlaneIsect, |
| fClipPlaneUnion, |
| localMatrix)); |
| |
| struct CircleVertex { |
| SkPoint fPos; |
| GrColor fColor; |
| SkPoint fOffset; |
| SkScalar fOuterRadius; |
| SkScalar fInnerRadius; |
| // These planes may or may not be present in the vertex buffer. |
| SkScalar fHalfPlanes[3][3]; |
| }; |
| |
| int instanceCount = fGeoData.count(); |
| size_t vertexStride = gp->getVertexStride(); |
| SkASSERT(vertexStride == sizeof(CircleVertex) - (fClipPlane ? 0 : 3 * sizeof(SkScalar)) |
| - (fClipPlaneIsect? 0 : 3 * sizeof(SkScalar)) |
| - (fClipPlaneUnion? 0 : 3 * sizeof(SkScalar))); |
| QuadHelper helper; |
| char* vertices = reinterpret_cast<char*>(helper.init(target, vertexStride, instanceCount)); |
| if (!vertices) { |
| return; |
| } |
| |
| for (int i = 0; i < instanceCount; i++) { |
| const Geometry& geom = fGeoData[i]; |
| |
| GrColor color = geom.fColor; |
| SkScalar innerRadius = geom.fInnerRadius; |
| SkScalar outerRadius = geom.fOuterRadius; |
| |
| const SkRect& bounds = geom.fDevBounds; |
| CircleVertex* v0 = reinterpret_cast<CircleVertex*>(vertices + (4 * i + 0)*vertexStride); |
| CircleVertex* v1 = reinterpret_cast<CircleVertex*>(vertices + (4 * i + 1)*vertexStride); |
| CircleVertex* v2 = reinterpret_cast<CircleVertex*>(vertices + (4 * i + 2)*vertexStride); |
| CircleVertex* v3 = reinterpret_cast<CircleVertex*>(vertices + (4 * i + 3)*vertexStride); |
| |
| // The inner radius in the vertex data must be specified in normalized space. |
| innerRadius = innerRadius / outerRadius; |
| v0->fPos = SkPoint::Make(bounds.fLeft, bounds.fTop); |
| v0->fColor = color; |
| v0->fOffset = SkPoint::Make(-1, -1); |
| v0->fOuterRadius = outerRadius; |
| v0->fInnerRadius = innerRadius; |
| |
| v1->fPos = SkPoint::Make(bounds.fLeft, bounds.fBottom); |
| v1->fColor = color; |
| v1->fOffset = SkPoint::Make(-1, 1); |
| v1->fOuterRadius = outerRadius; |
| v1->fInnerRadius = innerRadius; |
| |
| v2->fPos = SkPoint::Make(bounds.fRight, bounds.fBottom); |
| v2->fColor = color; |
| v2->fOffset = SkPoint::Make(1, 1); |
| v2->fOuterRadius = outerRadius; |
| v2->fInnerRadius = innerRadius; |
| |
| v3->fPos = SkPoint::Make(bounds.fRight, bounds.fTop); |
| v3->fColor = color; |
| v3->fOffset = SkPoint::Make(1, -1); |
| v3->fOuterRadius = outerRadius; |
| v3->fInnerRadius = innerRadius; |
| |
| if (fClipPlane) { |
| memcpy(v0->fHalfPlanes[0], geom.fClipPlane, 3 * sizeof(SkScalar)); |
| memcpy(v1->fHalfPlanes[0], geom.fClipPlane, 3 * sizeof(SkScalar)); |
| memcpy(v2->fHalfPlanes[0], geom.fClipPlane, 3 * sizeof(SkScalar)); |
| memcpy(v3->fHalfPlanes[0], geom.fClipPlane, 3 * sizeof(SkScalar)); |
| } |
| int unionIdx = 1; |
| if (fClipPlaneIsect) { |
| memcpy(v0->fHalfPlanes[1], geom.fIsectPlane, 3 * sizeof(SkScalar)); |
| memcpy(v1->fHalfPlanes[1], geom.fIsectPlane, 3 * sizeof(SkScalar)); |
| memcpy(v2->fHalfPlanes[1], geom.fIsectPlane, 3 * sizeof(SkScalar)); |
| memcpy(v3->fHalfPlanes[1], geom.fIsectPlane, 3 * sizeof(SkScalar)); |
| unionIdx = 2; |
| } |
| if (fClipPlaneUnion) { |
| memcpy(v0->fHalfPlanes[unionIdx], geom.fUnionPlane, 3 * sizeof(SkScalar)); |
| memcpy(v1->fHalfPlanes[unionIdx], geom.fUnionPlane, 3 * sizeof(SkScalar)); |
| memcpy(v2->fHalfPlanes[unionIdx], geom.fUnionPlane, 3 * sizeof(SkScalar)); |
| memcpy(v3->fHalfPlanes[unionIdx], geom.fUnionPlane, 3 * sizeof(SkScalar)); |
| } |
| } |
| helper.recordDraw(target, gp); |
| } |
| |
| bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override { |
| CircleBatch* that = t->cast<CircleBatch>(); |
| if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(), |
| that->bounds(), caps)) { |
| return false; |
| } |
| |
| if (this->fStroked != that->fStroked) { |
| return false; |
| } |
| |
| // Because we've set up the batches that don't use the planes with noop values |
| // we can just accumulate used planes by later batches. |
| fClipPlane |= that->fClipPlane; |
| fClipPlaneIsect |= that->fClipPlaneIsect; |
| fClipPlaneUnion |= that->fClipPlaneUnion; |
| |
| if (!fViewMatrixIfUsingLocalCoords.cheapEqualTo(that->fViewMatrixIfUsingLocalCoords)) { |
| return false; |
| } |
| |
| fGeoData.push_back_n(that->fGeoData.count(), that->fGeoData.begin()); |
| this->joinBounds(*that); |
| return true; |
| } |
| |
| struct Geometry { |
| GrColor fColor; |
| SkScalar fInnerRadius; |
| SkScalar fOuterRadius; |
| SkScalar fClipPlane[3]; |
| SkScalar fIsectPlane[3]; |
| SkScalar fUnionPlane[3]; |
| SkRect fDevBounds; |
| }; |
| |
| bool fStroked; |
| bool fClipPlane; |
| bool fClipPlaneIsect; |
| bool fClipPlaneUnion; |
| SkMatrix fViewMatrixIfUsingLocalCoords; |
| SkSTArray<1, Geometry, true> fGeoData; |
| |
| typedef GrVertexBatch INHERITED; |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| class EllipseBatch : public GrVertexBatch { |
| public: |
| DEFINE_BATCH_CLASS_ID |
| static GrDrawBatch* Create(GrColor color, const SkMatrix& viewMatrix, const SkRect& ellipse, |
| const SkStrokeRec& stroke) { |
| SkASSERT(viewMatrix.rectStaysRect()); |
| |
| // do any matrix crunching before we reset the draw state for device coords |
| SkPoint center = SkPoint::Make(ellipse.centerX(), ellipse.centerY()); |
| viewMatrix.mapPoints(¢er, 1); |
| SkScalar ellipseXRadius = SkScalarHalf(ellipse.width()); |
| SkScalar ellipseYRadius = SkScalarHalf(ellipse.height()); |
| SkScalar xRadius = SkScalarAbs(viewMatrix[SkMatrix::kMScaleX]*ellipseXRadius + |
| viewMatrix[SkMatrix::kMSkewY]*ellipseYRadius); |
| SkScalar yRadius = SkScalarAbs(viewMatrix[SkMatrix::kMSkewX]*ellipseXRadius + |
| viewMatrix[SkMatrix::kMScaleY]*ellipseYRadius); |
| |
| // do (potentially) anisotropic mapping of stroke |
| SkVector scaledStroke; |
| SkScalar strokeWidth = stroke.getWidth(); |
| scaledStroke.fX = SkScalarAbs(strokeWidth*(viewMatrix[SkMatrix::kMScaleX] + |
| viewMatrix[SkMatrix::kMSkewY])); |
| scaledStroke.fY = SkScalarAbs(strokeWidth*(viewMatrix[SkMatrix::kMSkewX] + |
| viewMatrix[SkMatrix::kMScaleY])); |
| |
| SkStrokeRec::Style style = stroke.getStyle(); |
| bool isStrokeOnly = SkStrokeRec::kStroke_Style == style || |
| SkStrokeRec::kHairline_Style == style; |
| bool hasStroke = isStrokeOnly || SkStrokeRec::kStrokeAndFill_Style == style; |
