blob: 894758cfe8100dc1ef5dd8b60543978027173352 [file] [log] [blame]
caryclark@google.com07393ca2013-04-08 11:47:37 +00001/*
2 * Copyright 2012 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7#include "SkIntersections.h"
8#include "SkOpAngle.h"
caryclark@google.comcffbcc32013-06-04 17:59:42 +00009#include "SkOpSegment.h"
caryclark@google.com07393ca2013-04-08 11:47:37 +000010#include "SkPathOpsCurve.h"
commit-bot@chromium.orgb76d3b62013-04-22 19:55:19 +000011#include "SkTSort.h"
caryclark@google.com07393ca2013-04-08 11:47:37 +000012
caryclark@google.comcffbcc32013-06-04 17:59:42 +000013#if DEBUG_ANGLE
14#include "SkString.h"
caryclark@google.coma5e55922013-05-07 18:51:31 +000015#endif
16
caryclark@google.comcffbcc32013-06-04 17:59:42 +000017/* Angles are sorted counterclockwise. The smallest angle has a positive x and the smallest
18 positive y. The largest angle has a positive x and a zero y. */
caryclark@google.com07393ca2013-04-08 11:47:37 +000019
caryclark@google.comcffbcc32013-06-04 17:59:42 +000020#if DEBUG_ANGLE
commit-bot@chromium.org4431e772014-04-14 17:08:59 +000021 static bool CompareResult(SkString* bugOut, int append, bool compare) {
22 SkDebugf("%s %c %d\n", bugOut->c_str(), compare ? 'T' : 'F', append);
caryclark@google.comcffbcc32013-06-04 17:59:42 +000023 return compare;
24 }
25
26 #define COMPARE_RESULT(append, compare) CompareResult(&bugOut, append, compare)
27#else
skia.committer@gmail.com8f6ef402013-06-05 07:01:06 +000028 #define COMPARE_RESULT(append, compare) compare
caryclark@google.comcffbcc32013-06-04 17:59:42 +000029#endif
30
commit-bot@chromium.org4431e772014-04-14 17:08:59 +000031/* quarter angle values for sector
32
3331 x > 0, y == 0 horizontal line (to the right)
340 x > 0, y == epsilon quad/cubic horizontal tangent eventually going +y
351 x > 0, y > 0, x > y nearer horizontal angle
362 x + e == y quad/cubic 45 going horiz
373 x > 0, y > 0, x == y 45 angle
384 x == y + e quad/cubic 45 going vert
395 x > 0, y > 0, x < y nearer vertical angle
406 x == epsilon, y > 0 quad/cubic vertical tangent eventually going +x
417 x == 0, y > 0 vertical line (to the top)
42
43 8 7 6
44 9 | 5
45 10 | 4
46 11 | 3
47 12 \ | / 2
48 13 | 1
49 14 | 0
50 15 --------------+------------- 31
51 16 | 30
52 17 | 29
53 18 / | \ 28
54 19 | 27
55 20 | 26
56 21 | 25
57 22 23 24
58*/
59
60// return true if lh < this < rh
61bool SkOpAngle::after(const SkOpAngle* test) const {
62 const SkOpAngle& lh = *test;
63 const SkOpAngle& rh = *lh.fNext;
64 SkASSERT(&lh != &rh);
65#if DEBUG_ANGLE
66 SkString bugOut;
67 bugOut.printf("%s [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
68 " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
69 " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g ", __FUNCTION__,
70 lh.fSegment->debugID(), lh.debugID(), lh.fSectorStart, lh.fSectorEnd,
71 lh.fSegment->t(lh.fStart), lh.fSegment->t(lh.fEnd),
72 fSegment->debugID(), debugID(), fSectorStart, fSectorEnd, fSegment->t(fStart),
73 fSegment->t(fEnd),
74 rh.fSegment->debugID(), rh.debugID(), rh.fSectorStart, rh.fSectorEnd,
75 rh.fSegment->t(rh.fStart), rh.fSegment->t(rh.fEnd));
76#endif
77 if (lh.fComputeSector && !const_cast<SkOpAngle&>(lh).computeSector()) {
78 return COMPARE_RESULT(1, true);
79 }
80 if (fComputeSector && !const_cast<SkOpAngle*>(this)->computeSector()) {
81 return COMPARE_RESULT(2, true);
82 }
83 if (rh.fComputeSector && !const_cast<SkOpAngle&>(rh).computeSector()) {
84 return COMPARE_RESULT(3, true);
85 }
86#if DEBUG_ANGLE // reset bugOut with computed sectors
87 bugOut.printf("%s [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
88 " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
89 " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g ", __FUNCTION__,
90 lh.fSegment->debugID(), lh.debugID(), lh.fSectorStart, lh.fSectorEnd,
91 lh.fSegment->t(lh.fStart), lh.fSegment->t(lh.fEnd),
92 fSegment->debugID(), debugID(), fSectorStart, fSectorEnd, fSegment->t(fStart),
93 fSegment->t(fEnd),
94 rh.fSegment->debugID(), rh.debugID(), rh.fSectorStart, rh.fSectorEnd,
95 rh.fSegment->t(rh.fStart), rh.fSegment->t(rh.fEnd));
96#endif
97 bool ltrOverlap = (lh.fSectorMask | rh.fSectorMask) & fSectorMask;
98 bool lrOverlap = lh.fSectorMask & rh.fSectorMask;
99 int lrOrder; // set to -1 if either order works
100 if (!lrOverlap) { // no lh/rh sector overlap
101 if (!ltrOverlap) { // no lh/this/rh sector overlap
102 return COMPARE_RESULT(4, (lh.fSectorEnd > rh.fSectorStart)
103 ^ (fSectorStart > lh.fSectorEnd) ^ (fSectorStart > rh.fSectorStart));
104 }
105 int lrGap = (rh.fSectorStart - lh.fSectorStart + 32) & 0x1f;
106 /* A tiny change can move the start +/- 4. The order can only be determined if
107 lr gap is not 12 to 20 or -12 to -20.
108 -31 ..-21 1
109 -20 ..-12 -1
110 -11 .. -1 0
111 0 shouldn't get here
112 11 .. 1 1
113 12 .. 20 -1
114 21 .. 31 0
115 */
116 lrOrder = lrGap > 20 ? 0 : lrGap > 11 ? -1 : 1;
117 } else {
118 lrOrder = (int) lh.orderable(rh);
119 if (!ltrOverlap) {
120 return COMPARE_RESULT(5, !lrOrder);
121 }
122 }
123 int ltOrder;
124 SkASSERT((lh.fSectorMask & fSectorMask) || (rh.fSectorMask & fSectorMask));
125 if (lh.fSectorMask & fSectorMask) {
126 ltOrder = (int) lh.orderable(*this);
127 } else {
128 int ltGap = (fSectorStart - lh.fSectorStart + 32) & 0x1f;
129 ltOrder = ltGap > 20 ? 0 : ltGap > 11 ? -1 : 1;
130 }
131 int trOrder;
132 if (rh.fSectorMask & fSectorMask) {
133 trOrder = (int) orderable(rh);
134 } else {
135 int trGap = (rh.fSectorStart - fSectorStart + 32) & 0x1f;
136 trOrder = trGap > 20 ? 0 : trGap > 11 ? -1 : 1;
137 }
138 if (lrOrder >= 0 && ltOrder >= 0 && trOrder >= 0) {
139 return COMPARE_RESULT(7, lrOrder ? (ltOrder & trOrder) : (ltOrder | trOrder));
140 }
141 SkASSERT(lrOrder >= 0 || ltOrder >= 0 || trOrder >= 0);
142// There's not enough information to sort. Get the pairs of angles in opposite planes.
