blob: 3d305017e233f143bc9339c005f619c97a7ee51e [file] [log] [blame]
krajcevskid5e46c72014-07-28 14:14:16 -07001/*
2 * Copyright 2014 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#ifndef SkTextureCompressor_Blitter_DEFINED
9#define SkTextureCompressor_Blitter_DEFINED
10
11#include "SkTypes.h"
12#include "SkBlitter.h"
13
14namespace SkTextureCompressor {
15
krajcevskia10555a2014-08-11 13:34:22 -070016// Ostensibly, SkBlitter::BlitRect is supposed to set a rect of pixels to full
17// alpha. This becomes problematic when using compressed texture blitters, since
18// the rect rarely falls along block boundaries. The proper way to handle this is
19// to update the compressed encoding of a block by resetting the proper parameters
20// (and even recompressing the block) where a rect falls inbetween block boundaries.
21// PEDANTIC_BLIT_RECT attempts to do this by requiring the struct passed to
22// SkTCompressedAlphaBlitter to implement an UpdateBlock function call.
23//
24// However, the way that BlitRect gets used almost exclusively is to bracket inverse
25// fills for paths. In other words, the top few rows and bottom few rows of a path
26// that's getting inverse filled are called using blitRect. The rest are called using
27// the standard blitAntiH. As a result, we can just call blitAntiH with a faux RLE
28// of full alpha values, and then check in our flush() call that we don't run off the
29// edge of the buffer. This is why we do not need this flag to be turned on.
krajcevskid211c542014-08-12 12:48:18 -070030//
31// NOTE: This code is unfinished, but is inteded as a starting point if an when
32// bugs are introduced from the existing code.
33#define PEDANTIC_BLIT_RECT 0
krajcevskia10555a2014-08-11 13:34:22 -070034
krajcevskid5e46c72014-07-28 14:14:16 -070035// This class implements a blitter that blits directly into a buffer that will
36// be used as an compressed alpha texture. We compute this buffer by
37// buffering scan lines and then outputting them all at once. The number of
38// scan lines buffered is controlled by kBlockSize
krajcevski45a0bf52014-08-07 11:10:22 -070039//
40// The CompressorType is a struct with a bunch of static methods that provides
41// the specialized compression functionality of the blitter. A complete CompressorType
42// will implement the following static functions;
43//
44// struct CompressorType {
45// // The function used to compress an A8 block. The layout of the
46// // block is also expected to be in column-major order.
47// static void CompressA8Vertical(uint8_t* dst, const uint8_t block[]);
48//
49// // The function used to compress an A8 block. The layout of the
50// // block is also expected to be in row-major order.
krajcevskia10555a2014-08-11 13:34:22 -070051// static void CompressA8Horizontal(uint8_t* dst, const uint8_t* src, int srcRowBytes);
krajcevski45a0bf52014-08-07 11:10:22 -070052//
krajcevskia10555a2014-08-11 13:34:22 -070053#if PEDANTIC_BLIT_RECT
krajcevski45a0bf52014-08-07 11:10:22 -070054// // The function used to update an already compressed block. This will
krajcevskia10555a2014-08-11 13:34:22 -070055// // most likely be implementation dependent. The mask variable will have
56// // 0xFF in positions where the block should be updated and 0 in positions
57// // where it shouldn't. src contains an uncompressed buffer of pixels.
58// static void UpdateBlock(uint8_t* dst, const uint8_t* src, int srcRowBytes,
59// const uint8_t* mask);
60#endif
krajcevski45a0bf52014-08-07 11:10:22 -070061// };
krajcevski45a0bf52014-08-07 11:10:22 -070062template<int BlockDim, int EncodedBlockSize, typename CompressorType>
krajcevskid5e46c72014-07-28 14:14:16 -070063class SkTCompressedAlphaBlitter : public SkBlitter {
64public:
65 SkTCompressedAlphaBlitter(int width, int height, void *compressedBuffer)
66 // 0x7FFE is one minus the largest positive 16-bit int. We use it for
67 // debugging to make sure that we're properly setting the nextX distance
68 // in flushRuns().
