edisonn@google.com | 04115a1 | 2013-02-25 20:07:24 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright 2012 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #ifndef SkTSet_DEFINED |
| 9 | #define SkTSet_DEFINED |
| 10 | |
| 11 | #include "SkTDArray.h" |
| 12 | #include "SkTypes.h" |
| 13 | |
| 14 | /** \class SkTSet<T> |
| 15 | |
| 16 | The SkTSet template class defines a set. |
| 17 | Main operations supported now are: add, merge, find and contains. |
| 18 | |
| 19 | TSet<T> is mutable. |
| 20 | */ |
| 21 | |
| 22 | // TODO: Add remove, intersect and difference operations. |
| 23 | // TODO: Add bench tests. |
| 24 | template <typename T> class SK_API SkTSet { |
| 25 | public: |
| 26 | SkTSet() { |
| 27 | fArray = SkNEW(SkTDArray<T>); |
| 28 | } |
| 29 | |
| 30 | ~SkTSet() { |
| 31 | SkASSERT(fArray); |
| 32 | SkDELETE(fArray); |
| 33 | } |
| 34 | |
| 35 | SkTSet(const SkTSet<T>& src) { |
| 36 | this->fArray = SkNEW_ARGS(SkTDArray<T>, (*src.fArray)); |
| 37 | #ifdef SK_DEBUG |
| 38 | validate(); |
| 39 | #endif |
| 40 | } |
| 41 | |
| 42 | SkTSet<T>& operator=(const SkTSet<T>& src) { |
| 43 | *this->fArray = *src.fArray; |
| 44 | #ifdef SK_DEBUG |
| 45 | validate(); |
| 46 | #endif |
| 47 | return *this; |
| 48 | } |
| 49 | |
| 50 | /** Merges src elements into this, and returns the number of duplicates |
| 51 | * found. |
| 52 | */ |
| 53 | int mergeInto(const SkTSet<T>& src) { |
| 54 | SkASSERT(fArray); |
| 55 | int duplicates = 0; |
| 56 | |
| 57 | SkTDArray<T>* fArrayNew = new SkTDArray<T>(); |
| 58 | fArrayNew->setReserve(count() + src.count()); |
| 59 | int i = 0; |
| 60 | int j = 0; |
| 61 | |
| 62 | while (i < count() && j < src.count()) { |
| 63 | if ((*fArray)[i] < (*src.fArray)[j]) { |
| 64 | fArrayNew->push((*fArray)[i]); |
| 65 | i++; |
| 66 | } else if ((*fArray)[i] > (*src.fArray)[j]) { |
| 67 | fArrayNew->push((*src.fArray)[j]); |
| 68 | j++; |
| 69 | } else { |
| 70 | duplicates++; |
| 71 | j++; // Skip one of the duplicates. |
| 72 | } |
| 73 | } |
| 74 | |
| 75 | while (i < count()) { |
| 76 | fArrayNew->push((*fArray)[i]); |
| 77 | i++; |
| 78 | } |
| 79 | |
| 80 | while (j < src.count()) { |
| 81 | fArrayNew->push((*src.fArray)[j]); |
| 82 | j++; |
| 83 | } |
| 84 | SkDELETE(fArray); |
| 85 | fArray = fArrayNew; |
| 86 | fArrayNew = NULL; |
| 87 | |
| 88 | #ifdef SK_DEBUG |
| 89 | validate(); |
| 90 | #endif |
| 91 | return duplicates; |
| 92 | } |
| 93 | |
| 94 | /** Adds a new element into set and returns true if the element is already |
| 95 | * in this set. |
| 96 | */ |
| 97 | bool add(const T& elem) { |
| 98 | SkASSERT(fArray); |
| 99 | |
| 100 | int pos = 0; |
| 101 | int i = find(elem, &pos); |
| 102 | if (i >= 0) { |
| 103 | return false; |
| 104 | } |
| 105 | *fArray->insert(pos) = elem; |
| 106 | #ifdef SK_DEBUG |
| 107 | validate(); |
| 108 | #endif |
| 109 | return true; |
| 110 | } |
| 111 | |
| 112 | /** Returns true if this set is empty. |
| 113 | */ |
| 114 | bool isEmpty() const { |
| 115 | SkASSERT(fArray); |
| 116 | return fArray->isEmpty(); |
| 117 | } |
| 118 | |
| 119 | /** Return the number of elements in the set. |
| 120 | */ |
| 121 | int count() const { |
| 122 | SkASSERT(fArray); |
| 123 | return fArray->count(); |
| 124 | } |
| 125 | |
| 126 | /** Return the number of bytes in the set: count * sizeof(T). |
| 127 | */ |
| 128 | size_t bytes() const { |
| 129 | SkASSERT(fArray); |
| 130 | return fArray->bytes(); |
| 131 | } |
| 132 | |
| 133 | /** Return the beginning of a set iterator. |
| 134 | * Elements in the iterator will be sorted ascending. |
| 135 | */ |
| 136 | const T* begin() const { |
| 137 | SkASSERT(fArray); |
| 138 | return fArray->begin(); |
| 139 | } |
| 140 | |
| 141 | /** Return the end of a set iterator. |
| 142 | */ |
