caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright 2012 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | #include "SkIntersections.h" |
| 8 | #include "SkOpSegment.h" |
| 9 | #include "SkPathWriter.h" |
| 10 | #include "TSearch.h" |
| 11 | |
| 12 | #define F (false) // discard the edge |
| 13 | #define T (true) // keep the edge |
| 14 | |
| 15 | static const bool gUnaryActiveEdge[2][2] = { |
| 16 | // from=0 from=1 |
| 17 | // to=0,1 to=0,1 |
| 18 | {F, T}, {T, F}, |
| 19 | }; |
| 20 | |
| 21 | // FIXME: add support for kReverseDifference_Op |
| 22 | static const bool gActiveEdge[kXOR_PathOp + 1][2][2][2][2] = { |
| 23 | // miFrom=0 miFrom=1 |
| 24 | // miTo=0 miTo=1 miTo=0 miTo=1 |
| 25 | // suFrom=0 1 suFrom=0 1 suFrom=0 1 suFrom=0 1 |
| 26 | // suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 |
| 27 | {{{{F, F}, {F, F}}, {{T, F}, {T, F}}}, {{{T, T}, {F, F}}, {{F, T}, {T, F}}}}, // mi - su |
| 28 | {{{{F, F}, {F, F}}, {{F, T}, {F, T}}}, {{{F, F}, {T, T}}, {{F, T}, {T, F}}}}, // mi & su |
| 29 | {{{{F, T}, {T, F}}, {{T, T}, {F, F}}}, {{{T, F}, {T, F}}, {{F, F}, {F, F}}}}, // mi | su |
| 30 | {{{{F, T}, {T, F}}, {{T, F}, {F, T}}}, {{{T, F}, {F, T}}, {{F, T}, {T, F}}}}, // mi ^ su |
| 31 | }; |
| 32 | |
| 33 | #undef F |
| 34 | #undef T |
| 35 | |
| 36 | // OPTIMIZATION: does the following also work, and is it any faster? |
| 37 | // return outerWinding * innerWinding > 0 |
| 38 | // || ((outerWinding + innerWinding < 0) ^ ((outerWinding - innerWinding) < 0))) |
| 39 | bool SkOpSegment::UseInnerWinding(int outerWinding, int innerWinding) { |
| 40 | SkASSERT(outerWinding != SK_MaxS32); |
| 41 | SkASSERT(innerWinding != SK_MaxS32); |
| 42 | int absOut = abs(outerWinding); |
| 43 | int absIn = abs(innerWinding); |
| 44 | bool result = absOut == absIn ? outerWinding < 0 : absOut < absIn; |
| 45 | return result; |
| 46 | } |
| 47 | |
| 48 | bool SkOpSegment::activeAngle(int index, int* done, SkTDArray<SkOpAngle>* angles) { |
| 49 | if (activeAngleInner(index, done, angles)) { |
| 50 | return true; |
| 51 | } |
| 52 | int lesser = index; |
| 53 | while (--lesser >= 0 && equalPoints(index, lesser)) { |
| 54 | if (activeAngleOther(lesser, done, angles)) { |
| 55 | return true; |
| 56 | } |
| 57 | } |
| 58 | lesser = index; |
| 59 | do { |
| 60 | if (activeAngleOther(index, done, angles)) { |
| 61 | return true; |
| 62 | } |
| 63 | } while (++index < fTs.count() && equalPoints(index, lesser)); |
| 64 | return false; |
| 65 | } |
| 66 | |
| 67 | bool SkOpSegment::activeAngleOther(int index, int* done, SkTDArray<SkOpAngle>* angles) { |
| 68 | SkOpSpan* span = &fTs[index]; |
| 69 | SkOpSegment* other = span->fOther; |
| 70 | int oIndex = span->fOtherIndex; |
| 71 | return other->activeAngleInner(oIndex, done, angles); |
| 72 | } |
| 73 | |
| 74 | bool SkOpSegment::activeAngleInner(int index, int* done, SkTDArray<SkOpAngle>* angles) { |
| 75 | int next = nextExactSpan(index, 1); |
| 76 | if (next > 0) { |
| 77 | SkOpSpan& upSpan = fTs[index]; |
| 78 | if (upSpan.fWindValue || upSpan.fOppValue) { |
| 79 | addAngle(angles, index, next); |
| 80 | if (upSpan.fDone || upSpan.fUnsortableEnd) { |
| 81 | (*done)++; |
| 82 | } else if (upSpan.fWindSum != SK_MinS32) { |
| 83 | return true; |
| 84 | } |
| 85 | } else if (!upSpan.fDone) { |
| 86 | upSpan.fDone = true; |
| 87 | fDoneSpans++; |
| 88 | } |
| 89 | } |
| 90 | int prev = nextExactSpan(index, -1); |
| 91 | // edge leading into junction |
| 92 | if (prev >= 0) { |
| 93 | SkOpSpan& downSpan = fTs[prev]; |
| 94 | if (downSpan.fWindValue || downSpan.fOppValue) { |
| 95 | addAngle(angles, index, prev); |
| 96 | if (downSpan.fDone) { |
| 97 | (*done)++; |
| 98 | } else if (downSpan.fWindSum != SK_MinS32) { |
| 99 | return true; |
| 100 | } |
| 101 | } else if (!downSpan.fDone) { |
| 102 | downSpan.fDone = true; |
| 103 | fDoneSpans++; |
| 104 | } |
| 105 | } |
| 106 | return false; |
| 107 | } |
| 108 | |
| 109 | SkPoint SkOpSegment::activeLeftTop(bool onlySortable, int* firstT) const { |
| 110 | SkASSERT(!done()); |
| 111 | SkPoint topPt = {SK_ScalarMax, SK_ScalarMax}; |
| 112 | int count = fTs.count(); |
| 113 | // see if either end is not done since we want smaller Y of the pair |
| 114 | bool lastDone = true; |
| 115 | bool lastUnsortable = false; |
| 116 | double lastT = -1; |
| 117 | for (int index = 0; index < count; ++index) { |
| 118 | const SkOpSpan& span = fTs[index]; |
| 119 | if (onlySortable && (span.fUnsortableStart || lastUnsortable)) { |
| 120 | goto next; |
| 121 | } |
| 122 | if (span.fDone && lastDone) { |
| 123 | goto next; |
| 124 | } |
| 125 | if (approximately_negative(span.fT - lastT)) { |
| 126 | goto next; |
| 127 | } |
| 128 | { |
| 129 | const SkPoint& xy = xyAtT(&span); |
| 130 | if (topPt.fY > xy.fY || (topPt.fY == xy.fY && topPt.fX > xy.fX)) { |
| 131 | topPt = xy; |
| 132 | if (firstT) { |
| 133 | *firstT = index; |
| 134 | } |
| 135 | } |
| 136 | if (fVerb != SkPath::kLine_Verb && !lastDone) { |
| 137 | SkPoint curveTop = (*CurveTop[fVerb])(fPts, lastT, span.fT); |
| 138 | if (topPt.fY > curveTop.fY || (topPt.fY == curveTop.fY |
| 139 | && topPt.fX > curveTop.fX)) { |
| 140 | topPt = curveTop; |
| 141 | if (firstT) { |
| 142 | *firstT = index; |
| 143 | } |
| 144 | } |
| 145 | } |
| 146 | lastT = span.fT; |
| 147 | } |
| 148 | next: |
| 149 | lastDone = span.fDone; |
| 150 | lastUnsortable = span.fUnsortableEnd; |
| 151 | } |
| 152 | return topPt; |
| 153 | } |
| 154 | |
| 155 | bool SkOpSegment::activeOp(int index, int endIndex, int xorMiMask, int xorSuMask, SkPathOp op) { |
| 156 | int sumMiWinding = updateWinding(endIndex, index); |
| 157 | int sumSuWinding = updateOppWinding(endIndex, index); |
| 158 | if (fOperand) { |
| 159 | SkTSwap<int>(sumMiWinding, sumSuWinding); |
| 160 | } |
| 161 | int maxWinding, sumWinding, oppMaxWinding, oppSumWinding; |
| 162 | return activeOp(xorMiMask, xorSuMask, index, endIndex, op, &sumMiWinding, &sumSuWinding, |
| 163 | &maxWinding, &sumWinding, &oppMaxWinding, &oppSumWinding); |
| 164 | } |
| 165 | |
| 166 | bool SkOpSegment::activeOp(int xorMiMask, int xorSuMask, int index, int endIndex, SkPathOp op, |
| 167 | int* sumMiWinding, int* sumSuWinding, |
| 168 | int* maxWinding, int* sumWinding, int* oppMaxWinding, int* oppSumWinding) { |
| 169 | setUpWindings(index, endIndex, sumMiWinding, sumSuWinding, |
| 170 | maxWinding, sumWinding, oppMaxWinding, oppSumWinding); |
| 171 | bool miFrom; |
| 172 | bool miTo; |
| 173 | bool suFrom; |
| 174 | bool suTo; |
| 175 | if (operand()) { |
| 176 | miFrom = (*oppMaxWinding & xorMiMask) != 0; |
| 177 | miTo = (*oppSumWinding & xorMiMask) != 0; |
| 178 | suFrom = (*maxWinding & xorSuMask) != 0; |
| 179 | suTo = (*sumWinding & xorSuMask) != 0; |
| 180 | } else { |
| 181 | miFrom = (*maxWinding & xorMiMask) != 0; |
| 182 | miTo = (*sumWinding & xorMiMask) != 0; |
| 183 | suFrom = (*oppMaxWinding & xorSuMask) != 0; |
| 184 | suTo = (*oppSumWinding & xorSuMask) != 0; |
| 185 | } |
| 186 | bool result = gActiveEdge[op][miFrom][miTo][suFrom][suTo]; |
| 187 | #if DEBUG_ACTIVE_OP |
| 188 | SkDebugf("%s op=%s miFrom=%d miTo=%d suFrom=%d suTo=%d result=%d\n", __FUNCTION__, |
| 189 | kPathOpStr[op], miFrom, miTo, suFrom, suTo, result); |
| 190 | #endif |
| 191 | return result; |
| 192 | } |
| 193 | |
| 194 | bool SkOpSegment::activeWinding(int index, int endIndex) { |
| 195 | int sumWinding = updateWinding(endIndex, index); |
| 196 | int maxWinding; |
| 197 | return activeWinding(index, endIndex, &maxWinding, &sumWinding); |
| 198 | } |
| 199 | |
| 200 | bool SkOpSegment::activeWinding(int index, int endIndex, int* maxWinding, int* sumWinding) { |
| 201 | setUpWinding(index, endIndex, maxWinding, sumWinding); |
| 202 | bool from = *maxWinding != 0; |
| 203 | bool to = *sumWinding != 0; |
| 204 | bool result = gUnaryActiveEdge[from][to]; |
| 205 | return result; |
| 206 | } |
| 207 | |
| 208 | void SkOpSegment::addAngle(SkTDArray<SkOpAngle>* anglesPtr, int start, int end) const { |
| 209 | SkASSERT(start != end); |
| 210 | SkOpAngle* angle = anglesPtr->append(); |
| 211 | #if DEBUG_ANGLE |
| 212 | SkTDArray<SkOpAngle>& angles = *anglesPtr; |
| 213 | if (angles.count() > 1 && !fTs[start].fTiny) { |
| 214 | SkPoint angle0Pt = (*CurvePointAtT[angles[0].verb()])(angles[0].pts(), |
| 215 | (*angles[0].spans())[angles[0].start()].fT); |
| 216 | SkPoint newPt = (*CurvePointAtT[fVerb])(fPts, fTs[start].fT); |
| 217 | SkASSERT(AlmostEqualUlps(angle0Pt.fX, newPt.fX)); |