krajcevskidff491b2014-08-08 08:41:21 -070069#ifdef SK_DEBUG
krajcevskia10555a2014-08-11 13:34:22 -070070 : fCalledOnceWithNonzeroY(false)
71 , fBlitMaskCalled(false),
krajcevskidff491b2014-08-08 08:41:21 -070072#else
73 :
74#endif
75 kLongestRun(0x7FFE), kZeroAlpha(0)
krajcevskid5e46c72014-07-28 14:14:16 -070076 , fNextRun(0)
77 , fWidth(width)
78 , fHeight(height)
79 , fBuffer(compressedBuffer)
80 {
81 SkASSERT((width % BlockDim) == 0);
82 SkASSERT((height % BlockDim) == 0);
83 }
84
85 virtual ~SkTCompressedAlphaBlitter() { this->flushRuns(); }
86
87 // Blit a horizontal run of one or more pixels.
88 virtual void blitH(int x, int y, int width) SK_OVERRIDE {
89 // This function is intended to be called from any standard RGB
90 // buffer, so we should never encounter it. However, if some code
91 // path does end up here, then this needs to be investigated.
92 SkFAIL("Not implemented!");
93 }
94
95 // Blit a horizontal run of antialiased pixels; runs[] is a *sparse*
96 // zero-terminated run-length encoding of spans of constant alpha values.
97 virtual void blitAntiH(int x, int y,
98 const SkAlpha antialias[],
99 const int16_t runs[]) SK_OVERRIDE {
krajcevskia10555a2014-08-11 13:34:22 -0700100 SkASSERT(0 == x);
101
krajcevskid5e46c72014-07-28 14:14:16 -0700102 // Make sure that the new row to blit is either the first
103 // row that we're blitting, or it's exactly the next scan row
104 // since the last row that we blit. This is to ensure that when
105 // we go to flush the runs, that they are all the same four
106 // runs.
107 if (fNextRun > 0 &&
108 ((x != fBufferedRuns[fNextRun-1].fX) ||
109 (y-1 != fBufferedRuns[fNextRun-1].fY))) {
110 this->flushRuns();
111 }
112
113 // Align the rows to a block boundary. If we receive rows that
114 // are not on a block boundary, then fill in the preceding runs
115 // with zeros. We do this by producing a single RLE that says
116 // that we have 0x7FFE pixels of zero (0x7FFE = 32766).
117 const int row = BlockDim * (y / BlockDim);
118 while ((row + fNextRun) < y) {
119 fBufferedRuns[fNextRun].fAlphas = &kZeroAlpha;
120 fBufferedRuns[fNextRun].fRuns = &kLongestRun;
121 fBufferedRuns[fNextRun].fX = 0;
122 fBufferedRuns[fNextRun].fY = row + fNextRun;
123 ++fNextRun;
124 }
125
126 // Make sure that our assumptions aren't violated...
127 SkASSERT(fNextRun == (y % BlockDim));
128 SkASSERT(fNextRun == 0 || fBufferedRuns[fNextRun - 1].fY < y);
129
130 // Set the values of the next run
131 fBufferedRuns[fNextRun].fAlphas = antialias;
132 fBufferedRuns[fNextRun].fRuns = runs;
133 fBufferedRuns[fNextRun].fX = x;
134 fBufferedRuns[fNextRun].fY = y;
135
136 // If we've output a block of scanlines in a row that don't violate our
137 // assumptions, then it's time to flush them...
138 if (BlockDim == ++fNextRun) {
139 this->flushRuns();
140 }
141 }
142
143 // Blit a vertical run of pixels with a constant alpha value.
144 virtual void blitV(int x, int y, int height, SkAlpha alpha) SK_OVERRIDE {
145 // This function is currently not implemented. It is not explicitly
146 // required by the contract, but if at some time a code path runs into
147 // this function (which is entirely possible), it needs to be implemented.
148 //
149 // TODO (krajcevski):
150 // This function will be most easily implemented in one of two ways:
151 // 1. Buffer each vertical column value and then construct a list
152 // of alpha values and output all of the blocks at once. This only
153 // requires a write to the compressed buffer
154 // 2. Replace the indices of each block with the proper indices based
155 // on the alpha value. This requires a read and write of the compressed
156 // buffer, but much less overhead.