| |
| SkScalar innerXRadius = 0; |
| SkScalar innerYRadius = 0; |
| if (hasStroke) { |
| if (SkScalarNearlyZero(scaledStroke.length())) { |
| scaledStroke.set(SK_ScalarHalf, SK_ScalarHalf); |
| } else { |
| scaledStroke.scale(SK_ScalarHalf); |
| } |
| |
| // we only handle thick strokes for near-circular ellipses |
| if (scaledStroke.length() > SK_ScalarHalf && |
| (SK_ScalarHalf*xRadius > yRadius || SK_ScalarHalf*yRadius > xRadius)) { |
| return nullptr; |
| } |
| |
| // we don't handle it if curvature of the stroke is less than curvature of the ellipse |
| if (scaledStroke.fX*(yRadius*yRadius) < (scaledStroke.fY*scaledStroke.fY)*xRadius || |
| scaledStroke.fY*(xRadius*xRadius) < (scaledStroke.fX*scaledStroke.fX)*yRadius) { |
| return nullptr; |
| } |
| |
| // this is legit only if scale & translation (which should be the case at the moment) |
| if (isStrokeOnly) { |
| innerXRadius = xRadius - scaledStroke.fX; |
| innerYRadius = yRadius - scaledStroke.fY; |
| } |
| |
| xRadius += scaledStroke.fX; |
| yRadius += scaledStroke.fY; |
| } |
| |
| EllipseBatch* batch = new EllipseBatch(); |
| batch->fGeoData.emplace_back(Geometry { |
| color, |
| xRadius, |
| yRadius, |
| innerXRadius, |
| innerYRadius, |
| SkRect::MakeLTRB(center.fX - xRadius, center.fY - yRadius, |
| center.fX + xRadius, center.fY + yRadius) |
| }); |
| |
| batch->setBounds(batch->fGeoData.back().fDevBounds, HasAABloat::kYes, IsZeroArea::kNo); |
| |
| // Outset bounds to include half-pixel width antialiasing. |
| batch->fGeoData[0].fDevBounds.outset(SK_ScalarHalf, SK_ScalarHalf); |
| |
| batch->fStroked = isStrokeOnly && innerXRadius > 0 && innerYRadius > 0; |
| batch->fViewMatrixIfUsingLocalCoords = viewMatrix; |
| return batch; |
| } |
| |
| const char* name() const override { return "EllipseBatch"; } |
| |
| void computePipelineOptimizations(GrInitInvariantOutput* color, |
| GrInitInvariantOutput* coverage, |
| GrBatchToXPOverrides* overrides) const override { |
| // When this is called on a batch, there is only one geometry bundle |
| color->setKnownFourComponents(fGeoData[0].fColor); |
| coverage->setUnknownSingleComponent(); |
| } |
| |
| private: |
| EllipseBatch() : INHERITED(ClassID()) {} |
| |
| void initBatchTracker(const GrXPOverridesForBatch& overrides) override { |
| // Handle any overrides that affect our GP. |
| if (!overrides.readsCoverage()) { |
| fGeoData[0].fColor = GrColor_ILLEGAL; |
| } |
| if (!overrides.readsLocalCoords()) { |
| fViewMatrixIfUsingLocalCoords.reset(); |
| } |
| } |
| |
| void onPrepareDraws(Target* target) const override { |
| SkMatrix localMatrix; |
| if (!fViewMatrixIfUsingLocalCoords.invert(&localMatrix)) { |
| return; |
| } |
| |
| // Setup geometry processor |
| SkAutoTUnref<GrGeometryProcessor> gp(new EllipseGeometryProcessor(fStroked, localMatrix)); |
| |
| int instanceCount = fGeoData.count(); |
| QuadHelper helper; |
| size_t vertexStride = gp->getVertexStride(); |
| SkASSERT(vertexStride == sizeof(EllipseVertex)); |
| EllipseVertex* verts = reinterpret_cast<EllipseVertex*>( |
| helper.init(target, vertexStride, instanceCount)); |
| if (!verts) { |
| return; |
| } |
| |
| for (int i = 0; i < instanceCount; i++) { |
| const Geometry& geom = fGeoData[i]; |
| |
| GrColor color = geom.fColor; |
| SkScalar xRadius = geom.fXRadius; |
| SkScalar yRadius = geom.fYRadius; |
| |
| // Compute the reciprocals of the radii here to save time in the shader |
| SkScalar xRadRecip = SkScalarInvert(xRadius); |
| SkScalar yRadRecip = SkScalarInvert(yRadius); |
| SkScalar xInnerRadRecip = SkScalarInvert(geom.fInnerXRadius); |
| SkScalar yInnerRadRecip = SkScalarInvert(geom.fInnerYRadius); |
| |
| const SkRect& bounds = geom.fDevBounds; |
| |
| // fOffsets are expanded from xyRadii to include the half-pixel antialiasing width. |
| SkScalar xMaxOffset = xRadius + SK_ScalarHalf; |
| SkScalar yMaxOffset = yRadius + SK_ScalarHalf; |
| |
| // The inner radius in the vertex data must be specified in normalized space. |
| verts[0].fPos = SkPoint::Make(bounds.fLeft, bounds.fTop); |
| verts[0].fColor = color; |
| verts[0].fOffset = SkPoint::Make(-xMaxOffset, -yMaxOffset); |
| verts[0].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); |
| verts[0].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); |
| |
| verts[1].fPos = SkPoint::Make(bounds.fLeft, bounds.fBottom); |
| verts[1].fColor = color; |
| verts[1].fOffset = SkPoint::Make(-xMaxOffset, yMaxOffset); |
| verts[1].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); |
| verts[1].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); |
| |
| verts[2].fPos = SkPoint::Make(bounds.fRight, bounds.fBottom); |
| verts[2].fColor = color; |
| verts[2].fOffset = SkPoint::Make(xMaxOffset, yMaxOffset); |
| verts[2].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); |
| verts[2].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); |
| |
| verts[3].fPos = SkPoint::Make(bounds.fRight, bounds.fTop); |
| verts[3].fColor = color; |
| verts[3].fOffset = SkPoint::Make(xMaxOffset, -yMaxOffset); |
| verts[3].fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); |
| verts[3].fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); |
| |
| verts += kVerticesPerQuad; |
| } |
| helper.recordDraw(target, gp); |
| } |
| |
| bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override { |
| EllipseBatch* that = t->cast<EllipseBatch>(); |
| |
| if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(), |
| that->bounds(), caps)) { |
| return false; |
| } |
| |
| if (fStroked != that->fStroked) { |
| return false; |
| } |
| |
| if (!fViewMatrixIfUsingLocalCoords.cheapEqualTo(that->fViewMatrixIfUsingLocalCoords)) { |
| return false; |
| } |
| |
| fGeoData.push_back_n(that->fGeoData.count(), that->fGeoData.begin()); |
| this->joinBounds(*that); |
| return true; |
| } |
| |
| struct Geometry { |
| GrColor fColor; |
| SkScalar fXRadius; |
| SkScalar fYRadius; |
| SkScalar fInnerXRadius; |
| SkScalar fInnerYRadius; |
| SkRect fDevBounds; |
| }; |
| |
| bool fStroked; |
| SkMatrix fViewMatrixIfUsingLocalCoords; |
| SkSTArray<1, Geometry, true> fGeoData; |
| |
| typedef GrVertexBatch INHERITED; |
| }; |
| |
