dandov | ecfff21 | 2014-08-04 10:02:00 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2014 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "SkPatchUtils.h" |
| 9 | |
dandov | b3c9d1c | 2014-08-12 08:34:29 -0700 | [diff] [blame] | 10 | #include "SkColorPriv.h" |
| 11 | #include "SkGeometry.h" |
| 12 | |
| 13 | /** |
| 14 | * Evaluator to sample the values of a cubic bezier using forward differences. |
| 15 | * Forward differences is a method for evaluating a nth degree polynomial at a uniform step by only |
| 16 | * adding precalculated values. |
| 17 | * For a linear example we have the function f(t) = m*t+b, then the value of that function at t+h |
| 18 | * would be f(t+h) = m*(t+h)+b. If we want to know the uniform step that we must add to the first |
| 19 | * evaluation f(t) then we need to substract f(t+h) - f(t) = m*t + m*h + b - m*t + b = mh. After |
| 20 | * obtaining this value (mh) we could just add this constant step to our first sampled point |
| 21 | * to compute the next one. |
| 22 | * |
| 23 | * For the cubic case the first difference gives as a result a quadratic polynomial to which we can |
| 24 | * apply again forward differences and get linear function to which we can apply again forward |
| 25 | * differences to get a constant difference. This is why we keep an array of size 4, the 0th |
| 26 | * position keeps the sampled value while the next ones keep the quadratic, linear and constant |
| 27 | * difference values. |
| 28 | */ |
| 29 | |
| 30 | class FwDCubicEvaluator { |
| 31 | |
| 32 | public: |
| 33 | FwDCubicEvaluator() |
| 34 | : fMax(0) |
| 35 | , fCurrent(0) |
| 36 | , fDivisions(0) { |
| 37 | memset(fPoints, 0, 4 * sizeof(SkPoint)); |
| 38 | memset(fPoints, 0, 4 * sizeof(SkPoint)); |
| 39 | memset(fPoints, 0, 4 * sizeof(SkPoint)); |
| 40 | } |
| 41 | |
| 42 | /** |
| 43 | * Receives the 4 control points of the cubic bezier. |
| 44 | */ |
| 45 | FwDCubicEvaluator(SkPoint a, SkPoint b, SkPoint c, SkPoint d) { |
| 46 | fPoints[0] = a; |
| 47 | fPoints[1] = b; |
| 48 | fPoints[2] = c; |
| 49 | fPoints[3] = d; |
| 50 | |
| 51 | SkScalar cx[4], cy[4]; |
| 52 | SkGetCubicCoeff(fPoints, cx, cy); |
| 53 | fCoefs[0].set(cx[0], cy[0]); |
| 54 | fCoefs[1].set(cx[1], cy[1]); |
| 55 | fCoefs[2].set(cx[2], cy[2]); |
| 56 | fCoefs[3].set(cx[3], cy[3]); |
| 57 | |
| 58 | this->restart(1); |
| 59 | } |
| 60 | |
| 61 | explicit FwDCubicEvaluator(const SkPoint points[4]) { |
| 62 | memcpy(fPoints, points, 4 * sizeof(SkPoint)); |
| 63 | |
| 64 | SkScalar cx[4], cy[4]; |
| 65 | SkGetCubicCoeff(fPoints, cx, cy); |
| 66 | fCoefs[0].set(cx[0], cy[0]); |
| 67 | fCoefs[1].set(cx[1], cy[1]); |
| 68 | fCoefs[2].set(cx[2], cy[2]); |
| 69 | fCoefs[3].set(cx[3], cy[3]); |
| 70 | |
| 71 | this->restart(1); |
| 72 | } |
| 73 | |
| 74 | /** |
| 75 | * Restarts the forward differences evaluator to the first value of t = 0. |
| 76 | */ |
| 77 | void restart(int divisions) { |
| 78 | fDivisions = divisions; |
| 79 | SkScalar h = 1.f / fDivisions; |
| 80 | fCurrent = 0; |
| 81 | fMax = fDivisions + 1; |
| 82 | fFwDiff[0] = fCoefs[3]; |
| 83 | SkScalar h2 = h * h; |
| 84 | SkScalar h3 = h2 * h; |