157 SkFAIL("Not implemented!");
158 }
159
krajcevskia10555a2014-08-11 13:34:22 -0700160 // Blit a solid rectangle one or more pixels wide. It's assumed that blitRect
161 // is called as a way to bracket blitAntiH where above and below the path the
162 // called path just needs a solid rectangle to fill in the mask.
163#ifdef SK_DEBUG
164 bool fCalledOnceWithNonzeroY;
165#endif
krajcevskid5e46c72014-07-28 14:14:16 -0700166 virtual void blitRect(int x, int y, int width, int height) SK_OVERRIDE {
krajcevskia10555a2014-08-11 13:34:22 -0700167
168 // Assumptions:
169 SkASSERT(0 == x);
170 SkASSERT(width <= fWidth);
171
172 // Make sure that we're only ever bracketing calls to blitAntiH.
173 SkASSERT((0 == y) || (!fCalledOnceWithNonzeroY && (fCalledOnceWithNonzeroY = true)));
174
175#if !(PEDANTIC_BLIT_RECT)
176 for (int i = 0; i < height; ++i) {
177 const SkAlpha kFullAlpha = 0xFF;
178 this->blitAntiH(x, y+i, &kFullAlpha, &kLongestRun);
179 }
180#else
181 const int startBlockX = (x / BlockDim) * BlockDim;
182 const int startBlockY = (y / BlockDim) * BlockDim;
183
184 const int endBlockX = ((x + width) / BlockDim) * BlockDim;
185 const int endBlockY = ((y + height) / BlockDim) * BlockDim;
186
187 // If start and end are the same, then we only need to update a single block...
188 if (startBlockY == endBlockY && startBlockX == endBlockX) {
189 uint8_t mask[BlockDim*BlockDim];
190 memset(mask, 0, sizeof(mask));
191
192 const int xoff = x - startBlockX;
193 SkASSERT((xoff + width) <= BlockDim);
194
195 const int yoff = y - startBlockY;
196 SkASSERT((yoff + height) <= BlockDim);
197
198 for (int j = 0; j < height; ++j) {
199 memset(mask + (j + yoff)*BlockDim + xoff, 0xFF, width);
200 }
201
202 uint8_t* dst = this->getBlock(startBlockX, startBlockY);
203 CompressorType::UpdateBlock(dst, mask, BlockDim, mask);
204
205 // If start and end are the same in the y dimension, then we can freely update an
206 // entire row of blocks...
207 } else if (startBlockY == endBlockY) {
208
209 this->updateBlockRow(x, y, width, height, startBlockY, startBlockX, endBlockX);
210
211 // Similarly, if the start and end are in the same column, then we can just update
212 // an entire column of blocks...
213 } else if (startBlockX == endBlockX) {
214
215 this->updateBlockCol(x, y, width, height, startBlockX, startBlockY, endBlockY);
216
217 // Otherwise, the rect spans a non-trivial region of blocks, and we have to construct
218 // a kind of 9-patch to update each of the pieces of the rect. The top and bottom
219 // rows are updated using updateBlockRow, and the left and right columns are updated
220 // using updateBlockColumn. Anything in the middle is simply memset to an opaque block
221 // encoding.
222 } else {
223
224 const int innerStartBlockX = startBlockX + BlockDim;
225 const int innerStartBlockY = startBlockY + BlockDim;
226
227 // Blit top row
228 const int topRowHeight = innerStartBlockY - y;
229 this->updateBlockRow(x, y, width, topRowHeight, startBlockY,
230 startBlockX, endBlockX);
231
232 // Advance y
233 y += topRowHeight;
234 height -= topRowHeight;
235
236 // Blit middle
237 if (endBlockY > innerStartBlockY) {
238
239 // Update left row
240 this->updateBlockCol(x, y, innerStartBlockX - x, endBlockY, startBlockY,
241 startBlockX, innerStartBlockX);
242
243 // Update the middle with an opaque encoding...