| ///////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| class DIEllipseBatch : public GrVertexBatch { |
| public: |
| DEFINE_BATCH_CLASS_ID |
| |
| static GrDrawBatch* Create(GrColor color, |
| const SkMatrix& viewMatrix, |
| const SkRect& ellipse, |
| const SkStrokeRec& stroke) { |
| SkPoint center = SkPoint::Make(ellipse.centerX(), ellipse.centerY()); |
| SkScalar xRadius = SkScalarHalf(ellipse.width()); |
| SkScalar yRadius = SkScalarHalf(ellipse.height()); |
| |
| SkStrokeRec::Style style = stroke.getStyle(); |
| DIEllipseStyle dieStyle = (SkStrokeRec::kStroke_Style == style) ? |
| DIEllipseStyle::kStroke : |
| (SkStrokeRec::kHairline_Style == style) ? |
| DIEllipseStyle::kHairline : DIEllipseStyle::kFill; |
| |
| SkScalar innerXRadius = 0; |
| SkScalar innerYRadius = 0; |
| if (SkStrokeRec::kFill_Style != style && SkStrokeRec::kHairline_Style != style) { |
| SkScalar strokeWidth = stroke.getWidth(); |
| |
| if (SkScalarNearlyZero(strokeWidth)) { |
| strokeWidth = SK_ScalarHalf; |
| } else { |
| strokeWidth *= SK_ScalarHalf; |
| } |
| |
| // we only handle thick strokes for near-circular ellipses |
| if (strokeWidth > SK_ScalarHalf && |
| (SK_ScalarHalf*xRadius > yRadius || SK_ScalarHalf*yRadius > xRadius)) { |
| return nullptr; |
| } |
| |
| // we don't handle it if curvature of the stroke is less than curvature of the ellipse |
| if (strokeWidth*(yRadius*yRadius) < (strokeWidth*strokeWidth)*xRadius || |
| strokeWidth*(xRadius*xRadius) < (strokeWidth*strokeWidth)*yRadius) { |
| return nullptr; |
| } |
| |
| // set inner radius (if needed) |
| if (SkStrokeRec::kStroke_Style == style) { |
| innerXRadius = xRadius - strokeWidth; |
| innerYRadius = yRadius - strokeWidth; |
| } |
| |
| xRadius += strokeWidth; |
| yRadius += strokeWidth; |
| } |
| if (DIEllipseStyle::kStroke == dieStyle) { |
| dieStyle = (innerXRadius > 0 && innerYRadius > 0) ? DIEllipseStyle ::kStroke : |
| DIEllipseStyle ::kFill; |
| } |
| |
| // This expands the outer rect so that after CTM we end up with a half-pixel border |
| SkScalar a = viewMatrix[SkMatrix::kMScaleX]; |
| SkScalar b = viewMatrix[SkMatrix::kMSkewX]; |
| SkScalar c = viewMatrix[SkMatrix::kMSkewY]; |
| SkScalar d = viewMatrix[SkMatrix::kMScaleY]; |
| SkScalar geoDx = SK_ScalarHalf / SkScalarSqrt(a*a + c*c); |
| SkScalar geoDy = SK_ScalarHalf / SkScalarSqrt(b*b + d*d); |
| |
| DIEllipseBatch* batch = new DIEllipseBatch(); |
| batch->fGeoData.emplace_back(Geometry { |
| viewMatrix, |
| color, |
| xRadius, |
| yRadius, |
| innerXRadius, |
| innerYRadius, |
| geoDx, |
| geoDy, |
| dieStyle, |
| SkRect::MakeLTRB(center.fX - xRadius - geoDx, center.fY - yRadius - geoDy, |
| center.fX + xRadius + geoDx, center.fY + yRadius + geoDy) |
| }); |
| batch->setTransformedBounds(batch->fGeoData[0].fBounds, viewMatrix, HasAABloat::kYes, |
| IsZeroArea::kNo); |
| return batch; |
| } |
| |
| const char* name() const override { return "DIEllipseBatch"; } |
| |
| void computePipelineOptimizations(GrInitInvariantOutput* color, |
| GrInitInvariantOutput* coverage, |
| GrBatchToXPOverrides* overrides) const override { |
| // When this is called on a batch, there is only one geometry bundle |
| color->setKnownFourComponents(fGeoData[0].fColor); |
| coverage->setUnknownSingleComponent(); |
| } |
| |
| private: |
| |
| DIEllipseBatch() : INHERITED(ClassID()) {} |
| |
| void initBatchTracker(const GrXPOverridesForBatch& overrides) override { |
| // Handle any overrides that affect our GP. |
| overrides.getOverrideColorIfSet(&fGeoData[0].fColor); |
| fUsesLocalCoords = overrides.readsLocalCoords(); |
| } |
| |
| void onPrepareDraws(Target* target) const override { |
| // Setup geometry processor |
| SkAutoTUnref<GrGeometryProcessor> gp(new DIEllipseGeometryProcessor(this->viewMatrix(), |
| this->style())); |
| |
| int instanceCount = fGeoData.count(); |
| size_t vertexStride = gp->getVertexStride(); |
| SkASSERT(vertexStride == sizeof(DIEllipseVertex)); |
| QuadHelper helper; |
| DIEllipseVertex* verts = reinterpret_cast<DIEllipseVertex*>( |
| helper.init(target, vertexStride, instanceCount)); |
| if (!verts) { |
| return; |
| } |
| |
| for (int i = 0; i < instanceCount; i++) { |
| const Geometry& geom = fGeoData[i]; |
| |
| GrColor color = geom.fColor; |
| SkScalar xRadius = geom.fXRadius; |
| SkScalar yRadius = geom.fYRadius; |
| |
| const SkRect& bounds = geom.fBounds; |
| |
| // This adjusts the "radius" to include the half-pixel border |
| SkScalar offsetDx = geom.fGeoDx / xRadius; |
| SkScalar offsetDy = geom.fGeoDy / yRadius; |
| |
| SkScalar innerRatioX = xRadius / geom.fInnerXRadius; |
| SkScalar innerRatioY = yRadius / geom.fInnerYRadius; |
| |
| verts[0].fPos = SkPoint::Make(bounds.fLeft, bounds.fTop); |
| verts[0].fColor = color; |
| verts[0].fOuterOffset = SkPoint::Make(-1.0f - offsetDx, -1.0f - offsetDy); |
| verts[0].fInnerOffset = SkPoint::Make(-innerRatioX - offsetDx, -innerRatioY - offsetDy); |
| |
| verts[1].fPos = SkPoint::Make(bounds.fLeft, bounds.fBottom); |
| verts[1].fColor = color; |
| verts[1].fOuterOffset = SkPoint::Make(-1.0f - offsetDx, 1.0f + offsetDy); |
| verts[1].fInnerOffset = SkPoint::Make(-innerRatioX - offsetDx, innerRatioY + offsetDy); |
| |
| verts[2].fPos = SkPoint::Make(bounds.fRight, bounds.fBottom); |
| verts[2].fColor = color; |
| verts[2].fOuterOffset = SkPoint::Make(1.0f + offsetDx, 1.0f + offsetDy); |
| verts[2].fInnerOffset = SkPoint::Make(innerRatioX + offsetDx, innerRatioY + offsetDy); |
| |
| verts[3].fPos = SkPoint::Make(bounds.fRight, bounds.fTop); |
| verts[3].fColor = color; |
| verts[3].fOuterOffset = SkPoint::Make(1.0f + offsetDx, -1.0f - offsetDy); |
| verts[3].fInnerOffset = SkPoint::Make(innerRatioX + offsetDx, -innerRatioY - offsetDy); |
| |
| verts += kVerticesPerQuad; |
| } |
| helper.recordDraw(target, gp); |
| } |
| |
| bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override { |
| DIEllipseBatch* that = t->cast<DIEllipseBatch>(); |
| if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(), |
| that->bounds(), caps)) { |
| return false; |
| } |
| |
| if (this->style() != that->style()) { |
| return false; |
| } |
| |
| // TODO rewrite to allow positioning on CPU |