| 85 | |
| 86 | fFwDiff[3].set(6.f * fCoefs[0].x() * h3, 6.f * fCoefs[0].y() * h3); //6ah^3 |
| 87 | fFwDiff[2].set(fFwDiff[3].x() + 2.f * fCoefs[1].x() * h2, //6ah^3 + 2bh^2 |
| 88 | fFwDiff[3].y() + 2.f * fCoefs[1].y() * h2); |
| 89 | fFwDiff[1].set(fCoefs[0].x() * h3 + fCoefs[1].x() * h2 + fCoefs[2].x() * h,//ah^3 + bh^2 +ch |
| 90 | fCoefs[0].y() * h3 + fCoefs[1].y() * h2 + fCoefs[2].y() * h); |
| 91 | } |
| 92 | |
| 93 | /** |
| 94 | * Check if the evaluator is still within the range of 0<=t<=1 |
| 95 | */ |
| 96 | bool done() const { |
| 97 | return fCurrent > fMax; |
| 98 | } |
| 99 | |
| 100 | /** |
| 101 | * Call next to obtain the SkPoint sampled and move to the next one. |
| 102 | */ |
| 103 | SkPoint next() { |
| 104 | SkPoint point = fFwDiff[0]; |
| 105 | fFwDiff[0] += fFwDiff[1]; |
| 106 | fFwDiff[1] += fFwDiff[2]; |
| 107 | fFwDiff[2] += fFwDiff[3]; |
| 108 | fCurrent++; |
| 109 | return point; |
| 110 | } |
| 111 | |
| 112 | const SkPoint* getCtrlPoints() const { |
| 113 | return fPoints; |
| 114 | } |
| 115 | |
| 116 | private: |
| 117 | int fMax, fCurrent, fDivisions; |
| 118 | SkPoint fFwDiff[4], fCoefs[4], fPoints[4]; |
| 119 | }; |
| 120 | |
| 121 | //////////////////////////////////////////////////////////////////////////////// |
| 122 | |
dandov | ecfff21 | 2014-08-04 10:02:00 -0700 | [diff] [blame] | 123 | // size in pixels of each partition per axis, adjust this knob |
dandov | b3c9d1c | 2014-08-12 08:34:29 -0700 | [diff] [blame] | 124 | static const int kPartitionSize = 10; |
dandov | ecfff21 | 2014-08-04 10:02:00 -0700 | [diff] [blame] | 125 | |
| 126 | /** |
| 127 | * Calculate the approximate arc length given a bezier curve's control points. |
| 128 | */ |
| 129 | static SkScalar approx_arc_length(SkPoint* points, int count) { |
| 130 | if (count < 2) { |
| 131 | return 0; |
| 132 | } |
| 133 | SkScalar arcLength = 0; |
| 134 | for (int i = 0; i < count - 1; i++) { |
| 135 | arcLength += SkPoint::Distance(points[i], points[i + 1]); |
| 136 | } |
| 137 | return arcLength; |
| 138 | } |
| 139 | |
dandov | b3c9d1c | 2014-08-12 08:34:29 -0700 | [diff] [blame] | 140 | static SkScalar bilerp(SkScalar tx, SkScalar ty, SkScalar c00, SkScalar c10, SkScalar c01, |
| 141 | SkScalar c11) { |
| 142 | SkScalar a = c00 * (1.f - tx) + c10 * tx; |
| 143 | SkScalar b = c01 * (1.f - tx) + c11 * tx; |
| 144 | return a * (1.f - ty) + b * ty; |
| 145 | } |
| 146 | |
| 147 | SkISize SkPatchUtils::GetLevelOfDetail(const SkPoint cubics[12], const SkMatrix* matrix) { |
dandov | ecfff21 | 2014-08-04 10:02:00 -0700 | [diff] [blame] | 148 | |
| 149 | // Approximate length of each cubic. |
dandov | b3c9d1c | 2014-08-12 08:34:29 -0700 | [diff] [blame] | 150 | SkPoint pts[kNumPtsCubic]; |
| 151 | SkPatchUtils::getTopCubic(cubics, pts); |
| 152 | matrix->mapPoints(pts, kNumPtsCubic); |
| 153 | SkScalar topLength = approx_arc_length(pts, kNumPtsCubic); |
dandov | ecfff21 | 2014-08-04 10:02:00 -0700 | [diff] [blame] | 154 | |
dandov | b3c9d1c | 2014-08-12 08:34:29 -0700 | [diff] [blame] | 155 | SkPatchUtils::getBottomCubic(cubics, pts); |
| 156 | matrix->mapPoints(pts, kNumPtsCubic); |