143// If an order is < 0, the pair is already in an opposite plane. Check the remaining pairs.
144 // FIXME : once all variants are understood, rewrite this more simply
145 if (ltOrder == 0 && lrOrder == 0) {
146 SkASSERT(trOrder < 0);
147 // FIXME : once this is verified to work, remove one opposite angle call
148 SkDEBUGCODE(bool lrOpposite = lh.oppositePlanes(rh));
149 bool ltOpposite = lh.oppositePlanes(*this);
150 SkASSERT(lrOpposite != ltOpposite);
151 return COMPARE_RESULT(8, ltOpposite);
152 } else if (ltOrder == 1 && trOrder == 0) {
153 SkASSERT(lrOrder < 0);
154 SkDEBUGCODE(bool ltOpposite = lh.oppositePlanes(*this));
155 bool trOpposite = oppositePlanes(rh);
156 SkASSERT(ltOpposite != trOpposite);
157 return COMPARE_RESULT(9, trOpposite);
158 } else if (lrOrder == 1 && trOrder == 1) {
159 SkASSERT(ltOrder < 0);
160 SkDEBUGCODE(bool trOpposite = oppositePlanes(rh));
161 bool lrOpposite = lh.oppositePlanes(rh);
162 SkASSERT(lrOpposite != trOpposite);
163 return COMPARE_RESULT(10, lrOpposite);
164 }
165 if (lrOrder < 0) {
166 if (ltOrder < 0) {
167 return COMPARE_RESULT(11, trOrder);
168 }
169 return COMPARE_RESULT(12, ltOrder);
170 }
171 return COMPARE_RESULT(13, !lrOrder);
172}
173
174// given a line, see if the opposite curve's convex hull is all on one side
175// returns -1=not on one side 0=this CW of test 1=this CCW of test
176int SkOpAngle::allOnOneSide(const SkOpAngle& test) const {
177 SkASSERT(!fIsCurve);
178 SkASSERT(test.fIsCurve);
179 const SkDPoint& origin = test.fCurvePart[0];
180 SkVector line;
181 if (fSegment->verb() == SkPath::kLine_Verb) {
182 const SkPoint* linePts = fSegment->pts();
183 int lineStart = fStart < fEnd ? 0 : 1;
184 line = linePts[lineStart ^ 1] - linePts[lineStart];
185 } else {
186 SkPoint shortPts[2] = { fCurvePart[0].asSkPoint(), fCurvePart[1].asSkPoint() };
187 line = shortPts[1] - shortPts[0];
188 }
189 float crosses[3];
190 SkPath::Verb testVerb = test.fSegment->verb();
191 int iMax = SkPathOpsVerbToPoints(testVerb);
192// SkASSERT(origin == test.fCurveHalf[0]);
193 const SkDCubic& testCurve = test.fCurvePart;
194// do {
195 for (int index = 1; index <= iMax; ++index) {
196 float xy1 = (float) (line.fX * (testCurve[index].fY - origin.fY));
197 float xy2 = (float) (line.fY * (testCurve[index].fX - origin.fX));
198 crosses[index - 1] = AlmostEqualUlps(xy1, xy2) ? 0 : xy1 - xy2;
199 }
200 if (crosses[0] * crosses[1] < 0) {
201 return -1;
202 }
203 if (SkPath::kCubic_Verb == testVerb) {
204 if (crosses[0] * crosses[2] < 0 || crosses[1] * crosses[2] < 0) {
205 return -1;
206 }
207 }
208 if (crosses[0]) {
209 return crosses[0] < 0;
210 }
211 if (crosses[1]) {
212 return crosses[1] < 0;
213 }
214 if (SkPath::kCubic_Verb == testVerb && crosses[2]) {
215 return crosses[2] < 0;
216 }
217 fUnorderable = true;
218 return -1;
219}
220
221bool SkOpAngle::calcSlop(double x, double y, double rx, double ry, bool* result) const {
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000222 double absX = fabs(x);
223 double absY = fabs(y);
224 double length = absX < absY ? absX / 2 + absY : absX + absY / 2;
225 int exponent;
226 (void) frexp(length, &exponent);
227 double epsilon = ldexp(FLT_EPSILON, exponent);
228 SkPath::Verb verb = fSegment->verb();
229 SkASSERT(verb == SkPath::kQuad_Verb || verb == SkPath::kCubic_Verb);
230 // FIXME: the quad and cubic factors are made up ; determine actual values
231 double slop = verb == SkPath::kQuad_Verb ? 4 * epsilon : 512 * epsilon;
232 double xSlop = slop;
233 double ySlop = x * y < 0 ? -xSlop : xSlop; // OPTIMIZATION: use copysign / _copysign ?