| if (!this->viewMatrix().cheapEqualTo(that->viewMatrix())) { |
| return false; |
| } |
| |
| fGeoData.push_back_n(that->fGeoData.count(), that->fGeoData.begin()); |
| this->joinBounds(*that); |
| return true; |
| } |
| |
| const SkMatrix& viewMatrix() const { return fGeoData[0].fViewMatrix; } |
| DIEllipseStyle style() const { return fGeoData[0].fStyle; } |
| |
| struct Geometry { |
| SkMatrix fViewMatrix; |
| GrColor fColor; |
| SkScalar fXRadius; |
| SkScalar fYRadius; |
| SkScalar fInnerXRadius; |
| SkScalar fInnerYRadius; |
| SkScalar fGeoDx; |
| SkScalar fGeoDy; |
| DIEllipseStyle fStyle; |
| SkRect fBounds; |
| }; |
| |
| bool fUsesLocalCoords; |
| SkSTArray<1, Geometry, true> fGeoData; |
| |
| typedef GrVertexBatch INHERITED; |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| // We have three possible cases for geometry for a roundrect. |
| // |
| // In the case of a normal fill or a stroke, we draw the roundrect as a 9-patch: |
| // ____________ |
| // |_|________|_| |
| // | | | | |
| // | | | | |
| // | | | | |
| // |_|________|_| |
| // |_|________|_| |
| // |
| // For strokes, we don't draw the center quad. |
| // |
| // For circular roundrects, in the case where the stroke width is greater than twice |
| // the corner radius (overstroke), we add additional geometry to mark out the rectangle |
| // in the center. The shared vertices are duplicated so we can set a different outer radius |
| // for the fill calculation. |
| // ____________ |
| // |_|________|_| |
| // | |\ ____ /| | |
| // | | | | | | |
| // | | |____| | | |
| // |_|/______\|_| |
| // |_|________|_| |
| // |
| // We don't draw the center quad from the fill rect in this case. |
| |
| static const uint16_t gOverstrokeRRectIndices[] = { |
| // overstroke quads |
| // we place this at the beginning so that we can skip these indices when rendering normally |
| 16, 17, 19, 16, 19, 18, |
| 19, 17, 23, 19, 23, 21, |
| 21, 23, 22, 21, 22, 20, |
| 22, 16, 18, 22, 18, 20, |
| |
| // corners |
| 0, 1, 5, 0, 5, 4, |
| 2, 3, 7, 2, 7, 6, |
| 8, 9, 13, 8, 13, 12, |
| 10, 11, 15, 10, 15, 14, |
| |
| // edges |
| 1, 2, 6, 1, 6, 5, |
| 4, 5, 9, 4, 9, 8, |
| 6, 7, 11, 6, 11, 10, |
| 9, 10, 14, 9, 14, 13, |
| |
| // center |
| // we place this at the end so that we can ignore these indices when not rendering as filled |
| 5, 6, 10, 5, 10, 9, |
| }; |
| // fill and standard stroke indices skip the overstroke "ring" |
| static const uint16_t* gStandardRRectIndices = gOverstrokeRRectIndices + 6*4; |
| |
| // overstroke count is arraysize minus the center indices |
| static const int kIndicesPerOverstrokeRRect = SK_ARRAY_COUNT(gOverstrokeRRectIndices) - 6; |
| // fill count skips overstroke indices and includes center |
| static const int kIndicesPerFillRRect = kIndicesPerOverstrokeRRect - 6*4 + 6; |
| // stroke count is fill count minus center indices |
| static const int kIndicesPerStrokeRRect = kIndicesPerFillRRect - 6; |
| static const int kVertsPerStandardRRect = 16; |
| static const int kVertsPerOverstrokeRRect = 24; |
| |
| enum RRectType { |
| kFill_RRectType, |
| kStroke_RRectType, |
| kOverstroke_RRectType, |
| }; |
| |
| static int rrect_type_to_vert_count(RRectType type) { |
| static const int kTypeToVertCount[] = { |
| kVertsPerStandardRRect, |
| kVertsPerStandardRRect, |
| kVertsPerOverstrokeRRect, |
| }; |
| |
| return kTypeToVertCount[type]; |
| } |
| |
| static int rrect_type_to_index_count(RRectType type) { |
| static const int kTypeToIndexCount[] = { |
| kIndicesPerFillRRect, |
| kIndicesPerStrokeRRect, |
| kIndicesPerOverstrokeRRect, |
| }; |
| |
| return kTypeToIndexCount[type]; |
| } |
| |
| static const uint16_t* rrect_type_to_indices(RRectType type) { |
| static const uint16_t* kTypeToIndices[] = { |
| gStandardRRectIndices, |
| gStandardRRectIndices, |
| gOverstrokeRRectIndices, |
| }; |
| |
| return kTypeToIndices[type]; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| class RRectCircleRendererBatch : public GrVertexBatch { |
| public: |
| DEFINE_BATCH_CLASS_ID |
| |
| // A devStrokeWidth <= 0 indicates a fill only. If devStrokeWidth > 0 then strokeOnly indicates |
| // whether the rrect is only stroked or stroked and filled. |
| RRectCircleRendererBatch(GrColor color, const SkMatrix& viewMatrix, const SkRect& devRect, |
| float devRadius, float devStrokeWidth, bool strokeOnly) |
| : INHERITED(ClassID()) |
| , fViewMatrixIfUsingLocalCoords(viewMatrix) { |
| SkRect bounds = devRect; |
| SkASSERT(!(devStrokeWidth <= 0 && strokeOnly)); |
| SkScalar innerRadius = 0.0f; |
| SkScalar outerRadius = devRadius; |
| SkScalar halfWidth = 0; |
| RRectType type = kFill_RRectType; |
| if (devStrokeWidth > 0) { |
| if (SkScalarNearlyZero(devStrokeWidth)) { |
| halfWidth = SK_ScalarHalf; |
| } else { |
| halfWidth = SkScalarHalf(devStrokeWidth); |
| } |
| |
| if (strokeOnly) { |
| // Outset stroke by 1/4 pixel |
| devStrokeWidth += 0.25f; |
| // If stroke is greater than width or height, this is still a fill |
| // Otherwise we compute stroke params |
| if (devStrokeWidth <= devRect.width() && |
| devStrokeWidth <= devRect.height()) { |
| innerRadius = devRadius - halfWidth; |
| type = (innerRadius >= 0) ? kStroke_RRectType : kOverstroke_RRectType; |
| } |
| } |
| outerRadius += halfWidth; |
| bounds.outset(halfWidth, halfWidth); |
| } |
| |
| // The radii are outset for two reasons. First, it allows the shader to simply perform |
| // simpler computation because the computed alpha is zero, rather than 50%, at the radius. |
| // Second, the outer radius is used to compute the verts of the bounding box that is |
| // rendered and the outset ensures the box will cover all partially covered by the rrect |
| // corners. |
| outerRadius += SK_ScalarHalf; |
| innerRadius -= SK_ScalarHalf; |
| |
| this->setBounds(bounds, HasAABloat::kYes, IsZeroArea::kNo); |
| |
| // Expand the rect for aa to generate correct vertices. |
| bounds.outset(SK_ScalarHalf, SK_ScalarHalf); |
| |
| fGeoData.emplace_back(Geometry{ color, innerRadius, outerRadius, bounds, type }); |
| fVertCount = rrect_type_to_vert_count(type); |
| fIndexCount = rrect_type_to_index_count(type); |