| 218 | SkASSERT(AlmostEqualUlps(angle0Pt.fY, newPt.fY)); |
| 219 | } |
| 220 | #endif |
| 221 | angle->set(fPts, fVerb, this, start, end, fTs); |
| 222 | } |
| 223 | |
| 224 | void SkOpSegment::addCancelOutsides(double tStart, double oStart, SkOpSegment* other, double oEnd) { |
| 225 | int tIndex = -1; |
| 226 | int tCount = fTs.count(); |
| 227 | int oIndex = -1; |
| 228 | int oCount = other->fTs.count(); |
| 229 | do { |
| 230 | ++tIndex; |
| 231 | } while (!approximately_negative(tStart - fTs[tIndex].fT) && tIndex < tCount); |
| 232 | int tIndexStart = tIndex; |
| 233 | do { |
| 234 | ++oIndex; |
| 235 | } while (!approximately_negative(oStart - other->fTs[oIndex].fT) && oIndex < oCount); |
| 236 | int oIndexStart = oIndex; |
| 237 | double nextT; |
| 238 | do { |
| 239 | nextT = fTs[++tIndex].fT; |
| 240 | } while (nextT < 1 && approximately_negative(nextT - tStart)); |
| 241 | double oNextT; |
| 242 | do { |
| 243 | oNextT = other->fTs[++oIndex].fT; |
| 244 | } while (oNextT < 1 && approximately_negative(oNextT - oStart)); |
| 245 | // at this point, spans before and after are at: |
| 246 | // fTs[tIndexStart - 1], fTs[tIndexStart], fTs[tIndex] |
| 247 | // if tIndexStart == 0, no prior span |
| 248 | // if nextT == 1, no following span |
| 249 | |
| 250 | // advance the span with zero winding |
| 251 | // if the following span exists (not past the end, non-zero winding) |
| 252 | // connect the two edges |
| 253 | if (!fTs[tIndexStart].fWindValue) { |
| 254 | if (tIndexStart > 0 && fTs[tIndexStart - 1].fWindValue) { |
| 255 | #if DEBUG_CONCIDENT |
| 256 | SkDebugf("%s 1 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n", |
| 257 | __FUNCTION__, fID, other->fID, tIndexStart - 1, |
| 258 | fTs[tIndexStart].fT, xyAtT(tIndexStart).fX, |
| 259 | xyAtT(tIndexStart).fY); |
| 260 | #endif |
| 261 | addTPair(fTs[tIndexStart].fT, other, other->fTs[oIndex].fT, false, |
| 262 | fTs[tIndexStart].fPt); |
| 263 | } |
| 264 | if (nextT < 1 && fTs[tIndex].fWindValue) { |
| 265 | #if DEBUG_CONCIDENT |
| 266 | SkDebugf("%s 2 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n", |
| 267 | __FUNCTION__, fID, other->fID, tIndex, |
| 268 | fTs[tIndex].fT, xyAtT(tIndex).fX, |
| 269 | xyAtT(tIndex).fY); |
| 270 | #endif |
| 271 | addTPair(fTs[tIndex].fT, other, other->fTs[oIndexStart].fT, false, fTs[tIndex].fPt); |
| 272 | } |
| 273 | } else { |
| 274 | SkASSERT(!other->fTs[oIndexStart].fWindValue); |
| 275 | if (oIndexStart > 0 && other->fTs[oIndexStart - 1].fWindValue) { |
| 276 | #if DEBUG_CONCIDENT |
| 277 | SkDebugf("%s 3 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n", |
| 278 | __FUNCTION__, fID, other->fID, oIndexStart - 1, |
| 279 | other->fTs[oIndexStart].fT, other->xyAtT(oIndexStart).fX, |
| 280 | other->xyAtT(oIndexStart).fY); |
| 281 | other->debugAddTPair(other->fTs[oIndexStart].fT, *this, fTs[tIndex].fT); |
| 282 | #endif |
| 283 | } |
| 284 | if (oNextT < 1 && other->fTs[oIndex].fWindValue) { |
| 285 | #if DEBUG_CONCIDENT |
| 286 | SkDebugf("%s 4 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n", |
| 287 | __FUNCTION__, fID, other->fID, oIndex, |
| 288 | other->fTs[oIndex].fT, other->xyAtT(oIndex).fX, |
| 289 | other->xyAtT(oIndex).fY); |
| 290 | other->debugAddTPair(other->fTs[oIndex].fT, *this, fTs[tIndexStart].fT); |
| 291 | #endif |
| 292 | } |
| 293 | } |
| 294 | } |
| 295 | |
| 296 | void SkOpSegment::addCoinOutsides(const SkTDArray<double>& outsideTs, SkOpSegment* other, |
| 297 | double oEnd) { |
| 298 | // walk this to outsideTs[0] |
| 299 | // walk other to outsideTs[1] |
| 300 | // if either is > 0, add a pointer to the other, copying adjacent winding |
| 301 | int tIndex = -1; |
| 302 | int oIndex = -1; |
| 303 | double tStart = outsideTs[0]; |
| 304 | double oStart = outsideTs[1]; |
| 305 | do { |
| 306 | ++tIndex; |
| 307 | } while (!approximately_negative(tStart - fTs[tIndex].fT)); |
| 308 | SkPoint ptStart = fTs[tIndex].fPt; |
| 309 | do { |
| 310 | ++oIndex; |
| 311 | } while (!approximately_negative(oStart - other->fTs[oIndex].fT)); |
| 312 | if (tIndex > 0 || oIndex > 0 || fOperand != other->fOperand) { |
| 313 | addTPair(tStart, other, oStart, false, ptStart); |
| 314 | } |
| 315 | tStart = fTs[tIndex].fT; |
| 316 | oStart = other->fTs[oIndex].fT; |
| 317 | do { |
| 318 | double nextT; |
| 319 | do { |
| 320 | nextT = fTs[++tIndex].fT; |
| 321 | } while (approximately_negative(nextT - tStart)); |
| 322 | tStart = nextT; |
| 323 | ptStart = fTs[tIndex].fPt; |
| 324 | do { |
| 325 | nextT = other->fTs[++oIndex].fT; |
| 326 | } while (approximately_negative(nextT - oStart)); |
| 327 | oStart = nextT; |
| 328 | if (tStart == 1 && oStart == 1 && fOperand == other->fOperand) { |
| 329 | break; |
| 330 | } |
| 331 | addTPair(tStart, other, oStart, false, ptStart); |
| 332 | } while (tStart < 1 && oStart < 1 && !approximately_negative(oEnd - oStart)); |
| 333 | } |
| 334 | |
| 335 | void SkOpSegment::addCubic(const SkPoint pts[4], bool operand, bool evenOdd) { |
| 336 | init(pts, SkPath::kCubic_Verb, operand, evenOdd); |
| 337 | fBounds.setCubicBounds(pts); |
| 338 | } |
| 339 | |
| 340 | void SkOpSegment::addCurveTo(int start, int end, SkPathWriter* path, bool active) const { |
| 341 | SkPoint edge[4]; |
| 342 | const SkPoint* ePtr; |
| 343 | int lastT = fTs.count() - 1; |
| 344 | if (lastT < 0 || (start == 0 && end == lastT) || (start == lastT && end == 0)) { |
| 345 | ePtr = fPts; |
| 346 | } else { |
| 347 | // OPTIMIZE? if not active, skip remainder and return xyAtT(end) |
| 348 | subDivide(start, end, edge); |
| 349 | ePtr = edge; |
| 350 | } |
| 351 | if (active) { |
| 352 | bool reverse = ePtr == fPts && start != 0; |
| 353 | if (reverse) { |
| 354 | path->deferredMoveLine(ePtr[fVerb]); |
| 355 | switch (fVerb) { |
| 356 | case SkPath::kLine_Verb: |
| 357 | path->deferredLine(ePtr[0]); |
| 358 | break; |
| 359 | case SkPath::kQuad_Verb: |
| 360 | path->quadTo(ePtr[1], ePtr[0]); |
| 361 | break; |
| 362 | case SkPath::kCubic_Verb: |
| 363 | path->cubicTo(ePtr[2], ePtr[1], ePtr[0]); |
| 364 | break; |
| 365 | default: |
| 366 | SkASSERT(0); |
| 367 | } |
| 368 | // return ePtr[0]; |
| 369 | } else { |
| 370 | path->deferredMoveLine(ePtr[0]); |
| 371 | switch (fVerb) { |
| 372 | case SkPath::kLine_Verb: |
| 373 | path->deferredLine(ePtr[1]); |
| 374 | break; |
| 375 | case SkPath::kQuad_Verb: |
| 376 | path->quadTo(ePtr[1], ePtr[2]); |
| 377 | break; |
| 378 | case SkPath::kCubic_Verb: |
| 379 | path->cubicTo(ePtr[1], ePtr[2], ePtr[3]); |
| 380 | break; |
| 381 | default: |
| 382 | SkASSERT(0); |
| 383 | } |
| 384 | } |
| 385 | } |
| 386 | // return ePtr[fVerb]; |
| 387 | } |
| 388 | |
| 389 | void SkOpSegment::addLine(const SkPoint pts[2], bool operand, bool evenOdd) { |
| 390 | init(pts, SkPath::kLine_Verb, operand, evenOdd); |
| 391 | fBounds.set(pts, 2); |
| 392 | } |
| 393 | |
| 394 | // add 2 to edge or out of range values to get T extremes |
| 395 | void SkOpSegment::addOtherT(int index, double otherT, int otherIndex) { |
| 396 | SkOpSpan& span = fTs[index]; |
| 397 | #if PIN_ADD_T |
| 398 | if (precisely_less_than_zero(otherT)) { |
| 399 | otherT = 0; |
| 400 | } else if (precisely_greater_than_one(otherT)) { |
| 401 | otherT = 1; |
| 402 | } |
| 403 | #endif |
| 404 | span.fOtherT = otherT; |
| 405 | span.fOtherIndex = otherIndex; |
| 406 | } |
| 407 | |
| 408 | void SkOpSegment::addQuad(const SkPoint pts[3], bool operand, bool evenOdd) { |
| 409 | init(pts, SkPath::kQuad_Verb, operand, evenOdd); |
| 410 | fBounds.setQuadBounds(pts); |
| 411 | } |
| 412 | |
| 413 | // Defer all coincident edge processing until |
| 414 | // after normal intersections have been computed |
| 415 | |
| 416 | // no need to be tricky; insert in normal T order |
| 417 | // resolve overlapping ts when considering coincidence later |
| 418 | |
| 419 | // add non-coincident intersection. Resulting edges are sorted in T. |
| 420 | int SkOpSegment::addT(SkOpSegment* other, const SkPoint& pt, double newT) { |
| 421 | // FIXME: in the pathological case where there is a ton of intercepts, |
| 422 | // binary search? |
| 423 | int insertedAt = -1; |
| 424 | size_t tCount = fTs.count(); |
| 425 | for (size_t index = 0; index < tCount; ++index) { |
| 426 | // OPTIMIZATION: if there are three or more identical Ts, then |
| 427 | // the fourth and following could be further insertion-sorted so |
| 428 | // that all the edges are clockwise or counterclockwise. |