234 double x1 = x - xSlop;
235 double y1 = y + ySlop;
236 double x_ry1 = x1 * ry;
237 double rx_y1 = rx * y1;
238 *result = x_ry1 < rx_y1;
239 double x2 = x + xSlop;
240 double y2 = y - ySlop;
241 double x_ry2 = x2 * ry;
242 double rx_y2 = rx * y2;
243 bool less2 = x_ry2 < rx_y2;
244 return *result == less2;
245}
246
commit-bot@chromium.org4431e772014-04-14 17:08:59 +0000247bool SkOpAngle::checkCrossesZero() const {
248 int start = SkTMin(fSectorStart, fSectorEnd);
249 int end = SkTMax(fSectorStart, fSectorEnd);
250 bool crossesZero = end - start > 16;
251 return crossesZero;
252}
caryclark@google.com07393ca2013-04-08 11:47:37 +0000253
commit-bot@chromium.org4431e772014-04-14 17:08:59 +0000254bool SkOpAngle::checkParallel(const SkOpAngle& rh) const {
255 SkDVector scratch[2];
256 const SkDVector* sweep, * tweep;
257 if (!fUnorderedSweep) {
258 sweep = fSweep;
259 } else {
260 scratch[0] = fCurvePart[1] - fCurvePart[0];
261 sweep = &scratch[0];
caryclark@google.coma5e55922013-05-07 18:51:31 +0000262 }
commit-bot@chromium.org4431e772014-04-14 17:08:59 +0000263 if (!rh.fUnorderedSweep) {
264 tweep = rh.fSweep;
265 } else {
266 scratch[1] = rh.fCurvePart[1] - rh.fCurvePart[0];
267 tweep = &scratch[1];
caryclark@google.com07393ca2013-04-08 11:47:37 +0000268 }
commit-bot@chromium.org4431e772014-04-14 17:08:59 +0000269 double s0xt0 = sweep->crossCheck(*tweep);
270 if (tangentsDiverge(rh, s0xt0)) {
271 return s0xt0 < 0;
skia.committer@gmail.com8f6ef402013-06-05 07:01:06 +0000272 }
commit-bot@chromium.org4431e772014-04-14 17:08:59 +0000273 SkDVector m0 = fSegment->dPtAtT(midT()) - fCurvePart[0];
274 SkDVector m1 = rh.fSegment->dPtAtT(rh.midT()) - rh.fCurvePart[0];
275 double m0xm1 = m0.crossCheck(m1);
276 if (m0xm1 == 0) {
277 fUnorderable = true;
278 rh.fUnorderable = true;
279 return true;
caryclark@google.com07393ca2013-04-08 11:47:37 +0000280 }
commit-bot@chromium.org4431e772014-04-14 17:08:59 +0000281 return m0xm1 < 0;
282}
283
284// the original angle is too short to get meaningful sector information
285// lengthen it until it is long enough to be meaningful or leave it unset if lengthening it
286// would cause it to intersect one of the adjacent angles
287bool SkOpAngle::computeSector() {
288 if (fComputedSector) {
289 // FIXME: logically, this should return !fUnorderable, but doing so breaks testQuadratic51
290 // -- but in general, this code may not work so this may be the least of problems
291 // adding the bang fixes testQuads46x in release, however
caryclarkdac1d172014-06-17 05:15:38 -0700292 return !fUnorderable;
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000293 }
commit-bot@chromium.org4431e772014-04-14 17:08:59 +0000294 SkASSERT(fSegment->verb() != SkPath::kLine_Verb && small());
295 fComputedSector = true;
296 int step = fStart < fEnd ? 1 : -1;
297 int limit = step > 0 ? fSegment->count() : -1;
298 int checkEnd = fEnd;
caryclark@google.com07393ca2013-04-08 11:47:37 +0000299 do {
commit-bot@chromium.org4431e772014-04-14 17:08:59 +0000300// advance end
301 const SkOpSpan& span = fSegment->span(checkEnd);
302 const SkOpSegment* other = span.fOther;
303 int oCount = other->count();
304 for (int oIndex = 0; oIndex < oCount; ++oIndex) {
305 const SkOpSpan& oSpan = other->span(oIndex);
306 if (oSpan.fOther != fSegment) {
307 continue;
308 }
309 if (oSpan.fOtherIndex == checkEnd) {
310 continue;
311 }
312 if (!approximately_equal(oSpan.fOtherT, span.fT)) {
313 continue;
314 }
315 goto recomputeSector;
316 }
317 checkEnd += step;
318 } while (checkEnd != limit);
319recomputeSector:
320 if (checkEnd == fEnd || checkEnd - step == fEnd) {
321 fUnorderable = true;
322 return false;
caryclark@google.com07393ca2013-04-08 11:47:37 +0000323 }
commit-bot@chromium.org8cb1daa2014-04-25 12:59:11 +0000324 int saveEnd = fEnd;
caryclarkdac1d172014-06-17 05:15:38 -0700325 fComputedEnd = fEnd = checkEnd - step;
commit-bot@chromium.org4431e772014-04-14 17:08:59 +0000326 setSpans();
327 setSector();
commit-bot@chromium.org8cb1daa2014-04-25 12:59:11 +0000328 fEnd = saveEnd;
commit-bot@chromium.org4431e772014-04-14 17:08:59 +0000329 return !fUnorderable;
330}
331
332// returns -1 if overlaps 0 if no overlap cw 1 if no overlap ccw
333int SkOpAngle::convexHullOverlaps(const SkOpAngle& rh) const {
334 const SkDVector* sweep = fSweep;
335 const SkDVector* tweep = rh.fSweep;
336 double s0xs1 = sweep[0].crossCheck(sweep[1]);
337 double s0xt0 = sweep[0].crossCheck(tweep[0]);
338 double s1xt0 = sweep[1].crossCheck(tweep[0]);
339 bool tBetweenS = s0xs1 > 0 ? s0xt0 > 0 && s1xt0 < 0 : s0xt0 < 0 && s1xt0 > 0;
340 double s0xt1 = sweep[0].crossCheck(tweep[1]);
341 double s1xt1 = sweep[1].crossCheck(tweep[1]);
342 tBetweenS |= s0xs1 > 0 ? s0xt1 > 0 && s1xt1 < 0 : s0xt1 < 0 && s1xt1 > 0;
343 double t0xt1 = tweep[0].crossCheck(tweep[1]);
344 if (tBetweenS) {
345 return -1;
caryclark@google.coma2bbc6e2013-11-01 17:36:03 +0000346 }
commit-bot@chromium.org4431e772014-04-14 17:08:59 +0000347 if ((s0xt0 == 0 && s1xt1 == 0) || (s1xt0 == 0 && s0xt1 == 0)) { // s0 to s1 equals t0 to t1
348 return -1;
349 }
350 bool sBetweenT = t0xt1 > 0 ? s0xt0 < 0 && s0xt1 > 0 : s0xt0 > 0 && s0xt1 < 0;
351 sBetweenT |= t0xt1 > 0 ? s1xt0 < 0 && s1xt1 > 0 : s1xt0 > 0 && s1xt1 < 0;
352 if (sBetweenT) {
353 return -1;
354 }
355 // if all of the sweeps are in the same half plane, then the order of any pair is enough
356 if (s0xt0 >= 0 && s0xt1 >= 0 && s1xt0 >= 0 && s1xt1 >= 0) {
357 return 0;
358 }
359 if (s0xt0 <= 0 && s0xt1 <= 0 && s1xt0 <= 0 && s1xt1 <= 0) {
360 return 1;
361 }
362 // if the outside sweeps are greater than 180 degress:
363 // first assume the inital tangents are the ordering
364 // if the midpoint direction matches the inital order, that is enough
365 SkDVector m0 = fSegment->dPtAtT(midT()) - fCurvePart[0];
366 SkDVector m1 = rh.fSegment->dPtAtT(rh.midT()) - rh.fCurvePart[0];
367 double m0xm1 = m0.crossCheck(m1);
368 if (s0xt0 > 0 && m0xm1 > 0) {
369 return 0;
370 }
371 if (s0xt0 < 0 && m0xm1 < 0) {
372 return 1;
373 }
374 if (tangentsDiverge(rh, s0xt0)) {
375 return s0xt0 < 0;
376 }
377 return m0xm1 < 0;
378}
379
380// OPTIMIZATION: longest can all be either lazily computed here or precomputed in setup