| fAllFill = (kFill_RRectType == type); |
| } |
| |
| const char* name() const override { return "RRectCircleBatch"; } |
| |
| SkString dumpInfo() const override { |
| SkString string; |
| for (int i = 0; i < fGeoData.count(); ++i) { |
| string.appendf("Color: 0x%08x Rect [L: %.2f, T: %.2f, R: %.2f, B: %.2f]," |
| "InnerRad: %.2f, OuterRad: %.2f\n", |
| fGeoData[i].fColor, |
| fGeoData[i].fDevBounds.fLeft, fGeoData[i].fDevBounds.fTop, |
| fGeoData[i].fDevBounds.fRight, fGeoData[i].fDevBounds.fBottom, |
| fGeoData[i].fInnerRadius, |
| fGeoData[i].fOuterRadius); |
| } |
| string.append(INHERITED::dumpInfo()); |
| return string; |
| } |
| |
| void computePipelineOptimizations(GrInitInvariantOutput* color, |
| GrInitInvariantOutput* coverage, |
| GrBatchToXPOverrides* overrides) const override { |
| // When this is called on a batch, there is only one geometry bundle |
| color->setKnownFourComponents(fGeoData[0].fColor); |
| coverage->setUnknownSingleComponent(); |
| } |
| |
| private: |
| void initBatchTracker(const GrXPOverridesForBatch& overrides) override { |
| // Handle any overrides that affect our GP. |
| overrides.getOverrideColorIfSet(&fGeoData[0].fColor); |
| if (!overrides.readsLocalCoords()) { |
| fViewMatrixIfUsingLocalCoords.reset(); |
| } |
| } |
| |
| void onPrepareDraws(Target* target) const override { |
| // Invert the view matrix as a local matrix (if any other processors require coords). |
| SkMatrix localMatrix; |
| if (!fViewMatrixIfUsingLocalCoords.invert(&localMatrix)) { |
| return; |
| } |
| |
| // Setup geometry processor |
| SkAutoTUnref<GrGeometryProcessor> gp(new CircleGeometryProcessor(!fAllFill, |
| false, false, |
| false, localMatrix)); |
| struct CircleVertex { |
| SkPoint fPos; |
| GrColor fColor; |
| SkPoint fOffset; |
| SkScalar fOuterRadius; |
| SkScalar fInnerRadius; |
| // No half plane, we don't use it here. |
| }; |
| |
| int instanceCount = fGeoData.count(); |
| size_t vertexStride = gp->getVertexStride(); |
| SkASSERT(sizeof(CircleVertex) == vertexStride); |
| |
| const GrBuffer* vertexBuffer; |
| int firstVertex; |
| |
| CircleVertex* verts = (CircleVertex*) target->makeVertexSpace(vertexStride, fVertCount, |
| &vertexBuffer, &firstVertex); |
| if (!verts) { |
| SkDebugf("Could not allocate vertices\n"); |
| return; |
| } |
| |
| const GrBuffer* indexBuffer = nullptr; |
| int firstIndex = 0; |
| uint16_t* indices = target->makeIndexSpace(fIndexCount, &indexBuffer, &firstIndex); |
| if (!indices) { |
| SkDebugf("Could not allocate indices\n"); |
| return; |
| } |
| |
| int currStartVertex = 0; |
| for (int i = 0; i < instanceCount; i++) { |
| const Geometry& args = fGeoData[i]; |
| |
| GrColor color = args.fColor; |
| SkScalar outerRadius = args.fOuterRadius; |
| |
| const SkRect& bounds = args.fDevBounds; |
| |
| SkScalar yCoords[4] = { |
| bounds.fTop, |
| bounds.fTop + outerRadius, |
| bounds.fBottom - outerRadius, |
| bounds.fBottom |
| }; |
| |
| SkScalar yOuterRadii[4] = {-1, 0, 0, 1 }; |
| // The inner radius in the vertex data must be specified in normalized space. |
| // For fills, specifying -1/outerRadius guarantees an alpha of 1.0 at the inner radius. |
| SkScalar innerRadius = args.fType != kFill_RRectType |
| ? args.fInnerRadius / args.fOuterRadius |
| : -1.0f / args.fOuterRadius; |
| for (int i = 0; i < 4; ++i) { |
| verts->fPos = SkPoint::Make(bounds.fLeft, yCoords[i]); |
| verts->fColor = color; |
| verts->fOffset = SkPoint::Make(-1, yOuterRadii[i]); |
| verts->fOuterRadius = outerRadius; |
| verts->fInnerRadius = innerRadius; |
| verts++; |
| |
| verts->fPos = SkPoint::Make(bounds.fLeft + outerRadius, yCoords[i]); |
| verts->fColor = color; |
| verts->fOffset = SkPoint::Make(0, yOuterRadii[i]); |
| verts->fOuterRadius = outerRadius; |
| verts->fInnerRadius = innerRadius; |
| verts++; |
| |
| verts->fPos = SkPoint::Make(bounds.fRight - outerRadius, yCoords[i]); |
| verts->fColor = color; |
| verts->fOffset = SkPoint::Make(0, yOuterRadii[i]); |
| verts->fOuterRadius = outerRadius; |
| verts->fInnerRadius = innerRadius; |
| verts++; |
| |
| verts->fPos = SkPoint::Make(bounds.fRight, yCoords[i]); |
| verts->fColor = color; |
| verts->fOffset = SkPoint::Make(1, yOuterRadii[i]); |
| verts->fOuterRadius = outerRadius; |
| verts->fInnerRadius = innerRadius; |
| verts++; |
| } |
| // Add the additional vertices for overstroked rrects. |
| // Effectively this is an additional stroked rrect, with its |
| // outer radius = outerRadius - innerRadius, and inner radius = 0. |
| // This will give us correct AA in the center and the correct |
| // distance to the outer edge. |
| // |
| // Also, the outer offset is a constant vector pointing to the right, which |
| // guarantees that the distance value along the outer rectangle is constant. |
| if (kOverstroke_RRectType == args.fType) { |
| SkScalar overstrokeOuterRadius = outerRadius - args.fInnerRadius; |
| // this is the normalized distance from the outer rectangle of this |
| // geometry to the outer edge |
| SkScalar maxOffset = -args.fInnerRadius / overstrokeOuterRadius; |
| |
| verts->fPos = SkPoint::Make(bounds.fLeft + outerRadius, yCoords[1]); |
| verts->fColor = color; |
| verts->fOffset = SkPoint::Make(maxOffset, 0); |
| verts->fOuterRadius = overstrokeOuterRadius; |
| verts->fInnerRadius = 0; |
| verts++; |
| |
| verts->fPos = SkPoint::Make(bounds.fRight - outerRadius, yCoords[1]); |
| verts->fColor = color; |
| verts->fOffset = SkPoint::Make(maxOffset, 0); |
| verts->fOuterRadius = overstrokeOuterRadius; |
| verts->fInnerRadius = 0; |
| verts++; |
| |
| verts->fPos = SkPoint::Make(bounds.fLeft + overstrokeOuterRadius, |
| bounds.fTop + overstrokeOuterRadius); |
| verts->fColor = color; |
| verts->fOffset = SkPoint::Make(0, 0); |
| verts->fOuterRadius = overstrokeOuterRadius; |
| verts->fInnerRadius = 0; |
| verts++; |
| |
| verts->fPos = SkPoint::Make(bounds.fRight - overstrokeOuterRadius, |
| bounds.fTop + overstrokeOuterRadius); |
| verts->fColor = color; |
| verts->fOffset = SkPoint::Make(0, 0); |
| verts->fOuterRadius = overstrokeOuterRadius; |
| verts->fInnerRadius = 0; |
| verts++; |
| |
| verts->fPos = SkPoint::Make(bounds.fLeft + overstrokeOuterRadius, |