244 uint8_t mask[BlockDim*BlockDim];
245 memset(mask, 0xFF, sizeof(mask));
246
247 uint8_t opaqueEncoding[EncodedBlockSize];
248 CompressorType::CompressA8Horizontal(opaqueEncoding, mask, BlockDim);
249
250 for (int j = innerStartBlockY; j < endBlockY; j += BlockDim) {
251 uint8_t* opaqueDst = this->getBlock(innerStartBlockX, j);
252 for (int i = innerStartBlockX; i < endBlockX; i += BlockDim) {
253 memcpy(opaqueDst, opaqueEncoding, EncodedBlockSize);
254 opaqueDst += EncodedBlockSize;
255 }
256 }
257
258 // If we need to update the right column, do that too
259 if (x + width > endBlockX) {
260 this->updateBlockCol(endBlockX, y, x + width - endBlockX, endBlockY,
261 endBlockX, innerStartBlockY, endBlockY);
262 }
263
264 // Advance y
265 height = y + height - endBlockY;
266 y = endBlockY;
267 }
268
269 // If we need to update the last row, then do that, too.
270 if (height > 0) {
271 this->updateBlockRow(x, y, width, height, endBlockY,
272 startBlockX, endBlockX);
273 }
274 }
275#endif
krajcevskid5e46c72014-07-28 14:14:16 -0700276 }
277
278 // Blit a rectangle with one alpha-blended column on the left,
279 // width (zero or more) opaque pixels, and one alpha-blended column
280 // on the right. The result will always be at least two pixels wide.
281 virtual void blitAntiRect(int x, int y, int width, int height,
282 SkAlpha leftAlpha, SkAlpha rightAlpha) SK_OVERRIDE {
283 // This function is currently not implemented. It is not explicitly
284 // required by the contract, but if at some time a code path runs into
285 // this function (which is entirely possible), it needs to be implemented.
286 //
287 // TODO (krajcevski):
288 // This function will be most easily implemented as follows:
289 // 1. If width/height are smaller than a block, then update the
290 // indices of the affected blocks.
291 // 2. If width/height are larger than a block, then construct a 9-patch
292 // of block encodings that represent the rectangle, and write them
293 // to the compressed buffer as necessary. Whether or not the blocks
294 // are overwritten by zeros or just their indices are updated is up
295 // to debate.
296 SkFAIL("Not implemented!");
297 }
298
krajcevskidff491b2014-08-08 08:41:21 -0700299 // Blit a pattern of pixels defined by a rectangle-clipped mask; We make an
300 // assumption here that if this function gets called, then it will replace all
301 // of the compressed texture blocks that it touches. Hence, two separate calls
302 // to blitMask that have clips next to one another will cause artifacts. Most
303 // of the time, however, this function gets called because constructing the mask
304 // was faster than constructing the RLE for blitAntiH, and this function will
305 // only be called once.
306#ifdef SK_DEBUG
307 bool fBlitMaskCalled;
308#endif
309 virtual void blitMask(const SkMask& mask, const SkIRect& clip) SK_OVERRIDE {
310
311 // Assumptions:
312 SkASSERT(!fBlitMaskCalled && (fBlitMaskCalled = true));
313 SkASSERT(SkMask::kA8_Format == mask.fFormat);
314 SkASSERT(mask.fBounds.contains(clip));
315
316 // Start from largest block boundary less than the clip boundaries.
317 const int startI = BlockDim * (clip.left() / BlockDim);
318 const int startJ = BlockDim * (clip.top() / BlockDim);
319
320 for (int j = startJ; j < clip.bottom(); j += BlockDim) {
321
322 // Get the destination for this block row
323 uint8_t* dst = this->getBlock(startI, j);
324 for (int i = startI; i < clip.right(); i += BlockDim) {
325
326 // At this point, the block should intersect the clip.
327 SkASSERT(SkIRect::IntersectsNoEmptyCheck(
328 SkIRect::MakeXYWH(i, j, BlockDim, BlockDim), clip));
329
330 // Do we need to pad it?