| 157 | SkScalar bottomLength = approx_arc_length(pts, kNumPtsCubic); |
dandov | ecfff21 | 2014-08-04 10:02:00 -0700 | [diff] [blame] | 158 | |
dandov | b3c9d1c | 2014-08-12 08:34:29 -0700 | [diff] [blame] | 159 | SkPatchUtils::getLeftCubic(cubics, pts); |
| 160 | matrix->mapPoints(pts, kNumPtsCubic); |
| 161 | SkScalar leftLength = approx_arc_length(pts, kNumPtsCubic); |
dandov | ecfff21 | 2014-08-04 10:02:00 -0700 | [diff] [blame] | 162 | |
dandov | b3c9d1c | 2014-08-12 08:34:29 -0700 | [diff] [blame] | 163 | SkPatchUtils::getRightCubic(cubics, pts); |
| 164 | matrix->mapPoints(pts, kNumPtsCubic); |
| 165 | SkScalar rightLength = approx_arc_length(pts, kNumPtsCubic); |
dandov | ecfff21 | 2014-08-04 10:02:00 -0700 | [diff] [blame] | 166 | |
| 167 | // Level of detail per axis, based on the larger side between top and bottom or left and right |
| 168 | int lodX = static_cast<int>(SkMaxScalar(topLength, bottomLength) / kPartitionSize); |
| 169 | int lodY = static_cast<int>(SkMaxScalar(leftLength, rightLength) / kPartitionSize); |
| 170 | |
dandov | b3c9d1c | 2014-08-12 08:34:29 -0700 | [diff] [blame] | 171 | return SkISize::Make(SkMax32(8, lodX), SkMax32(8, lodY)); |
| 172 | } |
| 173 | |
| 174 | void SkPatchUtils::getTopCubic(const SkPoint cubics[12], SkPoint points[4]) { |
| 175 | points[0] = cubics[kTopP0_CubicCtrlPts]; |
| 176 | points[1] = cubics[kTopP1_CubicCtrlPts]; |
| 177 | points[2] = cubics[kTopP2_CubicCtrlPts]; |
| 178 | points[3] = cubics[kTopP3_CubicCtrlPts]; |
| 179 | } |
| 180 | |
| 181 | void SkPatchUtils::getBottomCubic(const SkPoint cubics[12], SkPoint points[4]) { |
| 182 | points[0] = cubics[kBottomP0_CubicCtrlPts]; |
| 183 | points[1] = cubics[kBottomP1_CubicCtrlPts]; |
| 184 | points[2] = cubics[kBottomP2_CubicCtrlPts]; |
| 185 | points[3] = cubics[kBottomP3_CubicCtrlPts]; |
| 186 | } |
| 187 | |
| 188 | void SkPatchUtils::getLeftCubic(const SkPoint cubics[12], SkPoint points[4]) { |
| 189 | points[0] = cubics[kLeftP0_CubicCtrlPts]; |
| 190 | points[1] = cubics[kLeftP1_CubicCtrlPts]; |
| 191 | points[2] = cubics[kLeftP2_CubicCtrlPts]; |
| 192 | points[3] = cubics[kLeftP3_CubicCtrlPts]; |
| 193 | } |
| 194 | |
| 195 | void SkPatchUtils::getRightCubic(const SkPoint cubics[12], SkPoint points[4]) { |
| 196 | points[0] = cubics[kRightP0_CubicCtrlPts]; |
| 197 | points[1] = cubics[kRightP1_CubicCtrlPts]; |
| 198 | points[2] = cubics[kRightP2_CubicCtrlPts]; |
| 199 | points[3] = cubics[kRightP3_CubicCtrlPts]; |
| 200 | } |
| 201 | |
| 202 | bool SkPatchUtils::getVertexData(SkPatchUtils::VertexData* data, const SkPoint cubics[12], |
| 203 | const SkColor colors[4], const SkPoint texCoords[4], int lodX, int lodY) { |
| 204 | if (lodX < 1 || lodY < 1 || NULL == cubics || NULL == data) { |
| 205 | return false; |
| 206 | } |
dandov | 45f7842 | 2014-08-15 06:06:47 -0700 | [diff] [blame] | 207 | |
| 208 | // check for overflow in multiplication |
| 209 | const int64_t lodX64 = (lodX + 1), |
| 210 | lodY64 = (lodY + 1), |
| 211 | mult64 = lodX64 * lodY64; |
| 212 | if (mult64 > SK_MaxS32) { |
| 213 | return false; |
| 214 | } |
| 215 | data->fVertexCount = SkToS32(mult64); |
| 216 | |