| 429 | // This could later limit segment tests to the two adjacent |
| 430 | // neighbors, although it doesn't help with determining which |
| 431 | // circular direction to go in. |
| 432 | if (newT < fTs[index].fT) { |
| 433 | insertedAt = index; |
| 434 | break; |
| 435 | } |
| 436 | } |
| 437 | SkOpSpan* span; |
| 438 | if (insertedAt >= 0) { |
| 439 | span = fTs.insert(insertedAt); |
| 440 | } else { |
| 441 | insertedAt = tCount; |
| 442 | span = fTs.append(); |
| 443 | } |
| 444 | span->fT = newT; |
| 445 | span->fOther = other; |
| 446 | span->fPt = pt; |
| 447 | span->fWindSum = SK_MinS32; |
| 448 | span->fOppSum = SK_MinS32; |
| 449 | span->fWindValue = 1; |
| 450 | span->fOppValue = 0; |
| 451 | span->fTiny = false; |
| 452 | span->fLoop = false; |
| 453 | if ((span->fDone = newT == 1)) { |
| 454 | ++fDoneSpans; |
| 455 | } |
| 456 | span->fUnsortableStart = false; |
| 457 | span->fUnsortableEnd = false; |
| 458 | int less = -1; |
| 459 | while (&span[less + 1] - fTs.begin() > 0 && xyAtT(&span[less]) == xyAtT(span)) { |
| 460 | if (span[less].fDone) { |
| 461 | break; |
| 462 | } |
| 463 | double tInterval = newT - span[less].fT; |
| 464 | if (precisely_negative(tInterval)) { |
| 465 | break; |
| 466 | } |
| 467 | if (fVerb == SkPath::kCubic_Verb) { |
| 468 | double tMid = newT - tInterval / 2; |
| 469 | SkDPoint midPt = dcubic_xy_at_t(fPts, tMid); |
| 470 | if (!midPt.approximatelyEqual(xyAtT(span))) { |
| 471 | break; |
| 472 | } |
| 473 | } |
| 474 | span[less].fTiny = true; |
| 475 | span[less].fDone = true; |
| 476 | if (approximately_negative(newT - span[less].fT)) { |
| 477 | if (approximately_greater_than_one(newT)) { |
| 478 | SkASSERT(&span[less] - fTs.begin() < fTs.count()); |
| 479 | span[less].fUnsortableStart = true; |
| 480 | if (&span[less - 1] - fTs.begin() >= 0) { |
| 481 | span[less - 1].fUnsortableEnd = true; |
| 482 | } |
| 483 | } |
| 484 | if (approximately_less_than_zero(span[less].fT)) { |
| 485 | SkASSERT(&span[less + 1] - fTs.begin() < fTs.count()); |
| 486 | SkASSERT(&span[less] - fTs.begin() >= 0); |
| 487 | span[less + 1].fUnsortableStart = true; |
| 488 | span[less].fUnsortableEnd = true; |
| 489 | } |
| 490 | } |
| 491 | ++fDoneSpans; |
| 492 | --less; |
| 493 | } |
| 494 | int more = 1; |
| 495 | while (fTs.end() - &span[more - 1] > 1 && xyAtT(&span[more]) == xyAtT(span)) { |
| 496 | if (span[more - 1].fDone) { |
| 497 | break; |
| 498 | } |
| 499 | double tEndInterval = span[more].fT - newT; |
| 500 | if (precisely_negative(tEndInterval)) { |
| 501 | break; |
| 502 | } |
| 503 | if (fVerb == SkPath::kCubic_Verb) { |
| 504 | double tMid = newT - tEndInterval / 2; |
| 505 | SkDPoint midEndPt = dcubic_xy_at_t(fPts, tMid); |
| 506 | if (!midEndPt.approximatelyEqual(xyAtT(span))) { |
| 507 | break; |
| 508 | } |
| 509 | } |
| 510 | span[more - 1].fTiny = true; |
| 511 | span[more - 1].fDone = true; |
| 512 | if (approximately_negative(span[more].fT - newT)) { |
| 513 | if (approximately_greater_than_one(span[more].fT)) { |
| 514 | span[more + 1].fUnsortableStart = true; |
| 515 | span[more].fUnsortableEnd = true; |
| 516 | } |
| 517 | if (approximately_less_than_zero(newT)) { |
| 518 | span[more].fUnsortableStart = true; |
| 519 | span[more - 1].fUnsortableEnd = true; |
| 520 | } |
| 521 | } |
| 522 | ++fDoneSpans; |
| 523 | ++more; |
| 524 | } |
| 525 | return insertedAt; |
| 526 | } |
| 527 | |
| 528 | // set spans from start to end to decrement by one |
| 529 | // note this walks other backwards |
| 530 | // FIMXE: there's probably an edge case that can be constructed where |
| 531 | // two span in one segment are separated by float epsilon on one span but |
| 532 | // not the other, if one segment is very small. For this |
| 533 | // case the counts asserted below may or may not be enough to separate the |
| 534 | // spans. Even if the counts work out, what if the spans aren't correctly |
| 535 | // sorted? It feels better in such a case to match the span's other span |
| 536 | // pointer since both coincident segments must contain the same spans. |
| 537 | void SkOpSegment::addTCancel(double startT, double endT, SkOpSegment* other, |
| 538 | double oStartT, double oEndT) { |
| 539 | SkASSERT(!approximately_negative(endT - startT)); |
| 540 | SkASSERT(!approximately_negative(oEndT - oStartT)); |
| 541 | bool binary = fOperand != other->fOperand; |
| 542 | int index = 0; |
| 543 | while (!approximately_negative(startT - fTs[index].fT)) { |
| 544 | ++index; |
| 545 | } |
| 546 | int oIndex = other->fTs.count(); |
| 547 | while (approximately_positive(other->fTs[--oIndex].fT - oEndT)) |
| 548 | ; |
| 549 | double tRatio = (oEndT - oStartT) / (endT - startT); |
| 550 | SkOpSpan* test = &fTs[index]; |
| 551 | SkOpSpan* oTest = &other->fTs[oIndex]; |
| 552 | SkTDArray<double> outsideTs; |
| 553 | SkTDArray<double> oOutsideTs; |
| 554 | do { |
| 555 | bool decrement = test->fWindValue && oTest->fWindValue && !binary; |
| 556 | bool track = test->fWindValue || oTest->fWindValue; |
| 557 | double testT = test->fT; |
| 558 | double oTestT = oTest->fT; |
| 559 | SkOpSpan* span = test; |
| 560 | do { |
| 561 | if (decrement) { |
| 562 | decrementSpan(span); |
| 563 | } else if (track && span->fT < 1 && oTestT < 1) { |
| 564 | TrackOutside(&outsideTs, span->fT, oTestT); |
| 565 | } |
| 566 | span = &fTs[++index]; |
| 567 | } while (approximately_negative(span->fT - testT)); |
| 568 | SkOpSpan* oSpan = oTest; |
| 569 | double otherTMatchStart = oEndT - (span->fT - startT) * tRatio; |
| 570 | double otherTMatchEnd = oEndT - (test->fT - startT) * tRatio; |
| 571 | SkDEBUGCODE(int originalWindValue = oSpan->fWindValue); |
| 572 | while (approximately_negative(otherTMatchStart - oSpan->fT) |
| 573 | && !approximately_negative(otherTMatchEnd - oSpan->fT)) { |
| 574 | #ifdef SK_DEBUG |
| 575 | SkASSERT(originalWindValue == oSpan->fWindValue); |
| 576 | #endif |
| 577 | if (decrement) { |
| 578 | other->decrementSpan(oSpan); |
| 579 | } else if (track && oSpan->fT < 1 && testT < 1) { |
| 580 | TrackOutside(&oOutsideTs, oSpan->fT, testT); |
| 581 | } |
| 582 | if (!oIndex) { |
| 583 | break; |
| 584 | } |
| 585 | oSpan = &other->fTs[--oIndex]; |
| 586 | } |
| 587 | test = span; |
| 588 | oTest = oSpan; |
| 589 | } while (!approximately_negative(endT - test->fT)); |
| 590 | SkASSERT(!oIndex || approximately_negative(oTest->fT - oStartT)); |
| 591 | // FIXME: determine if canceled edges need outside ts added |
| 592 | if (!done() && outsideTs.count()) { |
| 593 | double tStart = outsideTs[0]; |
| 594 | double oStart = outsideTs[1]; |
| 595 | addCancelOutsides(tStart, oStart, other, oEndT); |
| 596 | int count = outsideTs.count(); |
| 597 | if (count > 2) { |
| 598 | double tStart = outsideTs[count - 2]; |
| 599 | double oStart = outsideTs[count - 1]; |
| 600 | addCancelOutsides(tStart, oStart, other, oEndT); |
| 601 | } |
| 602 | } |
| 603 | if (!other->done() && oOutsideTs.count()) { |
| 604 | double tStart = oOutsideTs[0]; |
| 605 | double oStart = oOutsideTs[1]; |
| 606 | other->addCancelOutsides(tStart, oStart, this, endT); |
| 607 | } |
| 608 | } |
| 609 | |
| 610 | int SkOpSegment::addSelfT(SkOpSegment* other, const SkPoint& pt, double newT) { |
| 611 | int result = addT(other, pt, newT); |
| 612 | SkOpSpan* span = &fTs[result]; |
| 613 | span->fLoop = true; |
| 614 | return result; |
| 615 | } |
| 616 | |
| 617 | int SkOpSegment::addUnsortableT(SkOpSegment* other, bool start, const SkPoint& pt, double newT) { |
| 618 | int result = addT(other, pt, newT); |
| 619 | SkOpSpan* span = &fTs[result]; |
| 620 | if (start) { |
| 621 | if (result > 0) { |
| 622 | span[result - 1].fUnsortableEnd = true; |
| 623 | } |
| 624 | span[result].fUnsortableStart = true; |
| 625 | } else { |
| 626 | span[result].fUnsortableEnd = true; |
| 627 | if (result + 1 < fTs.count()) { |
| 628 | span[result + 1].fUnsortableStart = true; |
| 629 | } |
| 630 | } |
| 631 | return result; |
| 632 | } |
| 633 | |
| 634 | int SkOpSegment::bumpCoincidentThis(const SkOpSpan& oTest, bool opp, int index, |
| 635 | SkTDArray<double>* outsideTs) { |
| 636 | int oWindValue = oTest.fWindValue; |
| 637 | int oOppValue = oTest.fOppValue; |
| 638 | if (opp) { |
| 639 | SkTSwap<int>(oWindValue, oOppValue); |
| 640 | } |
| 641 | SkOpSpan* const test = &fTs[index]; |
| 642 | SkOpSpan* end = test; |
| 643 | const double oStartT = oTest.fT; |
| 644 | do { |
| 645 | if (bumpSpan(end, oWindValue, oOppValue)) { |