331 if (i < clip.left() || j < clip.top() ||
332 i + BlockDim > clip.right() || j + BlockDim > clip.bottom()) {
333
334 uint8_t block[BlockDim*BlockDim];
335 memset(block, 0, sizeof(block));
336
337 const int startX = SkMax32(i, clip.left());
338 const int startY = SkMax32(j, clip.top());
339
340 const int endX = SkMin32(i + BlockDim, clip.right());
341 const int endY = SkMin32(j + BlockDim, clip.bottom());
342
343 for (int y = startY; y < endY; ++y) {
344 const int col = startX - i;
345 const int row = y - j;
346 const int valsWide = endX - startX;
347 SkASSERT(valsWide <= BlockDim);
348 SkASSERT(0 <= col && col < BlockDim);
349 SkASSERT(0 <= row && row < BlockDim);
350 memcpy(block + row*BlockDim + col,
351 mask.getAddr8(startX, j + row), valsWide);
352 }
353
354 CompressorType::CompressA8Horizontal(dst, block, BlockDim);
355 } else {
356 // Otherwise, just compress it.
357 uint8_t*const src = mask.getAddr8(i, j);
358 const uint32_t rb = mask.fRowBytes;
359 CompressorType::CompressA8Horizontal(dst, src, rb);
360 }
361
362 dst += EncodedBlockSize;
363 }
364 }
krajcevskid5e46c72014-07-28 14:14:16 -0700365 }
366
367 // If the blitter just sets a single value for each pixel, return the
368 // bitmap it draws into, and assign value. If not, return NULL and ignore
369 // the value parameter.
370 virtual const SkBitmap* justAnOpaqueColor(uint32_t* value) SK_OVERRIDE {
371 return NULL;
372 }
373
374 /**
375 * Compressed texture blitters only really work correctly if they get
376 * BlockDim rows at a time. That being said, this blitter tries it's best
377 * to preserve semantics if blitAntiH doesn't get called in too many
378 * weird ways...
379 */
380 virtual int requestRowsPreserved() const { return BlockDim; }
381
382private:
383 static const int kPixelsPerBlock = BlockDim * BlockDim;
384
385 // The longest possible run of pixels that this blitter will receive.
386 // This is initialized in the constructor to 0x7FFE, which is one less
387 // than the largest positive 16-bit integer. We make sure that it's one
388 // less for debugging purposes. We also don't make this variable static
389 // in order to make sure that we can construct a valid pointer to it.
390 const int16_t kLongestRun;
391
392 // Usually used in conjunction with kLongestRun. This is initialized to
393 // zero.
394 const SkAlpha kZeroAlpha;
395
396 // This is the information that we buffer whenever we're asked to blit
397 // a row with this blitter.
398 struct BufferedRun {
399 const SkAlpha* fAlphas;
400 const int16_t* fRuns;
401 int fX, fY;
402 } fBufferedRuns[BlockDim];
403
404 // The next row [0, BlockDim) that we need to blit.
405 int fNextRun;
406
407 // The width and height of the image that we're blitting
408 const int fWidth;
409 const int fHeight;
410
411 // The compressed buffer that we're blitting into. It is assumed that the buffer
412 // is large enough to store a compressed image of size fWidth*fHeight.
413 void* const fBuffer;
414
415 // Various utility functions
416 int blocksWide() const { return fWidth / BlockDim; }
417 int blocksTall() const { return fHeight / BlockDim; }
418 int totalBlocks() const { return (fWidth * fHeight) / kPixelsPerBlock; }
419
420 // Returns the block index for the block containing pixel (x, y). Block
421 // indices start at zero and proceed in raster order.
422 int getBlockOffset(int x, int y) const {
423 SkASSERT(x < fWidth);
424 SkASSERT(y < fHeight);
425 const int blockCol = x / BlockDim;
426 const int blockRow = y / BlockDim;
427 return blockRow * this->blocksWide() + blockCol;
428 }
429
430 // Returns a pointer to the block containing pixel (x, y)
431 uint8_t *getBlock(int x, int y) const {
432 uint8_t* ptr = reinterpret_cast<uint8_t*>(fBuffer);
433 return ptr + EncodedBlockSize*this->getBlockOffset(x, y);
434 }
435
436 // Updates the block whose columns are stored in block. curAlphai is expected
437 // to store the alpha values that will be placed within each of the columns in
438 // the range [col, col+colsLeft).