| 217 | // it is recommended to generate draw calls of no more than 65536 indices, so we never generate |
| 218 | // more than 60000 indices. To accomplish that we resize the LOD and vertex count |
| 219 | if (data->fVertexCount > 10000 || lodX > 200 || lodY > 200) { |
| 220 | SkScalar weightX = static_cast<SkScalar>(lodX) / (lodX + lodY); |
| 221 | SkScalar weightY = static_cast<SkScalar>(lodY) / (lodX + lodY); |
| 222 | |
| 223 | // 200 comes from the 100 * 2 which is the max value of vertices because of the limit of |
| 224 | // 60000 indices ( sqrt(60000 / 6) that comes from data->fIndexCount = lodX * lodY * 6) |
| 225 | lodX = static_cast<int>(weightX * 200); |
| 226 | lodY = static_cast<int>(weightY * 200); |
| 227 | data->fVertexCount = (lodX + 1) * (lodY + 1); |
| 228 | } |
dandov | b3c9d1c | 2014-08-12 08:34:29 -0700 | [diff] [blame] | 229 | data->fIndexCount = lodX * lodY * 6; |
| 230 | |
| 231 | data->fPoints = SkNEW_ARRAY(SkPoint, data->fVertexCount); |
| 232 | data->fIndices = SkNEW_ARRAY(uint16_t, data->fIndexCount); |
| 233 | |
| 234 | // if colors is not null then create array for colors |
| 235 | SkPMColor colorsPM[kNumCorners]; |
bsalomon | 49f085d | 2014-09-05 13:34:00 -0700 | [diff] [blame] | 236 | if (colors) { |
dandov | b3c9d1c | 2014-08-12 08:34:29 -0700 | [diff] [blame] | 237 | // premultiply colors to avoid color bleeding. |
| 238 | for (int i = 0; i < kNumCorners; i++) { |
| 239 | colorsPM[i] = SkPreMultiplyColor(colors[i]); |
| 240 | } |
| 241 | data->fColors = SkNEW_ARRAY(uint32_t, data->fVertexCount); |
| 242 | } |
| 243 | |
| 244 | // if texture coordinates are not null then create array for them |
bsalomon | 49f085d | 2014-09-05 13:34:00 -0700 | [diff] [blame] | 245 | if (texCoords) { |
dandov | b3c9d1c | 2014-08-12 08:34:29 -0700 | [diff] [blame] | 246 | data->fTexCoords = SkNEW_ARRAY(SkPoint, data->fVertexCount); |
| 247 | } |
| 248 | |
| 249 | SkPoint pts[kNumPtsCubic]; |
| 250 | SkPatchUtils::getBottomCubic(cubics, pts); |
| 251 | FwDCubicEvaluator fBottom(pts); |
| 252 | SkPatchUtils::getTopCubic(cubics, pts); |
| 253 | FwDCubicEvaluator fTop(pts); |
| 254 | SkPatchUtils::getLeftCubic(cubics, pts); |
| 255 | FwDCubicEvaluator fLeft(pts); |
| 256 | SkPatchUtils::getRightCubic(cubics, pts); |
| 257 | FwDCubicEvaluator fRight(pts); |
| 258 | |
| 259 | fBottom.restart(lodX); |
| 260 | fTop.restart(lodX); |
| 261 | |
| 262 | SkScalar u = 0.0f; |
| 263 | int stride = lodY + 1; |
| 264 | for (int x = 0; x <= lodX; x++) { |
| 265 | SkPoint bottom = fBottom.next(), top = fTop.next(); |
| 266 | fLeft.restart(lodY); |
| 267 | fRight.restart(lodY); |
| 268 | SkScalar v = 0.f; |
| 269 | for (int y = 0; y <= lodY; y++) { |
| 270 | int dataIndex = x * (lodY + 1) + y; |
| 271 | |
| 272 | SkPoint left = fLeft.next(), right = fRight.next(); |
| 273 | |
| 274 | SkPoint s0 = SkPoint::Make((1.0f - v) * top.x() + v * bottom.x(), |
| 275 | (1.0f - v) * top.y() + v * bottom.y()); |
| 276 | SkPoint s1 = SkPoint::Make((1.0f - u) * left.x() + u * right.x(), |
| 277 | (1.0f - u) * left.y() + u * right.y()); |
| 278 | SkPoint s2 = SkPoint::Make( |
| 279 | (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].x() |