| 646 | TrackOutside(outsideTs, end->fT, oStartT); |
| 647 | } |
| 648 | end = &fTs[++index]; |
| 649 | } while (approximately_negative(end->fT - test->fT)); |
| 650 | return index; |
| 651 | } |
| 652 | |
| 653 | // because of the order in which coincidences are resolved, this and other |
| 654 | // may not have the same intermediate points. Compute the corresponding |
| 655 | // intermediate T values (using this as the master, other as the follower) |
| 656 | // and walk other conditionally -- hoping that it catches up in the end |
| 657 | int SkOpSegment::bumpCoincidentOther(const SkOpSpan& test, double oEndT, int& oIndex, |
| 658 | SkTDArray<double>* oOutsideTs) { |
| 659 | SkOpSpan* const oTest = &fTs[oIndex]; |
| 660 | SkOpSpan* oEnd = oTest; |
| 661 | const double startT = test.fT; |
| 662 | const double oStartT = oTest->fT; |
| 663 | while (!approximately_negative(oEndT - oEnd->fT) |
| 664 | && approximately_negative(oEnd->fT - oStartT)) { |
| 665 | zeroSpan(oEnd); |
| 666 | TrackOutside(oOutsideTs, oEnd->fT, startT); |
| 667 | oEnd = &fTs[++oIndex]; |
| 668 | } |
| 669 | return oIndex; |
| 670 | } |
| 671 | |
| 672 | // FIXME: need to test this case: |
| 673 | // contourA has two segments that are coincident |
| 674 | // contourB has two segments that are coincident in the same place |
| 675 | // each ends up with +2/0 pairs for winding count |
| 676 | // since logic below doesn't transfer count (only increments/decrements) can this be |
| 677 | // resolved to +4/0 ? |
| 678 | |
| 679 | // set spans from start to end to increment the greater by one and decrement |
| 680 | // the lesser |
| 681 | void SkOpSegment::addTCoincident(double startT, double endT, SkOpSegment* other, double oStartT, |
| 682 | double oEndT) { |
| 683 | SkASSERT(!approximately_negative(endT - startT)); |
| 684 | SkASSERT(!approximately_negative(oEndT - oStartT)); |
| 685 | bool opp = fOperand ^ other->fOperand; |
| 686 | int index = 0; |
| 687 | while (!approximately_negative(startT - fTs[index].fT)) { |
| 688 | ++index; |
| 689 | } |
| 690 | int oIndex = 0; |
| 691 | while (!approximately_negative(oStartT - other->fTs[oIndex].fT)) { |
| 692 | ++oIndex; |
| 693 | } |
| 694 | SkOpSpan* test = &fTs[index]; |
| 695 | SkOpSpan* oTest = &other->fTs[oIndex]; |
| 696 | SkTDArray<double> outsideTs; |
| 697 | SkTDArray<double> oOutsideTs; |
| 698 | do { |
| 699 | // if either span has an opposite value and the operands don't match, resolve first |
| 700 | // SkASSERT(!test->fDone || !oTest->fDone); |
| 701 | if (test->fDone || oTest->fDone) { |
| 702 | index = advanceCoincidentThis(oTest, opp, index); |
| 703 | oIndex = other->advanceCoincidentOther(test, oEndT, oIndex); |
| 704 | } else { |
| 705 | index = bumpCoincidentThis(*oTest, opp, index, &outsideTs); |
| 706 | oIndex = other->bumpCoincidentOther(*test, oEndT, oIndex, &oOutsideTs); |
| 707 | } |
| 708 | test = &fTs[index]; |
| 709 | oTest = &other->fTs[oIndex]; |
| 710 | } while (!approximately_negative(endT - test->fT)); |
| 711 | SkASSERT(approximately_negative(oTest->fT - oEndT)); |
| 712 | SkASSERT(approximately_negative(oEndT - oTest->fT)); |
| 713 | if (!done() && outsideTs.count()) { |
| 714 | addCoinOutsides(outsideTs, other, oEndT); |
| 715 | } |
| 716 | if (!other->done() && oOutsideTs.count()) { |
| 717 | other->addCoinOutsides(oOutsideTs, this, endT); |
| 718 | } |
| 719 | } |
| 720 | |
| 721 | // FIXME: this doesn't prevent the same span from being added twice |
| 722 | // fix in caller, SkASSERT here? |
| 723 | void SkOpSegment::addTPair(double t, SkOpSegment* other, double otherT, bool borrowWind, |
| 724 | const SkPoint& pt) { |
| 725 | int tCount = fTs.count(); |
| 726 | for (int tIndex = 0; tIndex < tCount; ++tIndex) { |
| 727 | const SkOpSpan& span = fTs[tIndex]; |
| 728 | if (!approximately_negative(span.fT - t)) { |
| 729 | break; |
| 730 | } |
| 731 | if (approximately_negative(span.fT - t) && span.fOther == other |
| 732 | && approximately_equal(span.fOtherT, otherT)) { |
| 733 | #if DEBUG_ADD_T_PAIR |
| 734 | SkDebugf("%s addTPair duplicate this=%d %1.9g other=%d %1.9g\n", |
| 735 | __FUNCTION__, fID, t, other->fID, otherT); |
| 736 | #endif |
| 737 | return; |
| 738 | } |
| 739 | } |
| 740 | #if DEBUG_ADD_T_PAIR |
| 741 | SkDebugf("%s addTPair this=%d %1.9g other=%d %1.9g\n", |
| 742 | __FUNCTION__, fID, t, other->fID, otherT); |
| 743 | #endif |
| 744 | int insertedAt = addT(other, pt, t); |
| 745 | int otherInsertedAt = other->addT(this, pt, otherT); |
| 746 | addOtherT(insertedAt, otherT, otherInsertedAt); |
| 747 | other->addOtherT(otherInsertedAt, t, insertedAt); |
| 748 | matchWindingValue(insertedAt, t, borrowWind); |
| 749 | other->matchWindingValue(otherInsertedAt, otherT, borrowWind); |
| 750 | } |
| 751 | |
| 752 | void SkOpSegment::addTwoAngles(int start, int end, SkTDArray<SkOpAngle>* angles) const { |
| 753 | // add edge leading into junction |
| 754 | int min = SkMin32(end, start); |
| 755 | if (fTs[min].fWindValue > 0 || fTs[min].fOppValue > 0) { |
| 756 | addAngle(angles, end, start); |
| 757 | } |
| 758 | // add edge leading away from junction |
| 759 | int step = SkSign32(end - start); |
| 760 | int tIndex = nextExactSpan(end, step); |
| 761 | min = SkMin32(end, tIndex); |
| 762 | if (tIndex >= 0 && (fTs[min].fWindValue > 0 || fTs[min].fOppValue > 0)) { |
| 763 | addAngle(angles, end, tIndex); |
| 764 | } |
| 765 | } |
| 766 | |
| 767 | int SkOpSegment::advanceCoincidentThis(const SkOpSpan* oTest, bool opp, int index) { |
| 768 | SkOpSpan* const test = &fTs[index]; |
| 769 | SkOpSpan* end; |
| 770 | do { |
| 771 | end = &fTs[++index]; |
| 772 | } while (approximately_negative(end->fT - test->fT)); |
| 773 | return index; |
| 774 | } |
| 775 | |
| 776 | int SkOpSegment::advanceCoincidentOther(const SkOpSpan* test, double oEndT, int oIndex) { |
| 777 | SkOpSpan* const oTest = &fTs[oIndex]; |
| 778 | SkOpSpan* oEnd = oTest; |
| 779 | const double oStartT = oTest->fT; |
| 780 | while (!approximately_negative(oEndT - oEnd->fT) |
| 781 | && approximately_negative(oEnd->fT - oStartT)) { |
| 782 | oEnd = &fTs[++oIndex]; |
| 783 | } |
| 784 | return oIndex; |
| 785 | } |
| 786 | |
| 787 | bool SkOpSegment::betweenTs(int lesser, double testT, int greater) const { |
| 788 | if (lesser > greater) { |
| 789 | SkTSwap<int>(lesser, greater); |
| 790 | } |
| 791 | return approximately_between(fTs[lesser].fT, testT, fTs[greater].fT); |
| 792 | } |
| 793 | |
| 794 | void SkOpSegment::buildAngles(int index, SkTDArray<SkOpAngle>* angles, bool includeOpp) const { |
| 795 | double referenceT = fTs[index].fT; |
| 796 | int lesser = index; |
| 797 | while (--lesser >= 0 && (includeOpp || fTs[lesser].fOther->fOperand == fOperand) |
| 798 | && precisely_negative(referenceT - fTs[lesser].fT)) { |
| 799 | buildAnglesInner(lesser, angles); |
| 800 | } |
| 801 | do { |
| 802 | buildAnglesInner(index, angles); |
| 803 | } while (++index < fTs.count() && (includeOpp || fTs[index].fOther->fOperand == fOperand) |
| 804 | && precisely_negative(fTs[index].fT - referenceT)); |
| 805 | } |
| 806 | |
| 807 | void SkOpSegment::buildAnglesInner(int index, SkTDArray<SkOpAngle>* angles) const { |
| 808 | const SkOpSpan* span = &fTs[index]; |
| 809 | SkOpSegment* other = span->fOther; |
| 810 | // if there is only one live crossing, and no coincidence, continue |
| 811 | // in the same direction |
| 812 | // if there is coincidence, the only choice may be to reverse direction |
| 813 | // find edge on either side of intersection |
| 814 | int oIndex = span->fOtherIndex; |
| 815 | // if done == -1, prior span has already been processed |
| 816 | int step = 1; |
| 817 | int next = other->nextExactSpan(oIndex, step); |
| 818 | if (next < 0) { |
| 819 | step = -step; |
| 820 | next = other->nextExactSpan(oIndex, step); |
| 821 | } |
| 822 | // add candidate into and away from junction |
| 823 | other->addTwoAngles(next, oIndex, angles); |
| 824 | } |
| 825 | |
| 826 | int SkOpSegment::computeSum(int startIndex, int endIndex, bool binary) { |
| 827 | SkTDArray<SkOpAngle> angles; |
| 828 | addTwoAngles(startIndex, endIndex, &angles); |
| 829 | buildAngles(endIndex, &angles, false); |
| 830 | // OPTIMIZATION: check all angles to see if any have computed wind sum |
| 831 | // before sorting (early exit if none) |
| 832 | SkTDArray<SkOpAngle*> sorted; |
| 833 | bool sortable = SortAngles(angles, &sorted); |
| 834 | #if DEBUG_SORT |
| 835 | sorted[0]->segment()->debugShowSort(__FUNCTION__, sorted, 0, 0, 0); |