439 typedef uint32_t Column[BlockDim/4];
440 typedef uint32_t Block[BlockDim][BlockDim/4];
441 inline void updateBlockColumns(Block block, const int col,
442 const int colsLeft, const Column curAlphai) {
bsalomon49f085d2014-09-05 13:34:00 -0700443 SkASSERT(block);
krajcevski10a350c2014-07-29 07:24:58 -0700444 SkASSERT(col + colsLeft <= BlockDim);
krajcevskid5e46c72014-07-28 14:14:16 -0700445
446 for (int i = col; i < (col + colsLeft); ++i) {
447 memcpy(block[i], curAlphai, sizeof(Column));
448 }
449 }
450
451 // The following function writes the buffered runs to compressed blocks.
452 // If fNextRun < BlockDim, then we fill the runs that we haven't buffered with
453 // the constant zero buffer.
454 void flushRuns() {
455 // If we don't have any runs, then just return.
456 if (0 == fNextRun) {
457 return;
458 }
459
460#ifndef NDEBUG
461 // Make sure that if we have any runs, they all match
462 for (int i = 1; i < fNextRun; ++i) {
463 SkASSERT(fBufferedRuns[i].fY == fBufferedRuns[i-1].fY + 1);
464 SkASSERT(fBufferedRuns[i].fX == fBufferedRuns[i-1].fX);
465 }
466#endif
467
468 // If we don't have as many runs as we have rows, fill in the remaining
469 // runs with constant zeros.
470 for (int i = fNextRun; i < BlockDim; ++i) {
471 fBufferedRuns[i].fY = fBufferedRuns[0].fY + i;
472 fBufferedRuns[i].fX = fBufferedRuns[0].fX;
473 fBufferedRuns[i].fAlphas = &kZeroAlpha;
474 fBufferedRuns[i].fRuns = &kLongestRun;
475 }
476
477 // Make sure that our assumptions aren't violated.
478 SkASSERT(fNextRun > 0 && fNextRun <= BlockDim);
479 SkASSERT((fBufferedRuns[0].fY % BlockDim) == 0);
480
481 // The following logic walks BlockDim rows at a time and outputs compressed
482 // blocks to the buffer passed into the constructor.
483 // We do the following:
484 //
485 // c1 c2 c3 c4
486 // -----------------------------------------------------------------------
487 // ... | | | | | ----> fBufferedRuns[0]
488 // -----------------------------------------------------------------------
489 // ... | | | | | ----> fBufferedRuns[1]
490 // -----------------------------------------------------------------------
491 // ... | | | | | ----> fBufferedRuns[2]
492 // -----------------------------------------------------------------------
493 // ... | | | | | ----> fBufferedRuns[3]
494 // -----------------------------------------------------------------------
495 //
496 // curX -- the macro X value that we've gotten to.
497 // c[BlockDim] -- the buffers that represent the columns of the current block
498 // that we're operating on
499 // curAlphaColumn -- buffer containing the column of alpha values from fBufferedRuns.
500 // nextX -- for each run, the next point at which we need to update curAlphaColumn
501 // after the value of curX.
502 // finalX -- the minimum of all the nextX values.
503 //
504 // curX advances to finalX outputting any blocks that it passes along
505 // the way. Since finalX will not change when we reach the end of a
506 // run, the termination criteria will be whenever curX == finalX at the
507 // end of a loop.
508
509 // Setup:
510 Block block;
511 sk_bzero(block, sizeof(block));
512
513 Column curAlphaColumn;
514 sk_bzero(curAlphaColumn, sizeof(curAlphaColumn));
515
516 SkAlpha *curAlpha = reinterpret_cast<SkAlpha*>(&curAlphaColumn);
517
518 int nextX[BlockDim];
519 for (int i = 0; i < BlockDim; ++i) {
520 nextX[i] = 0x7FFFFF;
521 }
522
523 uint8_t* outPtr = this->getBlock(fBufferedRuns[0].fX, fBufferedRuns[0].fY);
524
525 // Populate the first set of runs and figure out how far we need to
526 // advance on the first step
527 int curX = 0;
528 int finalX = 0xFFFFF;
529 for (int i = 0; i < BlockDim; ++i) {
530 nextX[i] = *(fBufferedRuns[i].fRuns);
531 curAlpha[i] = *(fBufferedRuns[i].fAlphas);
532
533 finalX = SkMin32(nextX[i], finalX);
534 }
535
536 // Make sure that we have a valid right-bound X value
537 SkASSERT(finalX < 0xFFFFF);
538
krajcevskia10555a2014-08-11 13:34:22 -0700539 // If the finalX is the longest run, then just blit until we have
540 // width...