| 280 | + u * fTop.getCtrlPoints()[3].x()) |
| 281 | + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].x() |
| 282 | + u * fBottom.getCtrlPoints()[3].x()), |
| 283 | (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].y() |
| 284 | + u * fTop.getCtrlPoints()[3].y()) |
| 285 | + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].y() |
| 286 | + u * fBottom.getCtrlPoints()[3].y())); |
| 287 | data->fPoints[dataIndex] = s0 + s1 - s2; |
| 288 | |
bsalomon | 49f085d | 2014-09-05 13:34:00 -0700 | [diff] [blame] | 289 | if (colors) { |
dandov | b3c9d1c | 2014-08-12 08:34:29 -0700 | [diff] [blame] | 290 | uint8_t a = uint8_t(bilerp(u, v, |
| 291 | SkScalar(SkColorGetA(colorsPM[kTopLeft_Corner])), |
| 292 | SkScalar(SkColorGetA(colorsPM[kTopRight_Corner])), |
| 293 | SkScalar(SkColorGetA(colorsPM[kBottomLeft_Corner])), |
| 294 | SkScalar(SkColorGetA(colorsPM[kBottomRight_Corner])))); |
| 295 | uint8_t r = uint8_t(bilerp(u, v, |
| 296 | SkScalar(SkColorGetR(colorsPM[kTopLeft_Corner])), |
| 297 | SkScalar(SkColorGetR(colorsPM[kTopRight_Corner])), |
| 298 | SkScalar(SkColorGetR(colorsPM[kBottomLeft_Corner])), |
| 299 | SkScalar(SkColorGetR(colorsPM[kBottomRight_Corner])))); |
| 300 | uint8_t g = uint8_t(bilerp(u, v, |
| 301 | SkScalar(SkColorGetG(colorsPM[kTopLeft_Corner])), |
| 302 | SkScalar(SkColorGetG(colorsPM[kTopRight_Corner])), |
| 303 | SkScalar(SkColorGetG(colorsPM[kBottomLeft_Corner])), |
| 304 | SkScalar(SkColorGetG(colorsPM[kBottomRight_Corner])))); |
| 305 | uint8_t b = uint8_t(bilerp(u, v, |
| 306 | SkScalar(SkColorGetB(colorsPM[kTopLeft_Corner])), |
| 307 | SkScalar(SkColorGetB(colorsPM[kTopRight_Corner])), |
| 308 | SkScalar(SkColorGetB(colorsPM[kBottomLeft_Corner])), |
| 309 | SkScalar(SkColorGetB(colorsPM[kBottomRight_Corner])))); |
| 310 | data->fColors[dataIndex] = SkPackARGB32(a,r,g,b); |
| 311 | } |
| 312 | |
bsalomon | 49f085d | 2014-09-05 13:34:00 -0700 | [diff] [blame] | 313 | if (texCoords) { |
dandov | b3c9d1c | 2014-08-12 08:34:29 -0700 | [diff] [blame] | 314 | data->fTexCoords[dataIndex] = SkPoint::Make( |
| 315 | bilerp(u, v, texCoords[kTopLeft_Corner].x(), |
| 316 | texCoords[kTopRight_Corner].x(), |
| 317 | texCoords[kBottomLeft_Corner].x(), |
| 318 | texCoords[kBottomRight_Corner].x()), |
| 319 | bilerp(u, v, texCoords[kTopLeft_Corner].y(), |
| 320 | texCoords[kTopRight_Corner].y(), |
| 321 | texCoords[kBottomLeft_Corner].y(), |
| 322 | texCoords[kBottomRight_Corner].y())); |
| 323 | |
| 324 | } |
| 325 | |
| 326 | if(x < lodX && y < lodY) { |
| 327 | int i = 6 * (x * lodY + y); |
| 328 | data->fIndices[i] = x * stride + y; |
| 329 | data->fIndices[i + 1] = x * stride + 1 + y; |
| 330 | data->fIndices[i + 2] = (x + 1) * stride + 1 + y; |
| 331 | data->fIndices[i + 3] = data->fIndices[i]; |
| 332 | data->fIndices[i + 4] = data->fIndices[i + 2]; |
| 333 | data->fIndices[i + 5] = (x + 1) * stride + y; |
| 334 | } |
| 335 | v = SkScalarClampMax(v + 1.f / lodY, 1); |
| 336 | } |
| 337 | u = SkScalarClampMax(u + 1.f / lodX, 1); |
| 338 | } |
| 339 | return true; |
| 340 | |
dandov | ecfff21 | 2014-08-04 10:02:00 -0700 | [diff] [blame] | 341 | } |