| bounds.fBottom - overstrokeOuterRadius); |
| verts->fColor = color; |
| verts->fOffset = SkPoint::Make(0, 0); |
| verts->fOuterRadius = overstrokeOuterRadius; |
| verts->fInnerRadius = 0; |
| verts++; |
| |
| verts->fPos = SkPoint::Make(bounds.fRight - overstrokeOuterRadius, |
| bounds.fBottom - overstrokeOuterRadius); |
| verts->fColor = color; |
| verts->fOffset = SkPoint::Make(0, 0); |
| verts->fOuterRadius = overstrokeOuterRadius; |
| verts->fInnerRadius = 0; |
| verts++; |
| |
| verts->fPos = SkPoint::Make(bounds.fLeft + outerRadius, yCoords[2]); |
| verts->fColor = color; |
| verts->fOffset = SkPoint::Make(maxOffset, 0); |
| verts->fOuterRadius = overstrokeOuterRadius; |
| verts->fInnerRadius = 0; |
| verts++; |
| |
| verts->fPos = SkPoint::Make(bounds.fRight - outerRadius, yCoords[2]); |
| verts->fColor = color; |
| verts->fOffset = SkPoint::Make(maxOffset, 0); |
| verts->fOuterRadius = overstrokeOuterRadius; |
| verts->fInnerRadius = 0; |
| verts++; |
| } |
| |
| const uint16_t* primIndices = rrect_type_to_indices(args.fType); |
| const int primIndexCount = rrect_type_to_index_count(args.fType); |
| for (int i = 0; i < primIndexCount; ++i) { |
| *indices++ = primIndices[i] + currStartVertex; |
| } |
| |
| currStartVertex += rrect_type_to_vert_count(args.fType); |
| } |
| |
| GrMesh mesh; |
| mesh.initIndexed(kTriangles_GrPrimitiveType, vertexBuffer, indexBuffer, firstVertex, |
| firstIndex, fVertCount, fIndexCount); |
| target->draw(gp.get(), mesh); |
| } |
| |
| bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override { |
| RRectCircleRendererBatch* that = t->cast<RRectCircleRendererBatch>(); |
| if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(), |
| that->bounds(), caps)) { |
| return false; |
| } |
| |
| if (!fViewMatrixIfUsingLocalCoords.cheapEqualTo(that->fViewMatrixIfUsingLocalCoords)) { |
| return false; |
| } |
| |
| fGeoData.push_back_n(that->fGeoData.count(), that->fGeoData.begin()); |
| this->joinBounds(*that); |
| fVertCount += that->fVertCount; |
| fIndexCount += that->fIndexCount; |
| fAllFill = fAllFill && that->fAllFill; |
| return true; |
| } |
| |
| struct Geometry { |
| GrColor fColor; |
| SkScalar fInnerRadius; |
| SkScalar fOuterRadius; |
| SkRect fDevBounds; |
| RRectType fType; |
| }; |
| |
| SkSTArray<1, Geometry, true> fGeoData; |
| SkMatrix fViewMatrixIfUsingLocalCoords; |
| int fVertCount; |
| int fIndexCount; |
| bool fAllFill; |
| |
| typedef GrVertexBatch INHERITED; |
| }; |
| |
| static const int kNumRRectsInIndexBuffer = 256; |
| |
| GR_DECLARE_STATIC_UNIQUE_KEY(gStrokeRRectOnlyIndexBufferKey); |
| GR_DECLARE_STATIC_UNIQUE_KEY(gRRectOnlyIndexBufferKey); |
| static const GrBuffer* ref_rrect_index_buffer(RRectType type, |
| GrResourceProvider* resourceProvider) { |
| GR_DEFINE_STATIC_UNIQUE_KEY(gStrokeRRectOnlyIndexBufferKey); |
| GR_DEFINE_STATIC_UNIQUE_KEY(gRRectOnlyIndexBufferKey); |
| switch (type) { |
| case kFill_RRectType: |
| return resourceProvider->findOrCreateInstancedIndexBuffer( |
| gStandardRRectIndices, kIndicesPerFillRRect, kNumRRectsInIndexBuffer, |
| kVertsPerStandardRRect, gRRectOnlyIndexBufferKey); |
| case kStroke_RRectType: |
| return resourceProvider->findOrCreateInstancedIndexBuffer( |
| gStandardRRectIndices, kIndicesPerStrokeRRect, kNumRRectsInIndexBuffer, |
| kVertsPerStandardRRect, gStrokeRRectOnlyIndexBufferKey); |
| default: |
| SkASSERT(false); |
| return nullptr; |
| }; |
| } |
| |
| class RRectEllipseRendererBatch : public GrVertexBatch { |
| public: |
| DEFINE_BATCH_CLASS_ID |
| |
| // If devStrokeWidths values are <= 0 indicates then fill only. Otherwise, strokeOnly indicates |
| // whether the rrect is only stroked or stroked and filled. |
| static GrDrawBatch* Create(GrColor color, const SkMatrix& viewMatrix, const SkRect& devRect, |
| float devXRadius, float devYRadius, SkVector devStrokeWidths, |
| bool strokeOnly) { |
| SkASSERT(devXRadius > 0.5); |
| SkASSERT(devYRadius > 0.5); |
| SkASSERT((devStrokeWidths.fX > 0) == (devStrokeWidths.fY > 0)); |
| SkASSERT(!(strokeOnly && devStrokeWidths.fX <= 0)); |
| SkScalar innerXRadius = 0.0f; |
| SkScalar innerYRadius = 0.0f; |
| SkRect bounds = devRect; |
| bool stroked = false; |
| if (devStrokeWidths.fX > 0) { |
| if (SkScalarNearlyZero(devStrokeWidths.length())) { |
| devStrokeWidths.set(SK_ScalarHalf, SK_ScalarHalf); |
| } else { |
| devStrokeWidths.scale(SK_ScalarHalf); |
| } |
| |
| // we only handle thick strokes for near-circular ellipses |
| if (devStrokeWidths.length() > SK_ScalarHalf && |
| (SK_ScalarHalf*devXRadius > devYRadius || SK_ScalarHalf*devYRadius > devXRadius)) { |
| return nullptr; |
| } |
| |
| // we don't handle it if curvature of the stroke is less than curvature of the ellipse |
| if (devStrokeWidths.fX*(devYRadius*devYRadius) < |
| (devStrokeWidths.fY*devStrokeWidths.fY)*devXRadius) { |
| return nullptr; |
| } |
| if (devStrokeWidths.fY*(devXRadius*devXRadius) < |
| (devStrokeWidths.fX*devStrokeWidths.fX)*devYRadius) { |
| return nullptr; |
| } |
| |
| // this is legit only if scale & translation (which should be the case at the moment) |
| if (strokeOnly) { |
| innerXRadius = devXRadius - devStrokeWidths.fX; |
| innerYRadius = devYRadius - devStrokeWidths.fY; |
| stroked = (innerXRadius >= 0 && innerYRadius >= 0); |
| } |
| |
| devXRadius += devStrokeWidths.fX; |
| devYRadius += devStrokeWidths.fY; |
| bounds.outset(devStrokeWidths.fX, devStrokeWidths.fY); |
| } |
| |
| RRectEllipseRendererBatch* batch = new RRectEllipseRendererBatch(); |
| batch->fStroked = stroked; |
| batch->fViewMatrixIfUsingLocalCoords = viewMatrix; |
| batch->setBounds(bounds, HasAABloat::kYes, IsZeroArea::kNo); |
| // Expand the rect for aa in order to generate the correct vertices. |
| bounds.outset(SK_ScalarHalf, SK_ScalarHalf); |
| batch->fGeoData.emplace_back( |
| Geometry {color, devXRadius, devYRadius, innerXRadius, innerYRadius, bounds}); |
| return batch; |
| } |
| |
| const char* name() const override { return "RRectEllipseRendererBatch"; } |
| |
| void computePipelineOptimizations(GrInitInvariantOutput* color, |
| GrInitInvariantOutput* coverage, |
| GrBatchToXPOverrides* overrides) const override { |