| 836 | #endif |
| 837 | if (!sortable) { |
| 838 | return SK_MinS32; |
| 839 | } |
| 840 | int angleCount = angles.count(); |
| 841 | const SkOpAngle* angle; |
| 842 | const SkOpSegment* base; |
| 843 | int winding; |
| 844 | int oWinding; |
| 845 | int firstIndex = 0; |
| 846 | do { |
| 847 | angle = sorted[firstIndex]; |
| 848 | base = angle->segment(); |
| 849 | winding = base->windSum(angle); |
| 850 | if (winding != SK_MinS32) { |
| 851 | oWinding = base->oppSum(angle); |
| 852 | break; |
| 853 | } |
| 854 | if (++firstIndex == angleCount) { |
| 855 | return SK_MinS32; |
| 856 | } |
| 857 | } while (true); |
| 858 | // turn winding into contourWinding |
| 859 | int spanWinding = base->spanSign(angle); |
| 860 | bool inner = UseInnerWinding(winding + spanWinding, winding); |
| 861 | #if DEBUG_WINDING |
| 862 | SkDebugf("%s spanWinding=%d winding=%d sign=%d inner=%d result=%d\n", __FUNCTION__, |
| 863 | spanWinding, winding, angle->sign(), inner, |
| 864 | inner ? winding + spanWinding : winding); |
| 865 | #endif |
| 866 | if (inner) { |
| 867 | winding += spanWinding; |
| 868 | } |
| 869 | #if DEBUG_SORT |
| 870 | base->debugShowSort(__FUNCTION__, sorted, firstIndex, winding, oWinding); |
| 871 | #endif |
| 872 | int nextIndex = firstIndex + 1; |
| 873 | int lastIndex = firstIndex != 0 ? firstIndex : angleCount; |
| 874 | winding -= base->spanSign(angle); |
| 875 | oWinding -= base->oppSign(angle); |
| 876 | do { |
| 877 | if (nextIndex == angleCount) { |
| 878 | nextIndex = 0; |
| 879 | } |
| 880 | angle = sorted[nextIndex]; |
| 881 | SkOpSegment* segment = angle->segment(); |
| 882 | bool opp = base->fOperand ^ segment->fOperand; |
| 883 | int maxWinding, oMaxWinding; |
| 884 | int spanSign = segment->spanSign(angle); |
| 885 | int oppoSign = segment->oppSign(angle); |
| 886 | if (opp) { |
| 887 | oMaxWinding = oWinding; |
| 888 | oWinding -= spanSign; |
| 889 | maxWinding = winding; |
| 890 | if (oppoSign) { |
| 891 | winding -= oppoSign; |
| 892 | } |
| 893 | } else { |
| 894 | maxWinding = winding; |
| 895 | winding -= spanSign; |
| 896 | oMaxWinding = oWinding; |
| 897 | if (oppoSign) { |
| 898 | oWinding -= oppoSign; |
| 899 | } |
| 900 | } |
| 901 | if (segment->windSum(angle) == SK_MinS32) { |
| 902 | if (opp) { |
| 903 | if (UseInnerWinding(oMaxWinding, oWinding)) { |
| 904 | oMaxWinding = oWinding; |
| 905 | } |
| 906 | if (oppoSign && UseInnerWinding(maxWinding, winding)) { |
| 907 | maxWinding = winding; |
| 908 | } |
| 909 | (void) segment->markAndChaseWinding(angle, oMaxWinding, maxWinding); |
| 910 | } else { |
| 911 | if (UseInnerWinding(maxWinding, winding)) { |
| 912 | maxWinding = winding; |
| 913 | } |
| 914 | if (oppoSign && UseInnerWinding(oMaxWinding, oWinding)) { |
| 915 | oMaxWinding = oWinding; |
| 916 | } |
| 917 | (void) segment->markAndChaseWinding(angle, maxWinding, |
| 918 | binary ? oMaxWinding : 0); |
| 919 | } |
| 920 | } |
| 921 | } while (++nextIndex != lastIndex); |
| 922 | int minIndex = SkMin32(startIndex, endIndex); |
| 923 | return windSum(minIndex); |
| 924 | } |
| 925 | |
| 926 | int SkOpSegment::crossedSpanY(const SkPoint& basePt, SkScalar* bestY, double* hitT, |
| 927 | bool* hitSomething, double mid, bool opp, bool current) const { |
| 928 | SkScalar bottom = fBounds.fBottom; |
| 929 | int bestTIndex = -1; |
| 930 | if (bottom <= *bestY) { |
| 931 | return bestTIndex; |
| 932 | } |
| 933 | SkScalar top = fBounds.fTop; |
| 934 | if (top >= basePt.fY) { |
| 935 | return bestTIndex; |
| 936 | } |
| 937 | if (fBounds.fLeft > basePt.fX) { |
| 938 | return bestTIndex; |
| 939 | } |
| 940 | if (fBounds.fRight < basePt.fX) { |
| 941 | return bestTIndex; |
| 942 | } |
| 943 | if (fBounds.fLeft == fBounds.fRight) { |
| 944 | // if vertical, and directly above test point, wait for another one |
| 945 | return AlmostEqualUlps(basePt.fX, fBounds.fLeft) ? SK_MinS32 : bestTIndex; |
| 946 | } |
| 947 | // intersect ray starting at basePt with edge |
| 948 | SkIntersections intersections; |
| 949 | // OPTIMIZE: use specialty function that intersects ray with curve, |
| 950 | // returning t values only for curve (we don't care about t on ray) |
| 951 | int pts = (intersections.*CurveVertical[fVerb])(fPts, top, bottom, basePt.fX, false); |
| 952 | if (pts == 0 || (current && pts == 1)) { |
| 953 | return bestTIndex; |
| 954 | } |
| 955 | if (current) { |
| 956 | SkASSERT(pts > 1); |
| 957 | int closestIdx = 0; |
| 958 | double closest = fabs(intersections[0][0] - mid); |
| 959 | for (int idx = 1; idx < pts; ++idx) { |
| 960 | double test = fabs(intersections[0][idx] - mid); |
| 961 | if (closest > test) { |
| 962 | closestIdx = idx; |
| 963 | closest = test; |
| 964 | } |
| 965 | } |
| 966 | intersections.quickRemoveOne(closestIdx, --pts); |
| 967 | } |
| 968 | double bestT = -1; |
| 969 | for (int index = 0; index < pts; ++index) { |
| 970 | double foundT = intersections[0][index]; |
| 971 | if (approximately_less_than_zero(foundT) |
| 972 | || approximately_greater_than_one(foundT)) { |
| 973 | continue; |
| 974 | } |
| 975 | SkScalar testY = (*CurvePointAtT[fVerb])(fPts, foundT).fY; |
| 976 | if (approximately_negative(testY - *bestY) |
| 977 | || approximately_negative(basePt.fY - testY)) { |
| 978 | continue; |
| 979 | } |
| 980 | if (pts > 1 && fVerb == SkPath::kLine_Verb) { |
| 981 | return SK_MinS32; // if the intersection is edge on, wait for another one |
| 982 | } |
| 983 | if (fVerb > SkPath::kLine_Verb) { |
| 984 | SkScalar dx = (*CurveSlopeAtT[fVerb])(fPts, foundT).fX; |
| 985 | if (approximately_zero(dx)) { |
| 986 | return SK_MinS32; // hit vertical, wait for another one |
| 987 | } |
| 988 | } |
| 989 | *bestY = testY; |
| 990 | bestT = foundT; |
| 991 | } |
| 992 | if (bestT < 0) { |
| 993 | return bestTIndex; |
| 994 | } |
| 995 | SkASSERT(bestT >= 0); |
| 996 | SkASSERT(bestT <= 1); |
| 997 | int start; |
| 998 | int end = 0; |
| 999 | do { |
| 1000 | start = end; |
| 1001 | end = nextSpan(start, 1); |
| 1002 | } while (fTs[end].fT < bestT); |
| 1003 | // FIXME: see next candidate for a better pattern to find the next start/end pair |
| 1004 | while (start + 1 < end && fTs[start].fDone) { |
| 1005 | ++start; |
| 1006 | } |
| 1007 | if (!isCanceled(start)) { |
| 1008 | *hitT = bestT; |
| 1009 | bestTIndex = start; |
| 1010 | *hitSomething = true; |
| 1011 | } |
| 1012 | return bestTIndex; |
| 1013 | } |
| 1014 | |
| 1015 | void SkOpSegment::decrementSpan(SkOpSpan* span) { |
| 1016 | SkASSERT(span->fWindValue > 0); |
| 1017 | if (--(span->fWindValue) == 0) { |
| 1018 | if (!span->fOppValue && !span->fDone) { |
| 1019 | span->fDone = true; |
| 1020 | ++fDoneSpans; |
| 1021 | } |
| 1022 | } |
| 1023 | } |
| 1024 | |
| 1025 | bool SkOpSegment::bumpSpan(SkOpSpan* span, int windDelta, int oppDelta) { |
| 1026 | SkASSERT(!span->fDone); |
| 1027 | span->fWindValue += windDelta; |
| 1028 | SkASSERT(span->fWindValue >= 0); |
| 1029 | span->fOppValue += oppDelta; |
| 1030 | SkASSERT(span->fOppValue >= 0); |
| 1031 | if (fXor) { |
| 1032 | span->fWindValue &= 1; |
| 1033 | } |
| 1034 | if (fOppXor) { |
| 1035 | span->fOppValue &= 1; |
| 1036 | } |
| 1037 | if (!span->fWindValue && !span->fOppValue) { |
| 1038 | span->fDone = true; |
| 1039 | ++fDoneSpans; |
| 1040 | return true; |
| 1041 | } |
| 1042 | return false; |
| 1043 | } |
| 1044 | |
| 1045 | bool SkOpSegment::equalPoints(int greaterTIndex, int lesserTIndex) { |
| 1046 | SkASSERT(greaterTIndex >= lesserTIndex); |
| 1047 | double greaterT = fTs[greaterTIndex].fT; |
| 1048 | double lesserT = fTs[lesserTIndex].fT; |
| 1049 | if (greaterT == lesserT) { |
| 1050 | return true; |
| 1051 | } |
| 1052 | if (!approximately_negative(greaterT - lesserT)) { |
| 1053 | return false; |
| 1054 | } |
| 1055 | return xyAtT(greaterTIndex) == xyAtT(lesserTIndex); |
| 1056 | } |
| 1057 | |
| 1058 | /* |
| 1059 | The M and S variable name parts stand for the operators. |
| 1060 | Mi stands for Minuend (see wiki subtraction, analogous to difference) |
| 1061 | Su stands for Subtrahend |
| 1062 | The Opp variable name part designates that the value is for the Opposite operator. |
| 1063 | Opposite values result from combining coincident spans. |
| 1064 | */ |
| 1065 | SkOpSegment* SkOpSegment::findNextOp(SkTDArray<SkOpSpan*>* chase, int* nextStart, int* nextEnd, |
| 1066 | bool* unsortable, SkPathOp op, const int xorMiMask, |
| 1067 | const int xorSuMask) { |
| 1068 | const int startIndex = *nextStart; |