381double SkOpAngle::distEndRatio(double dist) const {
382 double longest = 0;
383 const SkOpSegment& segment = *this->segment();
384 int ptCount = SkPathOpsVerbToPoints(segment.verb());
385 const SkPoint* pts = segment.pts();
386 for (int idx1 = 0; idx1 <= ptCount - 1; ++idx1) {
387 for (int idx2 = idx1 + 1; idx2 <= ptCount; ++idx2) {
388 if (idx1 == idx2) {
389 continue;
390 }
391 SkDVector v;
392 v.set(pts[idx2] - pts[idx1]);
393 double lenSq = v.lengthSquared();
394 longest = SkTMax(longest, lenSq);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000395 }
396 }
commit-bot@chromium.org4431e772014-04-14 17:08:59 +0000397 return sqrt(longest) / dist;
398}
399
400bool SkOpAngle::endsIntersect(const SkOpAngle& rh) const {
401 SkPath::Verb lVerb = fSegment->verb();
402 SkPath::Verb rVerb = rh.fSegment->verb();
403 int lPts = SkPathOpsVerbToPoints(lVerb);
404 int rPts = SkPathOpsVerbToPoints(rVerb);
405 SkDLine rays[] = {{{fCurvePart[0], rh.fCurvePart[rPts]}},
406 {{fCurvePart[0], fCurvePart[lPts]}}};
407 if (rays[0][1] == rays[1][1]) {
408 return checkParallel(rh);
409 }
410 double smallTs[2] = {-1, -1};
411 bool limited[2] = {false, false};
412 for (int index = 0; index < 2; ++index) {
413 const SkOpSegment& segment = index ? *rh.fSegment : *fSegment;
414 SkIntersections i;
415 (*CurveIntersectRay[index ? rPts : lPts])(segment.pts(), rays[index], &i);
416// SkASSERT(i.used() >= 1);
caryclarkdac1d172014-06-17 05:15:38 -0700417// if (i.used() <= 1) {
418// continue;
419// }
commit-bot@chromium.org4431e772014-04-14 17:08:59 +0000420 double tStart = segment.t(index ? rh.fStart : fStart);
caryclarkdac1d172014-06-17 05:15:38 -0700421 double tEnd = segment.t(index ? rh.fComputedEnd : fComputedEnd);
422 bool testAscends = index ? rh.fStart < rh.fComputedEnd : fStart < fComputedEnd;
commit-bot@chromium.org4431e772014-04-14 17:08:59 +0000423 double t = testAscends ? 0 : 1;
424 for (int idx2 = 0; idx2 < i.used(); ++idx2) {
425 double testT = i[0][idx2];
426 if (!approximately_between_orderable(tStart, testT, tEnd)) {
427 continue;
428 }
429 if (approximately_equal_orderable(tStart, testT)) {
430 continue;
431 }
432 smallTs[index] = t = testAscends ? SkTMax(t, testT) : SkTMin(t, testT);
433 limited[index] = approximately_equal_orderable(t, tEnd);
434 }
435 }
436#if 0
437 if (smallTs[0] < 0 && smallTs[1] < 0) { // if neither ray intersects, do endpoint sort
438 double m0xm1 = 0;
439 if (lVerb == SkPath::kLine_Verb) {
440 SkASSERT(rVerb != SkPath::kLine_Verb);
441 SkDVector m0 = rays[1][1] - fCurvePart[0];
442 SkDPoint endPt;
443 endPt.set(rh.fSegment->pts()[rh.fStart < rh.fEnd ? rPts : 0]);
444 SkDVector m1 = endPt - fCurvePart[0];
445 m0xm1 = m0.crossCheck(m1);
446 }
447 if (rVerb == SkPath::kLine_Verb) {
448 SkDPoint endPt;
449 endPt.set(fSegment->pts()[fStart < fEnd ? lPts : 0]);
450 SkDVector m0 = endPt - fCurvePart[0];
451 SkDVector m1 = rays[0][1] - fCurvePart[0];
452 m0xm1 = m0.crossCheck(m1);
453 }
454 if (m0xm1 != 0) {
455 return m0xm1 < 0;
456 }
457 }
caryclark@google.coma5e55922013-05-07 18:51:31 +0000458#endif
commit-bot@chromium.org4431e772014-04-14 17:08:59 +0000459 bool sRayLonger = false;
460 SkDVector sCept = {0, 0};
461 double sCeptT = -1;
462 int sIndex = -1;
463 bool useIntersect = false;
464 for (int index = 0; index < 2; ++index) {
465 if (smallTs[index] < 0) {
466 continue;
467 }
468 const SkOpSegment& segment = index ? *rh.fSegment : *fSegment;
469 const SkDPoint& dPt = segment.dPtAtT(smallTs[index]);
470 SkDVector cept = dPt - rays[index][0];
471 // If this point is on the curve, it should have been detected earlier by ordinary
472 // curve intersection. This may be hard to determine in general, but for lines,
473 // the point could be close to or equal to its end, but shouldn't be near the start.
474 if ((index ? lPts : rPts) == 1) {
475 SkDVector total = rays[index][1] - rays[index][0];
476 if (cept.lengthSquared() * 2 < total.lengthSquared()) {
477 continue;
478 }
479 }
480 SkDVector end = rays[index][1] - rays[index][0];
481 if (cept.fX * end.fX < 0 || cept.fY * end.fY < 0) {
482 continue;
483 }
484 double rayDist = cept.length();
485 double endDist = end.length();
486 bool rayLonger = rayDist > endDist;
487 if (limited[0] && limited[1] && rayLonger) {
488 useIntersect = true;
489 sRayLonger = rayLonger;
490 sCept = cept;
491 sCeptT = smallTs[index];
492 sIndex = index;
caryclark@google.coma5e55922013-05-07 18:51:31 +0000493 break;
caryclark@google.com07393ca2013-04-08 11:47:37 +0000494 }
commit-bot@chromium.org4431e772014-04-14 17:08:59 +0000495 double delta = fabs(rayDist - endDist);
496 double minX, minY, maxX, maxY;
497 minX = minY = SK_ScalarInfinity;
498 maxX = maxY = -SK_ScalarInfinity;
499 const SkDCubic& curve = index ? rh.fCurvePart : fCurvePart;
500 int ptCount = index ? rPts : lPts;
501 for (int idx2 = 0; idx2 <= ptCount; ++idx2) {
502 minX = SkTMin(minX, curve[idx2].fX);
503 minY = SkTMin(minY, curve[idx2].fY);
504 maxX = SkTMax(maxX, curve[idx2].fX);
505 maxY = SkTMax(maxY, curve[idx2].fY);
506 }
507 double maxWidth = SkTMax(maxX - minX, maxY - minY);
508 delta /= maxWidth;
509 if (delta > 1e-4 && (useIntersect ^= true)) { // FIXME: move this magic number
510 sRayLonger = rayLonger;
511 sCept = cept;
512 sCeptT = smallTs[index];
513 sIndex = index;
514 }
caryclark@google.com07393ca2013-04-08 11:47:37 +0000515 }
commit-bot@chromium.org4431e772014-04-14 17:08:59 +0000516 if (useIntersect) {
517 const SkDCubic& curve = sIndex ? rh.fCurvePart : fCurvePart;
518 const SkOpSegment& segment = sIndex ? *rh.fSegment : *fSegment;
519 double tStart = segment.t(sIndex ? rh.fStart : fStart);
520 SkDVector mid = segment.dPtAtT(tStart + (sCeptT - tStart) / 2) - curve[0];
521 double septDir = mid.crossCheck(sCept);
522 if (!septDir) {
523 return checkParallel(rh);
524 }
525 return sRayLonger ^ (sIndex == 0) ^ (septDir < 0);
526 } else {
527 return checkParallel(rh);
caryclark@google.coma5e55922013-05-07 18:51:31 +0000528 }
commit-bot@chromium.org4431e772014-04-14 17:08:59 +0000529}
530
531// Most of the time, the first one can be found trivially by detecting the smallest sector value.