| // When this is called on a batch, there is only one geometry bundle |
| color->setKnownFourComponents(fGeoData[0].fColor); |
| coverage->setUnknownSingleComponent(); |
| } |
| |
| private: |
| RRectEllipseRendererBatch() : INHERITED(ClassID()) {} |
| |
| void initBatchTracker(const GrXPOverridesForBatch& overrides) override { |
| // Handle overrides that affect our GP. |
| overrides.getOverrideColorIfSet(&fGeoData[0].fColor); |
| if (!overrides.readsLocalCoords()) { |
| fViewMatrixIfUsingLocalCoords.reset(); |
| } |
| } |
| |
| void onPrepareDraws(Target* target) const override { |
| SkMatrix localMatrix; |
| if (!fViewMatrixIfUsingLocalCoords.invert(&localMatrix)) { |
| return; |
| } |
| |
| // Setup geometry processor |
| SkAutoTUnref<GrGeometryProcessor> gp(new EllipseGeometryProcessor(fStroked, localMatrix)); |
| |
| int instanceCount = fGeoData.count(); |
| size_t vertexStride = gp->getVertexStride(); |
| SkASSERT(vertexStride == sizeof(EllipseVertex)); |
| |
| // drop out the middle quad if we're stroked |
| int indicesPerInstance = fStroked ? kIndicesPerStrokeRRect : kIndicesPerFillRRect; |
| SkAutoTUnref<const GrBuffer> indexBuffer( |
| ref_rrect_index_buffer(fStroked ? kStroke_RRectType : kFill_RRectType, |
| target->resourceProvider())); |
| |
| InstancedHelper helper; |
| EllipseVertex* verts = reinterpret_cast<EllipseVertex*>( |
| helper.init(target, kTriangles_GrPrimitiveType, vertexStride, indexBuffer, |
| kVertsPerStandardRRect, indicesPerInstance, instanceCount)); |
| if (!verts || !indexBuffer) { |
| SkDebugf("Could not allocate vertices\n"); |
| return; |
| } |
| |
| for (int i = 0; i < instanceCount; i++) { |
| const Geometry& args = fGeoData[i]; |
| |
| GrColor color = args.fColor; |
| |
| // Compute the reciprocals of the radii here to save time in the shader |
| SkScalar xRadRecip = SkScalarInvert(args.fXRadius); |
| SkScalar yRadRecip = SkScalarInvert(args.fYRadius); |
| SkScalar xInnerRadRecip = SkScalarInvert(args.fInnerXRadius); |
| SkScalar yInnerRadRecip = SkScalarInvert(args.fInnerYRadius); |
| |
| // Extend the radii out half a pixel to antialias. |
| SkScalar xOuterRadius = args.fXRadius + SK_ScalarHalf; |
| SkScalar yOuterRadius = args.fYRadius + SK_ScalarHalf; |
| |
| const SkRect& bounds = args.fDevBounds; |
| |
| SkScalar yCoords[4] = { |
| bounds.fTop, |
| bounds.fTop + yOuterRadius, |
| bounds.fBottom - yOuterRadius, |
| bounds.fBottom |
| }; |
| SkScalar yOuterOffsets[4] = { |
| yOuterRadius, |
| SK_ScalarNearlyZero, // we're using inversesqrt() in shader, so can't be exactly 0 |
| SK_ScalarNearlyZero, |
| yOuterRadius |
| }; |
| |
| for (int i = 0; i < 4; ++i) { |
| verts->fPos = SkPoint::Make(bounds.fLeft, yCoords[i]); |
| verts->fColor = color; |
| verts->fOffset = SkPoint::Make(xOuterRadius, yOuterOffsets[i]); |
| verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); |
| verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); |
| verts++; |
| |
| verts->fPos = SkPoint::Make(bounds.fLeft + xOuterRadius, yCoords[i]); |
| verts->fColor = color; |
| verts->fOffset = SkPoint::Make(SK_ScalarNearlyZero, yOuterOffsets[i]); |
| verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); |
| verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); |
| verts++; |
| |
| verts->fPos = SkPoint::Make(bounds.fRight - xOuterRadius, yCoords[i]); |
| verts->fColor = color; |
| verts->fOffset = SkPoint::Make(SK_ScalarNearlyZero, yOuterOffsets[i]); |
| verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); |
| verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); |
| verts++; |
| |
| verts->fPos = SkPoint::Make(bounds.fRight, yCoords[i]); |
| verts->fColor = color; |
| verts->fOffset = SkPoint::Make(xOuterRadius, yOuterOffsets[i]); |
| verts->fOuterRadii = SkPoint::Make(xRadRecip, yRadRecip); |
| verts->fInnerRadii = SkPoint::Make(xInnerRadRecip, yInnerRadRecip); |
| verts++; |
| } |
| } |
| helper.recordDraw(target, gp); |
| } |
| |
| bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override { |
| RRectEllipseRendererBatch* that = t->cast<RRectEllipseRendererBatch>(); |
| |
| if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(), |
| that->bounds(), caps)) { |
| return false; |
| } |
| |
| if (fStroked != that->fStroked) { |
| return false; |
| } |
| |
| if (!fViewMatrixIfUsingLocalCoords.cheapEqualTo(that->fViewMatrixIfUsingLocalCoords)) { |
| return false; |
| } |
| |
| fGeoData.push_back_n(that->fGeoData.count(), that->fGeoData.begin()); |
| this->joinBounds(*that); |
| return true; |
| } |
| |
| struct Geometry { |
| GrColor fColor; |
| SkScalar fXRadius; |
| SkScalar fYRadius; |
| SkScalar fInnerXRadius; |
| SkScalar fInnerYRadius; |
| SkRect fDevBounds; |
| }; |
| |
| bool fStroked; |
| SkMatrix fViewMatrixIfUsingLocalCoords; |
| SkSTArray<1, Geometry, true> fGeoData; |
| |
| typedef GrVertexBatch INHERITED; |
| }; |
| |
| static GrDrawBatch* create_rrect_batch(GrColor color, |
| const SkMatrix& viewMatrix, |
| const SkRRect& rrect, |
| const SkStrokeRec& stroke) { |
| SkASSERT(viewMatrix.rectStaysRect()); |
| SkASSERT(rrect.isSimple()); |
| SkASSERT(!rrect.isOval()); |
| |
| // RRect batchs only handle simple, but not too simple, rrects |
| // do any matrix crunching before we reset the draw state for device coords |
| const SkRect& rrectBounds = rrect.getBounds(); |
| SkRect bounds; |
| viewMatrix.mapRect(&bounds, rrectBounds); |
| |
| SkVector radii = rrect.getSimpleRadii(); |
| SkScalar xRadius = SkScalarAbs(viewMatrix[SkMatrix::kMScaleX]*radii.fX + |
| viewMatrix[SkMatrix::kMSkewY]*radii.fY); |
| SkScalar yRadius = SkScalarAbs(viewMatrix[SkMatrix::kMSkewX]*radii.fX + |
| viewMatrix[SkMatrix::kMScaleY]*radii.fY); |
| |
| SkStrokeRec::Style style = stroke.getStyle(); |
| |
| // Do (potentially) anisotropic mapping of stroke. Use -1s to indicate fill-only draws. |
| SkVector scaledStroke = {-1, -1}; |
| SkScalar strokeWidth = stroke.getWidth(); |
| |
| bool isStrokeOnly = SkStrokeRec::kStroke_Style == style || |
| SkStrokeRec::kHairline_Style == style; |
| bool hasStroke = isStrokeOnly || SkStrokeRec::kStrokeAndFill_Style == style; |
| |