| 143 | const T* end() const { |
| 144 | SkASSERT(fArray); |
| 145 | return fArray->end(); |
| 146 | } |
| 147 | |
| 148 | const T& operator[](int index) const { |
| 149 | SkASSERT(fArray); |
| 150 | return (*fArray)[index]; |
| 151 | } |
| 152 | |
| 153 | /** Resets the set (deletes memory and initiates an empty set). |
| 154 | */ |
| 155 | void reset() { |
| 156 | SkASSERT(fArray); |
| 157 | fArray->reset(); |
| 158 | } |
| 159 | |
| 160 | /** Rewinds the set (preserves memory and initiates an empty set). |
| 161 | */ |
| 162 | void rewind() { |
| 163 | SkASSERT(fArray); |
| 164 | fArray->rewind(); |
| 165 | } |
| 166 | |
| 167 | /** Reserves memory for the set. |
| 168 | */ |
| 169 | void setReserve(size_t reserve) { |
| 170 | SkASSERT(fArray); |
| 171 | fArray->setReserve(reserve); |
| 172 | } |
| 173 | |
| 174 | /** Returns the index where an element was found. |
| 175 | * Returns -1 if the element was not found, and it fills *posToInsertSorted |
| 176 | * with the index of the place where elem should be inserted to preserve the |
| 177 | * internal array sorted. |
| 178 | * If element was found, *posToInsertSorted is undefined. |
| 179 | */ |
| 180 | int find(const T& elem, int* posToInsertSorted = NULL) const { |
| 181 | SkASSERT(fArray); |
| 182 | |
| 183 | if (fArray->count() == 0) { |
| 184 | if (posToInsertSorted) { |
| 185 | *posToInsertSorted = 0; |
| 186 | } |
| 187 | return -1; |
| 188 | } |
| 189 | int iMin = 0; |
| 190 | int iMax = fArray->count(); |
| 191 | |
| 192 | while (iMin < iMax - 1) { |
| 193 | int iMid = (iMin + iMax) / 2; |
| 194 | if (elem < (*fArray)[iMid]) { |
| 195 | iMax = iMid; |
| 196 | } else { |
| 197 | iMin = iMid; |
| 198 | } |
| 199 | } |
| 200 | if (elem == (*fArray)[iMin]) { |
| 201 | return iMin; |
| 202 | } |
| 203 | if (posToInsertSorted) { |
| 204 | if (elem < (*fArray)[iMin]) { |
| 205 | *posToInsertSorted = iMin; |
| 206 | } else { |
| 207 | *posToInsertSorted = iMin + 1; |
| 208 | } |
| 209 | } |
| 210 | |
| 211 | return -1; |
| 212 | } |
| 213 | |
| 214 | /** Returns true if the array contains this element. |
| 215 | */ |
| 216 | bool contains(const T& elem) const { |
| 217 | SkASSERT(fArray); |
| 218 | return (this->find(elem) >= 0); |
| 219 | } |
| 220 | |
| 221 | /** Copies internal array to destination. |
| 222 | */ |
| 223 | void copy(T* dst) const { |
| 224 | SkASSERT(fArray); |
| 225 | fArray->copyRange(0, fArray->count(), dst); |
| 226 | } |
| 227 | |
| 228 | /** Returns a const reference to the internal vector. |
| 229 | */ |
| 230 | const SkTDArray<T>& toArray() { |
| 231 | SkASSERT(fArray); |
| 232 | return *fArray; |
| 233 | } |
| 234 | |
| 235 | /** Unref all elements in the set. |
| 236 | */ |
| 237 | void unrefAll() { |
| 238 | SkASSERT(fArray); |
| 239 | fArray->unrefAll(); |
| 240 | } |
| 241 | |
| 242 | /** safeUnref all elements in the set. |
| 243 | */ |
| 244 | void safeUnrefAll() { |
| 245 | SkASSERT(fArray); |
| 246 | fArray->safeUnrefAll(); |
| 247 | } |
| 248 | |
| 249 | #ifdef SK_DEBUG |
| 250 | void validate() const { |
| 251 | SkASSERT(fArray); |
| 252 | fArray->validate(); |
| 253 | SkASSERT(isSorted() && !hasDuplicates()); |
| 254 | } |
| 255 | |
| 256 | bool hasDuplicates() const { |
| 257 | for (int i = 0; i < fArray->count() - 1; ++i) { |
| 258 | if ((*fArray)[i] == (*fArray)[i + 1]) { |
| 259 | return true; |
| 260 | } |
| 261 | } |
| 262 | return false; |
| 263 | } |
| 264 | |
| 265 | bool isSorted() const { |
| 266 | for (int i = 0; i < fArray->count() - 1; ++i) { |
| 267 | // Use only < operator |
| 268 | if (!((*fArray)[i] < (*fArray)[i + 1])) { |
| 269 | return false; |
| 270 | } |
| 271 | } |
| 272 | return true; |
| 273 | } |
| 274 | #endif |
| 275 | |
| 276 | private: |
| 277 | SkTDArray<T>* fArray; |
| 278 | }; |
| 279 | |
| 280 | #endif |