532// If all angles have the same sector value, actual sorting is required.
533const SkOpAngle* SkOpAngle::findFirst() const {
534 const SkOpAngle* best = this;
535 int bestStart = SkTMin(fSectorStart, fSectorEnd);
536 const SkOpAngle* angle = this;
537 while ((angle = angle->fNext) != this) {
538 int angleEnd = SkTMax(angle->fSectorStart, angle->fSectorEnd);
539 if (angleEnd < bestStart) {
540 return angle; // we wrapped around
541 }
542 int angleStart = SkTMin(angle->fSectorStart, angle->fSectorEnd);
543 if (bestStart > angleStart) {
544 best = angle;
545 bestStart = angleStart;
546 }
547 }
548 // back up to the first possible angle
549 const SkOpAngle* firstBest = best;
550 angle = best;
551 int bestEnd = SkTMax(best->fSectorStart, best->fSectorEnd);
552 while ((angle = angle->previous()) != firstBest) {
553 if (angle->fStop) {
554 break;
555 }
556 int angleStart = SkTMin(angle->fSectorStart, angle->fSectorEnd);
557 // angles that are smaller by one aren't necessary better, since the larger may be a line
skia.committer@gmail.coma1ed7ae2014-04-15 03:04:18 +0000558 // and the smaller may be a curve that curls to the other side of the line.
commit-bot@chromium.org4431e772014-04-14 17:08:59 +0000559 if (bestEnd + 1 < angleStart) {
560 return best;
561 }
562 best = angle;
563 bestEnd = SkTMax(angle->fSectorStart, angle->fSectorEnd);
564 }
565 // in the case where all angles are nearly in the same sector, check the order to find the best
566 firstBest = best;
567 angle = best;
568 do {
569 angle = angle->fNext;
570 if (angle->fStop) {
571 return firstBest;
572 }
573 bool orderable = best->orderable(*angle); // note: may return an unorderable angle
574 if (orderable == 0) {
575 return angle;
576 }
577 best = angle;
578 } while (angle != firstBest);
579 // if the angles are equally ordered, fall back on the initial tangent
580 bool foundBelow = false;
581 while ((angle = angle->fNext)) {
582 SkDVector scratch[2];
583 const SkDVector* sweep;
584 if (!angle->fUnorderedSweep) {
585 sweep = angle->fSweep;
586 } else {
587 scratch[0] = angle->fCurvePart[1] - angle->fCurvePart[0];
588 sweep = &scratch[0];
589 }
590 bool isAbove = sweep->fY <= 0;
591 if (isAbove && foundBelow) {
592 return angle;
593 }
594 foundBelow |= !isAbove;
595 if (angle == firstBest) {
596 return NULL; // should not loop around
597 }
598 }
599 SkASSERT(0); // should never get here
600 return NULL;
601}
602
603/* y<0 y==0 y>0 x<0 x==0 x>0 xy<0 xy==0 xy>0
604 0 x x x
605 1 x x x
606 2 x x x
607 3 x x x
608 4 x x x
609 5 x x x
610 6 x x x
611 7 x x x
612 8 x x x
613 9 x x x
614 10 x x x
615 11 x x x
616 12 x x x
617 13 x x x
618 14 x x x
619 15 x x x
620*/
621int SkOpAngle::findSector(SkPath::Verb verb, double x, double y) const {
622 double absX = fabs(x);
623 double absY = fabs(y);
624 double xy = SkPath::kLine_Verb == verb || !AlmostEqualUlps(absX, absY) ? absX - absY : 0;
625 // If there are four quadrants and eight octants, and since the Latin for sixteen is sedecim,
626 // one could coin the term sedecimant for a space divided into 16 sections.
627 // http://english.stackexchange.com/questions/133688/word-for-something-partitioned-into-16-parts
628 static const int sedecimant[3][3][3] = {
629 // y<0 y==0 y>0
630 // x<0 x==0 x>0 x<0 x==0 x>0 x<0 x==0 x>0
631 {{ 4, 3, 2}, { 7, -1, 15}, {10, 11, 12}}, // abs(x) < abs(y)
632 {{ 5, -1, 1}, {-1, -1, -1}, { 9, -1, 13}}, // abs(x) == abs(y)
633 {{ 6, 3, 0}, { 7, -1, 15}, { 8, 11, 14}}, // abs(x) > abs(y)
634 };
635 int sector = sedecimant[(xy >= 0) + (xy > 0)][(y >= 0) + (y > 0)][(x >= 0) + (x > 0)] * 2 + 1;
636 SkASSERT(SkPath::kLine_Verb == verb || sector >= 0);
637 return sector;
638}
639
640// OPTIMIZE: if this loops to only one other angle, after first compare fails, insert on other side
641// OPTIMIZE: return where insertion succeeded. Then, start next insertion on opposite side
642void SkOpAngle::insert(SkOpAngle* angle) {
643 if (angle->fNext) {
644 if (loopCount() >= angle->loopCount()) {
645 if (!merge(angle)) {
646 return;
647 }
648 } else if (fNext) {
649 if (!angle->merge(this)) {
650 return;
651 }
652 } else {
653 angle->insert(this);
654 }
655 return;
656 }
657 bool singleton = NULL == fNext;
658 if (singleton) {
659 fNext = this;
660 }
661 SkOpAngle* next = fNext;
662 if (next->fNext == this) {
commit-bot@chromium.org8cb1daa2014-04-25 12:59:11 +0000663 if (angle->overlap(*this)) {
664 return;
665 }
commit-bot@chromium.org4431e772014-04-14 17:08:59 +0000666 if (singleton || angle->after(this)) {
667 this->fNext = angle;
668 angle->fNext = next;
669 } else {
670 next->fNext = angle;
671 angle->fNext = this;
672 }
673 debugValidateNext();
674 return;
675 }
676 SkOpAngle* last = this;
677 do {
678 SkASSERT(last->fNext == next);
commit-bot@chromium.org8cb1daa2014-04-25 12:59:11 +0000679 if (angle->overlap(*last) || angle->overlap(*next)) {
680 return;
681 }
commit-bot@chromium.org4431e772014-04-14 17:08:59 +0000682 if (angle->after(last)) {
683 last->fNext = angle;
684 angle->fNext = next;
685 debugValidateNext();
686 return;
687 }
688 last = next;
689 next = next->fNext;
690 if (last == this && next->fUnorderable) {
691 fUnorderable = true;
692 return;
693 }
694 SkASSERT(last != this);
695 } while (true);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000696}
697
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000698bool SkOpAngle::isHorizontal() const {
commit-bot@chromium.org4431e772014-04-14 17:08:59 +0000699 return !fIsCurve && fSweep[0].fY == 0;
caryclark@google.com07393ca2013-04-08 11:47:37 +0000700}
701
commit-bot@chromium.org4431e772014-04-14 17:08:59 +0000702SkOpSpan* SkOpAngle::lastMarked() const {
703 if (fLastMarked) {
704 if (fLastMarked->fChased) {
705 return NULL;
706 }
707 fLastMarked->fChased = true;
caryclark@google.com07393ca2013-04-08 11:47:37 +0000708 }
commit-bot@chromium.org4431e772014-04-14 17:08:59 +0000709 return fLastMarked;
710}
711
commit-bot@chromium.org8cb1daa2014-04-25 12:59:11 +0000712bool SkOpAngle::loopContains(const SkOpAngle& test) const {
713 if (!fNext) {
714 return false;
715 }
716 const SkOpAngle* first = this;
717 const SkOpAngle* loop = this;
718 const SkOpSegment* tSegment = test.fSegment;
719 double tStart = tSegment->span(test.fStart).fT;
720 double tEnd = tSegment->span(test.fEnd).fT;
721 do {
722 const SkOpSegment* lSegment = loop->fSegment;
723 // FIXME : use precisely_equal ? or compare points exactly ?