541 if (kLongestRun == finalX) {
542 finalX = fWidth;
543 }
544
krajcevskid5e46c72014-07-28 14:14:16 -0700545 // Run the blitter...
546 while (curX != finalX) {
547 SkASSERT(finalX >= curX);
548
549 // Do we need to populate the rest of the block?
550 if ((finalX - (BlockDim*(curX / BlockDim))) >= BlockDim) {
551 const int col = curX % BlockDim;
552 const int colsLeft = BlockDim - col;
553 SkASSERT(curX + colsLeft <= finalX);
554
555 this->updateBlockColumns(block, col, colsLeft, curAlphaColumn);
556
557 // Write this block
krajcevski45a0bf52014-08-07 11:10:22 -0700558 CompressorType::CompressA8Vertical(outPtr, reinterpret_cast<uint8_t*>(block));
krajcevskid5e46c72014-07-28 14:14:16 -0700559 outPtr += EncodedBlockSize;
560 curX += colsLeft;
561 }
562
563 // If we can advance even further, then just keep memsetting the block
564 if ((finalX - curX) >= BlockDim) {
565 SkASSERT((curX % BlockDim) == 0);
566
567 const int col = 0;
568 const int colsLeft = BlockDim;
569
570 this->updateBlockColumns(block, col, colsLeft, curAlphaColumn);
571
572 // While we can keep advancing, just keep writing the block.
573 uint8_t lastBlock[EncodedBlockSize];
krajcevski45a0bf52014-08-07 11:10:22 -0700574 CompressorType::CompressA8Vertical(lastBlock, reinterpret_cast<uint8_t*>(block));
krajcevskid5e46c72014-07-28 14:14:16 -0700575 while((finalX - curX) >= BlockDim) {
576 memcpy(outPtr, lastBlock, EncodedBlockSize);
577 outPtr += EncodedBlockSize;
578 curX += BlockDim;
579 }
580 }
581
582 // If we haven't advanced within the block then do so.
583 if (curX < finalX) {
584 const int col = curX % BlockDim;
585 const int colsLeft = finalX - curX;
586
587 this->updateBlockColumns(block, col, colsLeft, curAlphaColumn);
588 curX += colsLeft;
589 }
590
591 SkASSERT(curX == finalX);
592
593 // Figure out what the next advancement is...
krajcevskia10555a2014-08-11 13:34:22 -0700594 if (finalX < fWidth) {
595 for (int i = 0; i < BlockDim; ++i) {
596 if (nextX[i] == finalX) {
597 const int16_t run = *(fBufferedRuns[i].fRuns);
598 fBufferedRuns[i].fRuns += run;
599 fBufferedRuns[i].fAlphas += run;
600 curAlpha[i] = *(fBufferedRuns[i].fAlphas);
601 nextX[i] += *(fBufferedRuns[i].fRuns);
602 }
krajcevskid5e46c72014-07-28 14:14:16 -0700603 }
krajcevskid5e46c72014-07-28 14:14:16 -0700604
krajcevskia10555a2014-08-11 13:34:22 -0700605 finalX = 0xFFFFF;
606 for (int i = 0; i < BlockDim; ++i) {
607 finalX = SkMin32(nextX[i], finalX);
608 }
609 } else {
610 curX = finalX;
krajcevskid5e46c72014-07-28 14:14:16 -0700611 }
612 }
613
614 // If we didn't land on a block boundary, output the block...