| 1069 | const int endIndex = *nextEnd; |
| 1070 | SkASSERT(startIndex != endIndex); |
| 1071 | SkDEBUGCODE(const int count = fTs.count()); |
| 1072 | SkASSERT(startIndex < endIndex ? startIndex < count - 1 : startIndex > 0); |
| 1073 | const int step = SkSign32(endIndex - startIndex); |
| 1074 | const int end = nextExactSpan(startIndex, step); |
| 1075 | SkASSERT(end >= 0); |
| 1076 | SkOpSpan* endSpan = &fTs[end]; |
| 1077 | SkOpSegment* other; |
| 1078 | if (isSimple(end)) { |
| 1079 | // mark the smaller of startIndex, endIndex done, and all adjacent |
| 1080 | // spans with the same T value (but not 'other' spans) |
| 1081 | #if DEBUG_WINDING |
| 1082 | SkDebugf("%s simple\n", __FUNCTION__); |
| 1083 | #endif |
| 1084 | int min = SkMin32(startIndex, endIndex); |
| 1085 | if (fTs[min].fDone) { |
| 1086 | return NULL; |
| 1087 | } |
| 1088 | markDoneBinary(min); |
| 1089 | other = endSpan->fOther; |
| 1090 | *nextStart = endSpan->fOtherIndex; |
| 1091 | double startT = other->fTs[*nextStart].fT; |
| 1092 | *nextEnd = *nextStart; |
| 1093 | do { |
| 1094 | *nextEnd += step; |
| 1095 | } |
| 1096 | while (precisely_zero(startT - other->fTs[*nextEnd].fT)); |
| 1097 | SkASSERT(step < 0 ? *nextEnd >= 0 : *nextEnd < other->fTs.count()); |
| 1098 | return other; |
| 1099 | } |
| 1100 | // more than one viable candidate -- measure angles to find best |
| 1101 | SkTDArray<SkOpAngle> angles; |
| 1102 | SkASSERT(startIndex - endIndex != 0); |
| 1103 | SkASSERT((startIndex - endIndex < 0) ^ (step < 0)); |
| 1104 | addTwoAngles(startIndex, end, &angles); |
| 1105 | buildAngles(end, &angles, true); |
| 1106 | SkTDArray<SkOpAngle*> sorted; |
| 1107 | bool sortable = SortAngles(angles, &sorted); |
| 1108 | int angleCount = angles.count(); |
| 1109 | int firstIndex = findStartingEdge(sorted, startIndex, end); |
| 1110 | SkASSERT(firstIndex >= 0); |
| 1111 | #if DEBUG_SORT |
| 1112 | debugShowSort(__FUNCTION__, sorted, firstIndex); |
| 1113 | #endif |
| 1114 | if (!sortable) { |
| 1115 | *unsortable = true; |
| 1116 | return NULL; |
| 1117 | } |
| 1118 | SkASSERT(sorted[firstIndex]->segment() == this); |
| 1119 | #if DEBUG_WINDING |
| 1120 | SkDebugf("%s firstIndex=[%d] sign=%d\n", __FUNCTION__, firstIndex, |
| 1121 | sorted[firstIndex]->sign()); |
| 1122 | #endif |
| 1123 | int sumMiWinding = updateWinding(endIndex, startIndex); |
| 1124 | int sumSuWinding = updateOppWinding(endIndex, startIndex); |
| 1125 | if (operand()) { |
| 1126 | SkTSwap<int>(sumMiWinding, sumSuWinding); |
| 1127 | } |
| 1128 | int nextIndex = firstIndex + 1; |
| 1129 | int lastIndex = firstIndex != 0 ? firstIndex : angleCount; |
| 1130 | const SkOpAngle* foundAngle = NULL; |
| 1131 | bool foundDone = false; |
| 1132 | // iterate through the angle, and compute everyone's winding |
| 1133 | SkOpSegment* nextSegment; |
| 1134 | int activeCount = 0; |
| 1135 | do { |
| 1136 | SkASSERT(nextIndex != firstIndex); |
| 1137 | if (nextIndex == angleCount) { |
| 1138 | nextIndex = 0; |
| 1139 | } |
| 1140 | const SkOpAngle* nextAngle = sorted[nextIndex]; |
| 1141 | nextSegment = nextAngle->segment(); |
| 1142 | int maxWinding, sumWinding, oppMaxWinding, oppSumWinding; |
| 1143 | bool activeAngle = nextSegment->activeOp(xorMiMask, xorSuMask, nextAngle->start(), |
| 1144 | nextAngle->end(), op, &sumMiWinding, &sumSuWinding, |
| 1145 | &maxWinding, &sumWinding, &oppMaxWinding, &oppSumWinding); |
| 1146 | if (activeAngle) { |
| 1147 | ++activeCount; |
| 1148 | if (!foundAngle || (foundDone && activeCount & 1)) { |
| 1149 | if (nextSegment->tiny(nextAngle)) { |
| 1150 | *unsortable = true; |
| 1151 | return NULL; |
| 1152 | } |
| 1153 | foundAngle = nextAngle; |
| 1154 | foundDone = nextSegment->done(nextAngle) && !nextSegment->tiny(nextAngle); |
| 1155 | } |
| 1156 | } |
| 1157 | if (nextSegment->done()) { |
| 1158 | continue; |
| 1159 | } |
| 1160 | if (nextSegment->windSum(nextAngle) != SK_MinS32) { |
| 1161 | continue; |
| 1162 | } |
| 1163 | SkOpSpan* last = nextSegment->markAngle(maxWinding, sumWinding, oppMaxWinding, |
| 1164 | oppSumWinding, activeAngle, nextAngle); |
| 1165 | if (last) { |
| 1166 | *chase->append() = last; |
| 1167 | #if DEBUG_WINDING |
| 1168 | SkDebugf("%s chase.append id=%d\n", __FUNCTION__, |
| 1169 | last->fOther->fTs[last->fOtherIndex].fOther->debugID()); |
| 1170 | #endif |
| 1171 | } |
| 1172 | } while (++nextIndex != lastIndex); |
| 1173 | markDoneBinary(SkMin32(startIndex, endIndex)); |
| 1174 | if (!foundAngle) { |
| 1175 | return NULL; |
| 1176 | } |
| 1177 | *nextStart = foundAngle->start(); |
| 1178 | *nextEnd = foundAngle->end(); |
| 1179 | nextSegment = foundAngle->segment(); |
| 1180 | |
| 1181 | #if DEBUG_WINDING |
| 1182 | SkDebugf("%s from:[%d] to:[%d] start=%d end=%d\n", |
| 1183 | __FUNCTION__, debugID(), nextSegment->debugID(), *nextStart, *nextEnd); |
| 1184 | #endif |
| 1185 | return nextSegment; |
| 1186 | } |
| 1187 | |
| 1188 | SkOpSegment* SkOpSegment::findNextWinding(SkTDArray<SkOpSpan*>* chase, int* nextStart, |
| 1189 | int* nextEnd, bool* unsortable) { |
| 1190 | const int startIndex = *nextStart; |
| 1191 | const int endIndex = *nextEnd; |
| 1192 | SkASSERT(startIndex != endIndex); |
| 1193 | SkDEBUGCODE(const int count = fTs.count()); |
| 1194 | SkASSERT(startIndex < endIndex ? startIndex < count - 1 : startIndex > 0); |
| 1195 | const int step = SkSign32(endIndex - startIndex); |
| 1196 | const int end = nextExactSpan(startIndex, step); |
| 1197 | SkASSERT(end >= 0); |
| 1198 | SkOpSpan* endSpan = &fTs[end]; |
| 1199 | SkOpSegment* other; |
| 1200 | if (isSimple(end)) { |
| 1201 | // mark the smaller of startIndex, endIndex done, and all adjacent |
| 1202 | // spans with the same T value (but not 'other' spans) |
| 1203 | #if DEBUG_WINDING |
| 1204 | SkDebugf("%s simple\n", __FUNCTION__); |
| 1205 | #endif |
| 1206 | int min = SkMin32(startIndex, endIndex); |
| 1207 | if (fTs[min].fDone) { |
| 1208 | return NULL; |
| 1209 | } |
| 1210 | markDoneUnary(min); |
| 1211 | other = endSpan->fOther; |
| 1212 | *nextStart = endSpan->fOtherIndex; |
| 1213 | double startT = other->fTs[*nextStart].fT; |
| 1214 | *nextEnd = *nextStart; |
| 1215 | do { |
| 1216 | *nextEnd += step; |
| 1217 | } |
| 1218 | while (precisely_zero(startT - other->fTs[*nextEnd].fT)); |
| 1219 | SkASSERT(step < 0 ? *nextEnd >= 0 : *nextEnd < other->fTs.count()); |
| 1220 | return other; |
| 1221 | } |
| 1222 | // more than one viable candidate -- measure angles to find best |
| 1223 | SkTDArray<SkOpAngle> angles; |
| 1224 | SkASSERT(startIndex - endIndex != 0); |
| 1225 | SkASSERT((startIndex - endIndex < 0) ^ (step < 0)); |
| 1226 | addTwoAngles(startIndex, end, &angles); |
| 1227 | buildAngles(end, &angles, true); |
| 1228 | SkTDArray<SkOpAngle*> sorted; |
| 1229 | bool sortable = SortAngles(angles, &sorted); |
| 1230 | int angleCount = angles.count(); |
| 1231 | int firstIndex = findStartingEdge(sorted, startIndex, end); |
| 1232 | SkASSERT(firstIndex >= 0); |
| 1233 | #if DEBUG_SORT |
| 1234 | debugShowSort(__FUNCTION__, sorted, firstIndex); |
| 1235 | #endif |
| 1236 | if (!sortable) { |
| 1237 | *unsortable = true; |
| 1238 | return NULL; |
| 1239 | } |
| 1240 | SkASSERT(sorted[firstIndex]->segment() == this); |
| 1241 | #if DEBUG_WINDING |
| 1242 | SkDebugf("%s firstIndex=[%d] sign=%d\n", __FUNCTION__, firstIndex, |
| 1243 | sorted[firstIndex]->sign()); |
| 1244 | #endif |
| 1245 | int sumWinding = updateWinding(endIndex, startIndex); |
| 1246 | int nextIndex = firstIndex + 1; |
| 1247 | int lastIndex = firstIndex != 0 ? firstIndex : angleCount; |
| 1248 | const SkOpAngle* foundAngle = NULL; |
| 1249 | bool foundDone = false; |
| 1250 | // iterate through the angle, and compute everyone's winding |
| 1251 | SkOpSegment* nextSegment; |
| 1252 | int activeCount = 0; |
| 1253 | do { |
| 1254 | SkASSERT(nextIndex != firstIndex); |
| 1255 | if (nextIndex == angleCount) { |
| 1256 | nextIndex = 0; |
| 1257 | } |
| 1258 | const SkOpAngle* nextAngle = sorted[nextIndex]; |
| 1259 | nextSegment = nextAngle->segment(); |
| 1260 | int maxWinding; |
| 1261 | bool activeAngle = nextSegment->activeWinding(nextAngle->start(), nextAngle->end(), |
| 1262 | &maxWinding, &sumWinding); |
| 1263 | if (activeAngle) { |
| 1264 | ++activeCount; |
| 1265 | if (!foundAngle || (foundDone && activeCount & 1)) { |
| 1266 | if (nextSegment->tiny(nextAngle)) { |
| 1267 | *unsortable = true; |
| 1268 | return NULL; |
| 1269 | } |
| 1270 | foundAngle = nextAngle; |