724 if (lSegment != tSegment) {
725 continue;
726 }
727 double lStart = lSegment->span(loop->fStart).fT;
728 if (lStart != tEnd) {
729 continue;
730 }
731 double lEnd = lSegment->span(loop->fEnd).fT;
732 if (lEnd == tStart) {
733 return true;
734 }
735 } while ((loop = loop->fNext) != first);
736 return false;
737}
738
commit-bot@chromium.org4431e772014-04-14 17:08:59 +0000739int SkOpAngle::loopCount() const {
740 int count = 0;
741 const SkOpAngle* first = this;
742 const SkOpAngle* next = this;
743 do {
744 next = next->fNext;
745 ++count;
746 } while (next && next != first);
747 return count;
748}
749
750// OPTIMIZATION: can this be done better in after when angles are sorted?
751void SkOpAngle::markStops() {
752 SkOpAngle* angle = this;
753 int lastEnd = SkTMax(fSectorStart, fSectorEnd);
754 do {
755 angle = angle->fNext;
756 int angleStart = SkTMin(angle->fSectorStart, angle->fSectorEnd);
757 // angles that are smaller by one aren't necessary better, since the larger may be a line
skia.committer@gmail.coma1ed7ae2014-04-15 03:04:18 +0000758 // and the smaller may be a curve that curls to the other side of the line.
commit-bot@chromium.org4431e772014-04-14 17:08:59 +0000759 if (lastEnd + 1 < angleStart) {
760 angle->fStop = true;
761 }
762 lastEnd = SkTMax(angle->fSectorStart, angle->fSectorEnd);
763 } while (angle != this);
764}
765
766bool SkOpAngle::merge(SkOpAngle* angle) {
767 SkASSERT(fNext);
768 SkASSERT(angle->fNext);
769 SkOpAngle* working = angle;
770 do {
771 if (this == working) {
772 return false;
773 }
774 working = working->fNext;
775 } while (working != angle);
776 do {
777 SkOpAngle* next = working->fNext;
778 working->fNext = NULL;
779 insert(working);
780 working = next;
781 } while (working != angle);
782 // it's likely that a pair of the angles are unorderable
783#if DEBUG_ANGLE
784 SkOpAngle* last = angle;
785 working = angle->fNext;
786 do {
787 SkASSERT(last->fNext == working);
788 last->fNext = working->fNext;
789 SkASSERT(working->after(last));
790 last->fNext = working;
791 last = working;
792 working = working->fNext;
793 } while (last != angle);
794#endif
795 debugValidateNext();
796 return true;
797}
798
799double SkOpAngle::midT() const {
800 return (fSegment->t(fStart) + fSegment->t(fEnd)) / 2;
801}
802
803bool SkOpAngle::oppositePlanes(const SkOpAngle& rh) const {
804 int startSpan = abs(rh.fSectorStart - fSectorStart);
805 return startSpan >= 8;
806}
807
808bool SkOpAngle::orderable(const SkOpAngle& rh) const {
809 int result;
810 if (!fIsCurve) {
811 if (!rh.fIsCurve) {
812 double leftX = fTangentHalf.dx();
813 double leftY = fTangentHalf.dy();
814 double rightX = rh.fTangentHalf.dx();
815 double rightY = rh.fTangentHalf.dy();
816 double x_ry = leftX * rightY;
817 double rx_y = rightX * leftY;
818 if (x_ry == rx_y) {
819 if (leftX * rightX < 0 || leftY * rightY < 0) {
820 return true; // exactly 180 degrees apart
821 }
822 goto unorderable;
823 }
824 SkASSERT(x_ry != rx_y); // indicates an undetected coincidence -- worth finding earlier
825 return x_ry < rx_y;
826 }
827 if ((result = allOnOneSide(rh)) >= 0) {
828 return result;
829 }
830 if (fUnorderable || approximately_zero(rh.fSide)) {
831 goto unorderable;
832 }
833 } else if (!rh.fIsCurve) {
834 if ((result = rh.allOnOneSide(*this)) >= 0) {
835 return !result;
836 }
837 if (rh.fUnorderable || approximately_zero(fSide)) {
838 goto unorderable;
839 }
caryclark@google.com07393ca2013-04-08 11:47:37 +0000840 }
commit-bot@chromium.org4431e772014-04-14 17:08:59 +0000841 if ((result = convexHullOverlaps(rh)) >= 0) {
842 return result;
843 }
844 return endsIntersect(rh);
845unorderable:
846 fUnorderable = true;
847 rh.fUnorderable = true;
848 return true;
849}
850
commit-bot@chromium.org8cb1daa2014-04-25 12:59:11 +0000851bool SkOpAngle::overlap(const SkOpAngle& other) const {
852 int min = SkTMin(fStart, fEnd);
853 const SkOpSpan& span = fSegment->span(min);
854 const SkOpSegment* oSeg = other.fSegment;
855 int oMin = SkTMin(other.fStart, other.fEnd);
856 const SkOpSpan& oSpan = oSeg->span(oMin);
857 if (!span.fSmall && !oSpan.fSmall) {
858 return false;
859 }
860 if (fSegment->span(fStart).fPt != oSeg->span(other.fStart).fPt) {
861 return false;
862 }
863 // see if small span is contained by opposite span
864 return span.fSmall ? oSeg->containsPt(fSegment->span(fEnd).fPt, other.fEnd, other.fStart)
865 : fSegment->containsPt(oSeg->span(other.fEnd).fPt, fEnd, fStart);
866}
867
commit-bot@chromium.org4431e772014-04-14 17:08:59 +0000868// OPTIMIZE: if this shows up in a profile, add a previous pointer
869// as is, this should be rarely called
870SkOpAngle* SkOpAngle::previous() const {
871 SkOpAngle* last = fNext;
872 do {
873 SkOpAngle* next = last->fNext;
874 if (next == this) {
875 return last;
876 }
877 last = next;
878 } while (true);
caryclark@google.com07393ca2013-04-08 11:47:37 +0000879}
880
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000881void SkOpAngle::set(const SkOpSegment* segment, int start, int end) {
caryclark@google.com07393ca2013-04-08 11:47:37 +0000882 fSegment = segment;
883 fStart = start;
caryclarkdac1d172014-06-17 05:15:38 -0700884 fComputedEnd = fEnd = end;
commit-bot@chromium.org4431e772014-04-14 17:08:59 +0000885 fNext = NULL;
886 fComputeSector = fComputedSector = false;
887 fStop = false;
caryclark@google.com07393ca2013-04-08 11:47:37 +0000888 setSpans();
commit-bot@chromium.org4431e772014-04-14 17:08:59 +0000889 setSector();