krajcevskiab4c7112014-08-08 08:12:29 -0700615 if ((curX % BlockDim) > 0) {
616#ifdef SK_DEBUG
617 for (int i = 0; i < BlockDim; ++i) {
618 SkASSERT(nextX[i] == kLongestRun || nextX[i] == curX);
619 }
620#endif
621 const int col = curX % BlockDim;
622 const int colsLeft = BlockDim - col;
623
624 memset(curAlphaColumn, 0, sizeof(curAlphaColumn));
625 this->updateBlockColumns(block, col, colsLeft, curAlphaColumn);
626
krajcevski45a0bf52014-08-07 11:10:22 -0700627 CompressorType::CompressA8Vertical(outPtr, reinterpret_cast<uint8_t*>(block));
krajcevskid5e46c72014-07-28 14:14:16 -0700628 }
629
630 fNextRun = 0;
631 }
krajcevskia10555a2014-08-11 13:34:22 -0700632
633#if PEDANTIC_BLIT_RECT
634 void updateBlockRow(int x, int y, int width, int height,
635 int blockRow, int startBlockX, int endBlockX) {
636 if (0 == width || 0 == height || startBlockX == endBlockX) {
637 return;
638 }
639
640 uint8_t* dst = this->getBlock(startBlockX, BlockDim * (y / BlockDim));
641
642 // One horizontal strip to update
643 uint8_t mask[BlockDim*BlockDim];
644 memset(mask, 0, sizeof(mask));
645
646 // Update the left cap
647 int blockX = startBlockX;
648 const int yoff = y - blockRow;
649 for (int j = 0; j < height; ++j) {
650 const int xoff = x - blockX;
651 memset(mask + (j + yoff)*BlockDim + xoff, 0xFF, BlockDim - xoff);
652 }
653 CompressorType::UpdateBlock(dst, mask, BlockDim, mask);
654 dst += EncodedBlockSize;
655 blockX += BlockDim;
656
657 // Update the middle
658 if (blockX < endBlockX) {
659 for (int j = 0; j < height; ++j) {
660 memset(mask + (j + yoff)*BlockDim, 0xFF, BlockDim);
661 }
662 while (blockX < endBlockX) {
663 CompressorType::UpdateBlock(dst, mask, BlockDim, mask);
664 dst += EncodedBlockSize;
665 blockX += BlockDim;
666 }
667 }
668
669 SkASSERT(endBlockX == blockX);
670
671 // Update the right cap (if we need to)
672 if (x + width > endBlockX) {
673 memset(mask, 0, sizeof(mask));
674 for (int j = 0; j < height; ++j) {
675 const int xoff = (x+width-blockX);
676 memset(mask + (j+yoff)*BlockDim, 0xFF, xoff);
677 }
678 CompressorType::UpdateBlock(dst, mask, BlockDim, mask);
679 }
680 }
681
682 void updateBlockCol(int x, int y, int width, int height,
683 int blockCol, int startBlockY, int endBlockY) {
684 if (0 == width || 0 == height || startBlockY == endBlockY) {
685 return;
686 }
687
688 // One vertical strip to update
689 uint8_t mask[BlockDim*BlockDim];
690 memset(mask, 0, sizeof(mask));
691 const int maskX0 = x - blockCol;
692 const int maskWidth = maskX0 + width;
693 SkASSERT(maskWidth <= BlockDim);
694
695 // Update the top cap
696 int blockY = startBlockY;
697 for (int j = (y - blockY); j < BlockDim; ++j) {
698 memset(mask + maskX0 + j*BlockDim, 0xFF, maskWidth);
699 }
700 CompressorType::UpdateBlock(this->getBlock(blockCol, blockY), mask, BlockDim, mask);
701 blockY += BlockDim;
702
703 // Update middle
704 if (blockY < endBlockY) {
705 for (int j = 0; j < BlockDim; ++j) {
706 memset(mask + maskX0 + j*BlockDim, 0xFF, maskWidth);
707 }
708 while (blockY < endBlockY) {
709 CompressorType::UpdateBlock(this->getBlock(blockCol, blockY),
710 mask, BlockDim, mask);
711 blockY += BlockDim;
712 }
713 }
714
715 SkASSERT(endBlockY == blockY);
716
717 // Update bottom
718 if (y + height > endBlockY) {
719 for (int j = y+height; j < endBlockY + BlockDim; ++j) {
720 memset(mask + (j-endBlockY)*BlockDim, 0, BlockDim);
721 }
722 CompressorType::UpdateBlock(this->getBlock(blockCol, blockY),
723 mask, BlockDim, mask);
724 }
725 }
726#endif // PEDANTIC_BLIT_RECT
727
krajcevskid5e46c72014-07-28 14:14:16 -0700728};
729
730} // namespace SkTextureCompressor
731
732#endif // SkTextureCompressor_Blitter_DEFINED