| bool isCircular = (xRadius == yRadius); |
| if (hasStroke) { |
| if (SkStrokeRec::kHairline_Style == style) { |
| scaledStroke.set(1, 1); |
| } else { |
| scaledStroke.fX = SkScalarAbs(strokeWidth*(viewMatrix[SkMatrix::kMScaleX] + |
| viewMatrix[SkMatrix::kMSkewY])); |
| scaledStroke.fY = SkScalarAbs(strokeWidth*(viewMatrix[SkMatrix::kMSkewX] + |
| viewMatrix[SkMatrix::kMScaleY])); |
| } |
| |
| isCircular = isCircular && scaledStroke.fX == scaledStroke.fY; |
| // for non-circular rrects, if half of strokewidth is greater than radius, |
| // we don't handle that right now |
| if (!isCircular && |
| (SK_ScalarHalf*scaledStroke.fX > xRadius || SK_ScalarHalf*scaledStroke.fY > yRadius)) { |
| return nullptr; |
| } |
| } |
| |
| // The way the effect interpolates the offset-to-ellipse/circle-center attribute only works on |
| // the interior of the rrect if the radii are >= 0.5. Otherwise, the inner rect of the nine- |
| // patch will have fractional coverage. This only matters when the interior is actually filled. |
| // We could consider falling back to rect rendering here, since a tiny radius is |
| // indistinguishable from a square corner. |
| if (!isStrokeOnly && (SK_ScalarHalf > xRadius || SK_ScalarHalf > yRadius)) { |
| return nullptr; |
| } |
| |
| // if the corners are circles, use the circle renderer |
| if (isCircular) { |
| return new RRectCircleRendererBatch(color, viewMatrix, bounds, xRadius, scaledStroke.fX, |
| isStrokeOnly); |
| // otherwise we use the ellipse renderer |
| } else { |
| return RRectEllipseRendererBatch::Create(color, viewMatrix, bounds, xRadius, yRadius, |
| scaledStroke, isStrokeOnly); |
| |
| } |
| } |
| |
| GrDrawBatch* GrOvalRenderer::CreateRRectBatch(GrColor color, |
| const SkMatrix& viewMatrix, |
| const SkRRect& rrect, |
| const SkStrokeRec& stroke, |
| const GrShaderCaps* shaderCaps) { |
| if (rrect.isOval()) { |
| return CreateOvalBatch(color, viewMatrix, rrect.getBounds(), stroke, shaderCaps); |
| } |
| |
| if (!viewMatrix.rectStaysRect() || !rrect.isSimple()) { |
| return nullptr; |
| } |
| |
| return create_rrect_batch(color, viewMatrix, rrect, stroke); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| GrDrawBatch* GrOvalRenderer::CreateOvalBatch(GrColor color, |
| const SkMatrix& viewMatrix, |
| const SkRect& oval, |
| const SkStrokeRec& stroke, |
| const GrShaderCaps* shaderCaps) { |
| // we can draw circles |
| SkScalar width = oval.width(); |
| if (SkScalarNearlyEqual(width, oval.height()) && circle_stays_circle(viewMatrix)) { |
| SkPoint center = {oval.centerX(), oval.centerY()}; |
| return CircleBatch::Create(color, viewMatrix, center, width / 2.f, |
| GrStyle(stroke, nullptr)); |
| } |
| |
| // if we have shader derivative support, render as device-independent |
| if (shaderCaps->shaderDerivativeSupport()) { |
| return DIEllipseBatch::Create(color, viewMatrix, oval, stroke); |
| } |
| |
| // otherwise axis-aligned ellipses only |
| if (viewMatrix.rectStaysRect()) { |
| return EllipseBatch::Create(color, viewMatrix, oval, stroke); |
| } |
| |
| return nullptr; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| GrDrawBatch* GrOvalRenderer::CreateArcBatch(GrColor color, |
| const SkMatrix& viewMatrix, |
| const SkRect& oval, |
| SkScalar startAngle, SkScalar sweepAngle, |
| bool useCenter, |
| const GrStyle& style, |
| const GrShaderCaps* shaderCaps) { |
| SkASSERT(!oval.isEmpty()); |
| SkASSERT(sweepAngle); |
| SkScalar width = oval.width(); |
| if (SkScalarAbs(sweepAngle) >= 360.f) { |
| return nullptr; |
| } |
| if (!SkScalarNearlyEqual(width, oval.height()) || !circle_stays_circle(viewMatrix)) { |
| return nullptr; |
| } |
| SkPoint center = {oval.centerX(), oval.centerY()}; |
| CircleBatch::ArcParams arcParams = { |
| SkDegreesToRadians(startAngle), |
| SkDegreesToRadians(sweepAngle), |
| useCenter |
| }; |
| return CircleBatch::Create(color, viewMatrix, center, width/2.f, style, &arcParams); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #ifdef GR_TEST_UTILS |
| |
| DRAW_BATCH_TEST_DEFINE(CircleBatch) { |
| do { |
| SkScalar rotate = random->nextSScalar1() * 360.f; |
| SkScalar translateX = random->nextSScalar1() * 1000.f; |
| SkScalar translateY = random->nextSScalar1() * 1000.f; |
| SkScalar scale = random->nextSScalar1() * 100.f; |
| SkMatrix viewMatrix; |
| viewMatrix.setRotate(rotate); |
| viewMatrix.postTranslate(translateX, translateY); |
| viewMatrix.postScale(scale, scale); |
| GrColor color = GrRandomColor(random); |
| SkRect circle = GrTest::TestSquare(random); |
| SkPoint center = {circle.centerX(), circle.centerY()}; |
| SkScalar radius = circle.width() / 2.f; |
| SkStrokeRec stroke = GrTest::TestStrokeRec(random); |
| CircleBatch::ArcParams arcParamsTmp; |
| const CircleBatch::ArcParams* arcParams = nullptr; |
| if (random->nextBool()) { |
| arcParamsTmp.fStartAngleRadians = random->nextSScalar1() * SK_ScalarPI * 2; |
| arcParamsTmp.fSweepAngleRadians = random->nextSScalar1() * SK_ScalarPI * 2 - .01f; |
| arcParamsTmp.fUseCenter = random->nextBool(); |
| arcParams = &arcParamsTmp; |
| } |
| GrDrawBatch* batch = CircleBatch::Create(color, viewMatrix, center, radius, |
| GrStyle(stroke, nullptr), arcParams); |
| if (batch) { |
| return batch; |
| } |
| } while (true); |
| } |
| |
| DRAW_BATCH_TEST_DEFINE(EllipseBatch) { |
| SkMatrix viewMatrix = GrTest::TestMatrixRectStaysRect(random); |
| GrColor color = GrRandomColor(random); |
| SkRect ellipse = GrTest::TestSquare(random); |
| return EllipseBatch::Create(color, viewMatrix, ellipse, GrTest::TestStrokeRec(random)); |
| } |
| |
| DRAW_BATCH_TEST_DEFINE(DIEllipseBatch) { |
| SkMatrix viewMatrix = GrTest::TestMatrix(random); |
| GrColor color = GrRandomColor(random); |
| SkRect ellipse = GrTest::TestSquare(random); |
| return DIEllipseBatch::Create(color, viewMatrix, ellipse, GrTest::TestStrokeRec(random)); |
| } |
| |
| DRAW_BATCH_TEST_DEFINE(RRectBatch) { |
| SkMatrix viewMatrix = GrTest::TestMatrixRectStaysRect(random); |
| GrColor color = GrRandomColor(random); |
| const SkRRect& rrect = GrTest::TestRRectSimple(random); |
| return create_rrect_batch(color, viewMatrix, rrect, GrTest::TestStrokeRec(random)); |
| } |
| |
| #endif |