890}
891
892void SkOpAngle::setCurveHullSweep() {
893 fUnorderedSweep = false;
894 fSweep[0] = fCurvePart[1] - fCurvePart[0];
895 if (SkPath::kLine_Verb == fSegment->verb()) {
896 fSweep[1] = fSweep[0];
897 return;
898 }
899 fSweep[1] = fCurvePart[2] - fCurvePart[0];
900 if (SkPath::kCubic_Verb != fSegment->verb()) {
901 if (!fSweep[0].fX && !fSweep[0].fY) {
902 fSweep[0] = fSweep[1];
903 }
904 return;
905 }
906 SkDVector thirdSweep = fCurvePart[3] - fCurvePart[0];
907 if (fSweep[0].fX == 0 && fSweep[0].fY == 0) {
908 fSweep[0] = fSweep[1];
909 fSweep[1] = thirdSweep;
910 if (fSweep[0].fX == 0 && fSweep[0].fY == 0) {
911 fSweep[0] = fSweep[1];
912 fCurvePart[1] = fCurvePart[3];
913 fIsCurve = false;
914 }
915 return;
916 }
917 double s1x3 = fSweep[0].crossCheck(thirdSweep);
918 double s3x2 = thirdSweep.crossCheck(fSweep[1]);
919 if (s1x3 * s3x2 >= 0) { // if third vector is on or between first two vectors
920 return;
921 }
922 double s2x1 = fSweep[1].crossCheck(fSweep[0]);
923 // FIXME: If the sweep of the cubic is greater than 180 degrees, we're in trouble
924 // probably such wide sweeps should be artificially subdivided earlier so that never happens
925 SkASSERT(s1x3 * s2x1 < 0 || s1x3 * s3x2 < 0);
926 if (s3x2 * s2x1 < 0) {
927 SkASSERT(s2x1 * s1x3 > 0);
928 fSweep[0] = fSweep[1];
929 fUnorderedSweep = true;
930 }
931 fSweep[1] = thirdSweep;
932}
933
934void SkOpAngle::setSector() {
935 SkPath::Verb verb = fSegment->verb();
936 if (SkPath::kLine_Verb != verb && small()) {
937 fSectorStart = fSectorEnd = -1;
938 fSectorMask = 0;
939 fComputeSector = true; // can't determine sector until segment length can be found
940 return;
941 }
942 fSectorStart = findSector(verb, fSweep[0].fX, fSweep[0].fY);
943 if (!fIsCurve) { // if it's a line or line-like, note that both sectors are the same
944 SkASSERT(fSectorStart >= 0);
945 fSectorEnd = fSectorStart;
946 fSectorMask = 1 << fSectorStart;
947 return;
948 }
949 SkASSERT(SkPath::kLine_Verb != verb);
950 fSectorEnd = findSector(verb, fSweep[1].fX, fSweep[1].fY);
951 if (fSectorEnd == fSectorStart) {
952 SkASSERT((fSectorStart & 3) != 3); // if the sector has no span, it can't be an exact angle
953 fSectorMask = 1 << fSectorStart;
954 return;
955 }
956 bool crossesZero = checkCrossesZero();
957 int start = SkTMin(fSectorStart, fSectorEnd);
958 bool curveBendsCCW = (fSectorStart == start) ^ crossesZero;
959 // bump the start and end of the sector span if they are on exact compass points
960 if ((fSectorStart & 3) == 3) {
961 fSectorStart = (fSectorStart + (curveBendsCCW ? 1 : 31)) & 0x1f;
962 }
963 if ((fSectorEnd & 3) == 3) {
964 fSectorEnd = (fSectorEnd + (curveBendsCCW ? 31 : 1)) & 0x1f;
965 }
966 crossesZero = checkCrossesZero();
967 start = SkTMin(fSectorStart, fSectorEnd);
968 int end = SkTMax(fSectorStart, fSectorEnd);
969 if (!crossesZero) {
970 fSectorMask = (unsigned) -1 >> (31 - end + start) << start;
971 } else {
972 fSectorMask = (unsigned) -1 >> (31 - start) | (-1 << end);
973 }
caryclark@google.com07393ca2013-04-08 11:47:37 +0000974}
975
caryclark@google.com07393ca2013-04-08 11:47:37 +0000976void SkOpAngle::setSpans() {
caryclark@google.com570863f2013-09-16 15:55:01 +0000977 fUnorderable = fSegment->isTiny(this);
978 fLastMarked = NULL;
caryclark@google.com570863f2013-09-16 15:55:01 +0000979 const SkPoint* pts = fSegment->pts();
commit-bot@chromium.org4431e772014-04-14 17:08:59 +0000980 SkDEBUGCODE(fCurvePart[2].fX = fCurvePart[2].fY = fCurvePart[3].fX = fCurvePart[3].fY
981 = SK_ScalarNaN);
982 fSegment->subDivide(fStart, fEnd, &fCurvePart);
983 setCurveHullSweep();
984 const SkPath::Verb verb = fSegment->verb();
985 if (verb != SkPath::kLine_Verb
986 && !(fIsCurve = fSweep[0].crossCheck(fSweep[1]) != 0)) {
987 SkDLine lineHalf;
988 lineHalf[0].set(fCurvePart[0].asSkPoint());
989 lineHalf[1].set(fCurvePart[SkPathOpsVerbToPoints(verb)].asSkPoint());
990 fTangentHalf.lineEndPoints(lineHalf);
991 fSide = 0;
caryclark@google.comcffbcc32013-06-04 17:59:42 +0000992 }
commit-bot@chromium.org4431e772014-04-14 17:08:59 +0000993 switch (verb) {
caryclark@google.com07393ca2013-04-08 11:47:37 +0000994 case SkPath::kLine_Verb: {
caryclark@google.com570863f2013-09-16 15:55:01 +0000995 SkASSERT(fStart != fEnd);
commit-bot@chromium.org4431e772014-04-14 17:08:59 +0000996 const SkPoint& cP1 = pts[fStart < fEnd];
997 SkDLine lineHalf;
998 lineHalf[0].set(fSegment->span(fStart).fPt);
999 lineHalf[1].set(cP1);
1000 fTangentHalf.lineEndPoints(lineHalf);
caryclark@google.com07393ca2013-04-08 11:47:37 +00001001 fSide = 0;
commit-bot@chromium.org4431e772014-04-14 17:08:59 +00001002 fIsCurve = false;
1003 } return;
caryclark@google.com07393ca2013-04-08 11:47:37 +00001004 case SkPath::kQuad_Verb: {
commit-bot@chromium.org4431e772014-04-14 17:08:59 +00001005 SkLineParameters tangentPart;
1006 SkDQuad& quad2 = *SkTCast<SkDQuad*>(&fCurvePart);
1007 (void) tangentPart.quadEndPoints(quad2);
1008 fSide = -tangentPart.pointDistance(fCurvePart[2]); // not normalized -- compare sign only
caryclark@google.comcffbcc32013-06-04 17:59:42 +00001009 } break;
1010 case SkPath::kCubic_Verb: {
commit-bot@chromium.org4431e772014-04-14 17:08:59 +00001011 SkLineParameters tangentPart;
1012 (void) tangentPart.cubicPart(fCurvePart);
1013 fSide = -tangentPart.pointDistance(fCurvePart[3]);
caryclark@google.comb3f09212013-04-17 15:49:16 +00001014 double testTs[4];
1015 // OPTIMIZATION: keep inflections precomputed with cubic segment?