| 1271 | foundDone = nextSegment->done(nextAngle); |
| 1272 | } |
| 1273 | } |
| 1274 | if (nextSegment->done()) { |
| 1275 | continue; |
| 1276 | } |
| 1277 | if (nextSegment->windSum(nextAngle) != SK_MinS32) { |
| 1278 | continue; |
| 1279 | } |
| 1280 | SkOpSpan* last = nextSegment->markAngle(maxWinding, sumWinding, activeAngle, nextAngle); |
| 1281 | if (last) { |
| 1282 | *chase->append() = last; |
| 1283 | #if DEBUG_WINDING |
| 1284 | SkDebugf("%s chase.append id=%d\n", __FUNCTION__, |
| 1285 | last->fOther->fTs[last->fOtherIndex].fOther->debugID()); |
| 1286 | #endif |
| 1287 | } |
| 1288 | } while (++nextIndex != lastIndex); |
| 1289 | markDoneUnary(SkMin32(startIndex, endIndex)); |
| 1290 | if (!foundAngle) { |
| 1291 | return NULL; |
| 1292 | } |
| 1293 | *nextStart = foundAngle->start(); |
| 1294 | *nextEnd = foundAngle->end(); |
| 1295 | nextSegment = foundAngle->segment(); |
| 1296 | #if DEBUG_WINDING |
| 1297 | SkDebugf("%s from:[%d] to:[%d] start=%d end=%d\n", |
| 1298 | __FUNCTION__, debugID(), nextSegment->debugID(), *nextStart, *nextEnd); |
| 1299 | #endif |
| 1300 | return nextSegment; |
| 1301 | } |
| 1302 | |
| 1303 | SkOpSegment* SkOpSegment::findNextXor(int* nextStart, int* nextEnd, bool* unsortable) { |
| 1304 | const int startIndex = *nextStart; |
| 1305 | const int endIndex = *nextEnd; |
| 1306 | SkASSERT(startIndex != endIndex); |
| 1307 | SkDEBUGCODE(int count = fTs.count()); |
| 1308 | SkASSERT(startIndex < endIndex ? startIndex < count - 1 |
| 1309 | : startIndex > 0); |
| 1310 | int step = SkSign32(endIndex - startIndex); |
| 1311 | int end = nextExactSpan(startIndex, step); |
| 1312 | SkASSERT(end >= 0); |
| 1313 | SkOpSpan* endSpan = &fTs[end]; |
| 1314 | SkOpSegment* other; |
| 1315 | if (isSimple(end)) { |
| 1316 | #if DEBUG_WINDING |
| 1317 | SkDebugf("%s simple\n", __FUNCTION__); |
| 1318 | #endif |
| 1319 | int min = SkMin32(startIndex, endIndex); |
| 1320 | if (fTs[min].fDone) { |
| 1321 | return NULL; |
| 1322 | } |
| 1323 | markDone(min, 1); |
| 1324 | other = endSpan->fOther; |
| 1325 | *nextStart = endSpan->fOtherIndex; |
| 1326 | double startT = other->fTs[*nextStart].fT; |
| 1327 | // FIXME: I don't know why the logic here is difference from the winding case |
| 1328 | SkDEBUGCODE(bool firstLoop = true;) |
| 1329 | if ((approximately_less_than_zero(startT) && step < 0) |
| 1330 | || (approximately_greater_than_one(startT) && step > 0)) { |
| 1331 | step = -step; |
| 1332 | SkDEBUGCODE(firstLoop = false;) |
| 1333 | } |
| 1334 | do { |
| 1335 | *nextEnd = *nextStart; |
| 1336 | do { |
| 1337 | *nextEnd += step; |
| 1338 | } |
| 1339 | while (precisely_zero(startT - other->fTs[*nextEnd].fT)); |
| 1340 | if (other->fTs[SkMin32(*nextStart, *nextEnd)].fWindValue) { |
| 1341 | break; |
| 1342 | } |
| 1343 | #ifdef SK_DEBUG |
| 1344 | SkASSERT(firstLoop); |
| 1345 | #endif |
| 1346 | SkDEBUGCODE(firstLoop = false;) |
| 1347 | step = -step; |
| 1348 | } while (true); |
| 1349 | SkASSERT(step < 0 ? *nextEnd >= 0 : *nextEnd < other->fTs.count()); |
| 1350 | return other; |
| 1351 | } |
| 1352 | SkTDArray<SkOpAngle> angles; |
| 1353 | SkASSERT(startIndex - endIndex != 0); |
| 1354 | SkASSERT((startIndex - endIndex < 0) ^ (step < 0)); |
| 1355 | addTwoAngles(startIndex, end, &angles); |
| 1356 | buildAngles(end, &angles, false); |
| 1357 | SkTDArray<SkOpAngle*> sorted; |
| 1358 | bool sortable = SortAngles(angles, &sorted); |
| 1359 | if (!sortable) { |
| 1360 | *unsortable = true; |
| 1361 | #if DEBUG_SORT |
| 1362 | debugShowSort(__FUNCTION__, sorted, findStartingEdge(sorted, startIndex, end), 0, 0); |
| 1363 | #endif |
| 1364 | return NULL; |
| 1365 | } |
| 1366 | int angleCount = angles.count(); |
| 1367 | int firstIndex = findStartingEdge(sorted, startIndex, end); |
| 1368 | SkASSERT(firstIndex >= 0); |
| 1369 | #if DEBUG_SORT |
| 1370 | debugShowSort(__FUNCTION__, sorted, firstIndex, 0, 0); |
| 1371 | #endif |
| 1372 | SkASSERT(sorted[firstIndex]->segment() == this); |
| 1373 | int nextIndex = firstIndex + 1; |
| 1374 | int lastIndex = firstIndex != 0 ? firstIndex : angleCount; |
| 1375 | const SkOpAngle* foundAngle = NULL; |
| 1376 | bool foundDone = false; |
| 1377 | SkOpSegment* nextSegment; |
| 1378 | int activeCount = 0; |
| 1379 | do { |
| 1380 | SkASSERT(nextIndex != firstIndex); |
| 1381 | if (nextIndex == angleCount) { |
| 1382 | nextIndex = 0; |
| 1383 | } |
| 1384 | const SkOpAngle* nextAngle = sorted[nextIndex]; |
| 1385 | nextSegment = nextAngle->segment(); |
| 1386 | ++activeCount; |
| 1387 | if (!foundAngle || (foundDone && activeCount & 1)) { |
| 1388 | if (nextSegment->tiny(nextAngle)) { |
| 1389 | *unsortable = true; |
| 1390 | return NULL; |
| 1391 | } |
| 1392 | foundAngle = nextAngle; |
| 1393 | foundDone = nextSegment->done(nextAngle); |
| 1394 | } |
| 1395 | if (nextSegment->done()) { |
| 1396 | continue; |
| 1397 | } |
| 1398 | } while (++nextIndex != lastIndex); |
| 1399 | markDone(SkMin32(startIndex, endIndex), 1); |
| 1400 | if (!foundAngle) { |
| 1401 | return NULL; |
| 1402 | } |
| 1403 | *nextStart = foundAngle->start(); |
| 1404 | *nextEnd = foundAngle->end(); |
| 1405 | nextSegment = foundAngle->segment(); |
| 1406 | #if DEBUG_WINDING |
| 1407 | SkDebugf("%s from:[%d] to:[%d] start=%d end=%d\n", |
| 1408 | __FUNCTION__, debugID(), nextSegment->debugID(), *nextStart, *nextEnd); |
| 1409 | #endif |
| 1410 | return nextSegment; |
| 1411 | } |
| 1412 | |
| 1413 | int SkOpSegment::findStartingEdge(const SkTDArray<SkOpAngle*>& sorted, int start, int end) { |
| 1414 | int angleCount = sorted.count(); |
| 1415 | int firstIndex = -1; |
| 1416 | for (int angleIndex = 0; angleIndex < angleCount; ++angleIndex) { |
| 1417 | const SkOpAngle* angle = sorted[angleIndex]; |
| 1418 | if (angle->segment() == this && angle->start() == end && |
| 1419 | angle->end() == start) { |
| 1420 | firstIndex = angleIndex; |
| 1421 | break; |
| 1422 | } |
| 1423 | } |
| 1424 | return firstIndex; |
| 1425 | } |
| 1426 | |
| 1427 | // FIXME: this is tricky code; needs its own unit test |
| 1428 | // note that fOtherIndex isn't computed yet, so it can't be used here |
| 1429 | void SkOpSegment::findTooCloseToCall() { |
| 1430 | int count = fTs.count(); |
| 1431 | if (count < 3) { // require t=0, x, 1 at minimum |
| 1432 | return; |
| 1433 | } |
| 1434 | int matchIndex = 0; |
| 1435 | int moCount; |
| 1436 | SkOpSpan* match; |
| 1437 | SkOpSegment* mOther; |
| 1438 | do { |
| 1439 | match = &fTs[matchIndex]; |
| 1440 | mOther = match->fOther; |
| 1441 | // FIXME: allow quads, cubics to be near coincident? |
| 1442 | if (mOther->fVerb == SkPath::kLine_Verb) { |
| 1443 | moCount = mOther->fTs.count(); |
| 1444 | if (moCount >= 3) { |
| 1445 | break; |
| 1446 | } |
| 1447 | } |
| 1448 | if (++matchIndex >= count) { |
| 1449 | return; |
| 1450 | } |
| 1451 | } while (true); // require t=0, x, 1 at minimum |
| 1452 | // OPTIMIZATION: defer matchPt until qualifying toCount is found? |
| 1453 | const SkPoint* matchPt = &xyAtT(match); |
| 1454 | // look for a pair of nearby T values that map to the same (x,y) value |
| 1455 | // if found, see if the pair of other segments share a common point. If |
| 1456 | // so, the span from here to there is coincident. |
| 1457 | for (int index = matchIndex + 1; index < count; ++index) { |
| 1458 | SkOpSpan* test = &fTs[index]; |
| 1459 | if (test->fDone) { |
| 1460 | continue; |
| 1461 | } |
| 1462 | SkOpSegment* tOther = test->fOther; |
| 1463 | if (tOther->fVerb != SkPath::kLine_Verb) { |
| 1464 | continue; // FIXME: allow quads, cubics to be near coincident? |
| 1465 | } |
| 1466 | int toCount = tOther->fTs.count(); |
| 1467 | if (toCount < 3) { // require t=0, x, 1 at minimum |
| 1468 | continue; |
| 1469 | } |
| 1470 | const SkPoint* testPt = &xyAtT(test); |
| 1471 | if (*matchPt != *testPt) { |
| 1472 | matchIndex = index; |
| 1473 | moCount = toCount; |
| 1474 | match = test; |
| 1475 | mOther = tOther; |
| 1476 | matchPt = testPt; |
| 1477 | continue; |
| 1478 | } |
| 1479 | int moStart = -1; |
| 1480 | int moEnd = -1; |
| 1481 | double moStartT = 0; |
| 1482 | double moEndT = 0; |
| 1483 | for (int moIndex = 0; moIndex < moCount; ++moIndex) { |
| 1484 | SkOpSpan& moSpan = mOther->fTs[moIndex]; |
| 1485 | if (moSpan.fDone) { |
| 1486 | continue; |
| 1487 | } |
| 1488 | if (moSpan.fOther == this) { |
| 1489 | if (moSpan.fOtherT == match->fT) { |
| 1490 | moStart = moIndex; |
| 1491 | moStartT = moSpan.fT; |
| 1492 | } |