caryclark@google.comcffbcc32013-06-04 17:59:42 +00001016 int testCount = SkDCubic::FindInflections(pts, testTs);
commit-bot@chromium.org4431e772014-04-14 17:08:59 +00001017 double startT = fSegment->t(fStart);
caryclark@google.comcffbcc32013-06-04 17:59:42 +00001018 double endT = fSegment->t(fEnd);
caryclark@google.comb3f09212013-04-17 15:49:16 +00001019 double limitT = endT;
1020 int index;
1021 for (index = 0; index < testCount; ++index) {
commit-bot@chromium.org4431e772014-04-14 17:08:59 +00001022 if (!::between(startT, testTs[index], limitT)) {
caryclark@google.comb3f09212013-04-17 15:49:16 +00001023 testTs[index] = -1;
1024 }
caryclark@google.com07393ca2013-04-08 11:47:37 +00001025 }
caryclark@google.comb3f09212013-04-17 15:49:16 +00001026 testTs[testCount++] = startT;
1027 testTs[testCount++] = endT;
commit-bot@chromium.orgb76d3b62013-04-22 19:55:19 +00001028 SkTQSort<double>(testTs, &testTs[testCount - 1]);
caryclark@google.comb3f09212013-04-17 15:49:16 +00001029 double bestSide = 0;
1030 int testCases = (testCount << 1) - 1;
1031 index = 0;
1032 while (testTs[index] < 0) {
1033 ++index;
1034 }
1035 index <<= 1;
1036 for (; index < testCases; ++index) {
1037 int testIndex = index >> 1;
1038 double testT = testTs[testIndex];
1039 if (index & 1) {
1040 testT = (testT + testTs[testIndex + 1]) / 2;
1041 }
1042 // OPTIMIZE: could avoid call for t == startT, endT
caryclark@google.comcffbcc32013-06-04 17:59:42 +00001043 SkDPoint pt = dcubic_xy_at_t(pts, testT);
commit-bot@chromium.org4431e772014-04-14 17:08:59 +00001044 SkLineParameters tangentPart;
1045 tangentPart.cubicEndPoints(fCurvePart);
1046 double testSide = tangentPart.pointDistance(pt);
caryclark@google.comb3f09212013-04-17 15:49:16 +00001047 if (fabs(bestSide) < fabs(testSide)) {
1048 bestSide = testSide;
1049 }
1050 }
1051 fSide = -bestSide; // compare sign only
caryclark@google.com07393ca2013-04-08 11:47:37 +00001052 } break;
1053 default:
1054 SkASSERT(0);
1055 }
caryclark@google.com07393ca2013-04-08 11:47:37 +00001056}
caryclark@google.com570863f2013-09-16 15:55:01 +00001057
commit-bot@chromium.org4431e772014-04-14 17:08:59 +00001058bool SkOpAngle::small() const {
1059 int min = SkMin32(fStart, fEnd);
1060 int max = SkMax32(fStart, fEnd);
1061 for (int index = min; index < max; ++index) {
1062 const SkOpSpan& mSpan = fSegment->span(index);
1063 if (!mSpan.fSmall) {
1064 return false;
1065 }
1066 }
1067 return true;
caryclark@google.com570863f2013-09-16 15:55:01 +00001068}
commit-bot@chromium.org4431e772014-04-14 17:08:59 +00001069
1070bool SkOpAngle::tangentsDiverge(const SkOpAngle& rh, double s0xt0) const {
1071 if (s0xt0 == 0) {
1072 return false;
1073 }
1074 // if the ctrl tangents are not nearly parallel, use them
1075 // solve for opposite direction displacement scale factor == m
1076 // initial dir = v1.cross(v2) == v2.x * v1.y - v2.y * v1.x
1077 // displacement of q1[1] : dq1 = { -m * v1.y, m * v1.x } + q1[1]
1078 // straight angle when : v2.x * (dq1.y - q1[0].y) == v2.y * (dq1.x - q1[0].x)
1079 // v2.x * (m * v1.x + v1.y) == v2.y * (-m * v1.y + v1.x)
1080 // - m * (v2.x * v1.x + v2.y * v1.y) == v2.x * v1.y - v2.y * v1.x
1081 // m = (v2.y * v1.x - v2.x * v1.y) / (v2.x * v1.x + v2.y * v1.y)
1082 // m = v1.cross(v2) / v1.dot(v2)
1083 const SkDVector* sweep = fSweep;
1084 const SkDVector* tweep = rh.fSweep;
1085 double s0dt0 = sweep[0].dot(tweep[0]);
1086 if (!s0dt0) {
1087 return true;
1088 }
1089 SkASSERT(s0dt0 != 0);
1090 double m = s0xt0 / s0dt0;
1091 double sDist = sweep[0].length() * m;
1092 double tDist = tweep[0].length() * m;
1093 bool useS = fabs(sDist) < fabs(tDist);
1094 double mFactor = fabs(useS ? distEndRatio(sDist) : rh.distEndRatio(tDist));
1095 return mFactor < 5000; // empirically found limit
1096}
caryclarkdac1d172014-06-17 05:15:38 -07001097
1098SkOpAngleSet::SkOpAngleSet()
1099 : fAngles(NULL)
1100#if DEBUG_ANGLE
1101 , fCount(0)
1102#endif
1103{
1104}
1105
1106SkOpAngleSet::~SkOpAngleSet() {
1107 SkDELETE(fAngles);
1108}
1109
1110SkOpAngle& SkOpAngleSet::push_back() {
1111 if (!fAngles) {
1112 fAngles = SkNEW_ARGS(SkChunkAlloc, (2));
1113 }
1114 void* ptr = fAngles->allocThrow(sizeof(SkOpAngle));
1115 SkOpAngle* angle = (SkOpAngle*) ptr;
1116#if DEBUG_ANGLE
1117 angle->setID(++fCount);
1118#endif
1119 return *angle;
1120}
1121
1122void SkOpAngleSet::reset() {
1123 if (fAngles) {
1124 fAngles->reset();
1125 }
1126}