| 1493 | continue; |
| 1494 | } |
| 1495 | if (moSpan.fOther == tOther) { |
| 1496 | if (tOther->windValueAt(moSpan.fOtherT) == 0) { |
| 1497 | moStart = -1; |
| 1498 | break; |
| 1499 | } |
| 1500 | SkASSERT(moEnd == -1); |
| 1501 | moEnd = moIndex; |
| 1502 | moEndT = moSpan.fT; |
| 1503 | } |
| 1504 | } |
| 1505 | if (moStart < 0 || moEnd < 0) { |
| 1506 | continue; |
| 1507 | } |
| 1508 | // FIXME: if moStartT, moEndT are initialized to NaN, can skip this test |
| 1509 | if (approximately_equal(moStartT, moEndT)) { |
| 1510 | continue; |
| 1511 | } |
| 1512 | int toStart = -1; |
| 1513 | int toEnd = -1; |
| 1514 | double toStartT = 0; |
| 1515 | double toEndT = 0; |
| 1516 | for (int toIndex = 0; toIndex < toCount; ++toIndex) { |
| 1517 | SkOpSpan& toSpan = tOther->fTs[toIndex]; |
| 1518 | if (toSpan.fDone) { |
| 1519 | continue; |
| 1520 | } |
| 1521 | if (toSpan.fOther == this) { |
| 1522 | if (toSpan.fOtherT == test->fT) { |
| 1523 | toStart = toIndex; |
| 1524 | toStartT = toSpan.fT; |
| 1525 | } |
| 1526 | continue; |
| 1527 | } |
| 1528 | if (toSpan.fOther == mOther && toSpan.fOtherT == moEndT) { |
| 1529 | if (mOther->windValueAt(toSpan.fOtherT) == 0) { |
| 1530 | moStart = -1; |
| 1531 | break; |
| 1532 | } |
| 1533 | SkASSERT(toEnd == -1); |
| 1534 | toEnd = toIndex; |
| 1535 | toEndT = toSpan.fT; |
| 1536 | } |
| 1537 | } |
| 1538 | // FIXME: if toStartT, toEndT are initialized to NaN, can skip this test |
| 1539 | if (toStart <= 0 || toEnd <= 0) { |
| 1540 | continue; |
| 1541 | } |
| 1542 | if (approximately_equal(toStartT, toEndT)) { |
| 1543 | continue; |
| 1544 | } |
| 1545 | // test to see if the segment between there and here is linear |
| 1546 | if (!mOther->isLinear(moStart, moEnd) |
| 1547 | || !tOther->isLinear(toStart, toEnd)) { |
| 1548 | continue; |
| 1549 | } |
| 1550 | bool flipped = (moStart - moEnd) * (toStart - toEnd) < 1; |
| 1551 | if (flipped) { |
| 1552 | mOther->addTCancel(moStartT, moEndT, tOther, toEndT, toStartT); |
| 1553 | } else { |
| 1554 | mOther->addTCoincident(moStartT, moEndT, tOther, toStartT, toEndT); |
| 1555 | } |
| 1556 | } |
| 1557 | } |
| 1558 | |
| 1559 | // FIXME: either: |
| 1560 | // a) mark spans with either end unsortable as done, or |
| 1561 | // b) rewrite findTop / findTopSegment / findTopContour to iterate further |
| 1562 | // when encountering an unsortable span |
| 1563 | |
| 1564 | // OPTIMIZATION : for a pair of lines, can we compute points at T (cached) |
| 1565 | // and use more concise logic like the old edge walker code? |
| 1566 | // FIXME: this needs to deal with coincident edges |
| 1567 | SkOpSegment* SkOpSegment::findTop(int* tIndexPtr, int* endIndexPtr, bool* unsortable, |
| 1568 | bool onlySortable) { |
| 1569 | // iterate through T intersections and return topmost |
| 1570 | // topmost tangent from y-min to first pt is closer to horizontal |
| 1571 | SkASSERT(!done()); |
| 1572 | int firstT = -1; |
| 1573 | /* SkPoint topPt = */ activeLeftTop(onlySortable, &firstT); |
| 1574 | if (firstT < 0) { |
| 1575 | *unsortable = true; |
| 1576 | firstT = 0; |
| 1577 | while (fTs[firstT].fDone) { |
| 1578 | SkASSERT(firstT < fTs.count()); |
| 1579 | ++firstT; |
| 1580 | } |
| 1581 | *tIndexPtr = firstT; |
| 1582 | *endIndexPtr = nextExactSpan(firstT, 1); |
| 1583 | return this; |
| 1584 | } |
| 1585 | // sort the edges to find the leftmost |
| 1586 | int step = 1; |
| 1587 | int end = nextSpan(firstT, step); |
| 1588 | if (end == -1) { |
| 1589 | step = -1; |
| 1590 | end = nextSpan(firstT, step); |
| 1591 | SkASSERT(end != -1); |
| 1592 | } |
| 1593 | // if the topmost T is not on end, or is three-way or more, find left |
| 1594 | // look for left-ness from tLeft to firstT (matching y of other) |
| 1595 | SkTDArray<SkOpAngle> angles; |
| 1596 | SkASSERT(firstT - end != 0); |
| 1597 | addTwoAngles(end, firstT, &angles); |
| 1598 | buildAngles(firstT, &angles, true); |
| 1599 | SkTDArray<SkOpAngle*> sorted; |
| 1600 | bool sortable = SortAngles(angles, &sorted); |
| 1601 | int first = SK_MaxS32; |
| 1602 | SkScalar top = SK_ScalarMax; |
| 1603 | int count = sorted.count(); |
| 1604 | for (int index = 0; index < count; ++index) { |
| 1605 | const SkOpAngle* angle = sorted[index]; |
| 1606 | SkOpSegment* next = angle->segment(); |
| 1607 | SkPathOpsBounds bounds; |
| 1608 | next->subDivideBounds(angle->end(), angle->start(), &bounds); |
| 1609 | if (approximately_greater(top, bounds.fTop)) { |
| 1610 | top = bounds.fTop; |
| 1611 | first = index; |
| 1612 | } |
| 1613 | } |
| 1614 | SkASSERT(first < SK_MaxS32); |
| 1615 | #if DEBUG_SORT // || DEBUG_SWAP_TOP |
| 1616 | sorted[first]->segment()->debugShowSort(__FUNCTION__, sorted, first, 0, 0); |
| 1617 | #endif |
| 1618 | if (onlySortable && !sortable) { |
| 1619 | *unsortable = true; |
| 1620 | return NULL; |
| 1621 | } |
| 1622 | // skip edges that have already been processed |
| 1623 | firstT = first - 1; |
| 1624 | SkOpSegment* leftSegment; |
| 1625 | do { |
| 1626 | if (++firstT == count) { |
| 1627 | firstT = 0; |
| 1628 | } |
| 1629 | const SkOpAngle* angle = sorted[firstT]; |
| 1630 | SkASSERT(!onlySortable || !angle->unsortable()); |
| 1631 | leftSegment = angle->segment(); |
| 1632 | *tIndexPtr = angle->end(); |
| 1633 | *endIndexPtr = angle->start(); |
| 1634 | } while (leftSegment->fTs[SkMin32(*tIndexPtr, *endIndexPtr)].fDone); |
| 1635 | if (leftSegment->verb() >= SkPath::kQuad_Verb) { |
| 1636 | const int tIndex = *tIndexPtr; |
| 1637 | const int endIndex = *endIndexPtr; |
| 1638 | if (!leftSegment->clockwise(tIndex, endIndex)) { |
| 1639 | bool swap = !leftSegment->monotonicInY(tIndex, endIndex) |
| 1640 | && !leftSegment->serpentine(tIndex, endIndex); |
| 1641 | #if DEBUG_SWAP_TOP |
| 1642 | SkDebugf("%s swap=%d serpentine=%d containedByEnds=%d monotonic=%d\n", __FUNCTION__, |
| 1643 | swap, |
| 1644 | leftSegment->serpentine(tIndex, endIndex), |
| 1645 | leftSegment->controlsContainedByEnds(tIndex, endIndex), |
| 1646 | leftSegment->monotonicInY(tIndex, endIndex)); |
| 1647 | #endif |
| 1648 | if (swap) { |
| 1649 | // FIXME: I doubt it makes sense to (necessarily) swap if the edge was not the first |
| 1650 | // sorted but merely the first not already processed (i.e., not done) |
| 1651 | SkTSwap(*tIndexPtr, *endIndexPtr); |
| 1652 | } |
| 1653 | } |
| 1654 | } |
| 1655 | SkASSERT(!leftSegment->fTs[SkMin32(*tIndexPtr, *endIndexPtr)].fTiny); |
| 1656 | return leftSegment; |
| 1657 | } |
| 1658 | |
| 1659 | // FIXME: not crazy about this |
| 1660 | // when the intersections are performed, the other index is into an |
| 1661 | // incomplete array. As the array grows, the indices become incorrect |
| 1662 | // while the following fixes the indices up again, it isn't smart about |
| 1663 | // skipping segments whose indices are already correct |
| 1664 | // assuming we leave the code that wrote the index in the first place |
| 1665 | void SkOpSegment::fixOtherTIndex() { |
| 1666 | int iCount = fTs.count(); |
| 1667 | for (int i = 0; i < iCount; ++i) { |
| 1668 | SkOpSpan& iSpan = fTs[i]; |
| 1669 | double oT = iSpan.fOtherT; |
| 1670 | SkOpSegment* other = iSpan.fOther; |
| 1671 | int oCount = other->fTs.count(); |
| 1672 | for (int o = 0; o < oCount; ++o) { |
| 1673 | SkOpSpan& oSpan = other->fTs[o]; |
| 1674 | if (oT == oSpan.fT && this == oSpan.fOther && oSpan.fOtherT == iSpan.fT) { |
| 1675 | iSpan.fOtherIndex = o; |
| 1676 | break; |
| 1677 | } |
| 1678 | } |
| 1679 | } |
| 1680 | } |
| 1681 | |
| 1682 | void SkOpSegment::init(const SkPoint pts[], SkPath::Verb verb, bool operand, bool evenOdd) { |
| 1683 | fDoneSpans = 0; |
| 1684 | fOperand = operand; |
| 1685 | fXor = evenOdd; |
| 1686 | fPts = pts; |
| 1687 | fVerb = verb; |
| 1688 | } |
| 1689 | |
| 1690 | void SkOpSegment::initWinding(int start, int end) { |
| 1691 | int local = spanSign(start, end); |
| 1692 | int oppLocal = oppSign(start, end); |
| 1693 | (void) markAndChaseWinding(start, end, local, oppLocal); |
| 1694 | // OPTIMIZATION: the reverse mark and chase could skip the first marking |
| 1695 | (void) markAndChaseWinding(end, start, local, oppLocal); |
| 1696 | } |
| 1697 | |
| 1698 | /* |
| 1699 | when we start with a vertical intersect, we try to use the dx to determine if the edge is to |
| 1700 | the left or the right of vertical. This determines if we need to add the span's |
| 1701 | sign or not. However, this isn't enough. |
| 1702 | If the supplied sign (winding) is zero, then we didn't hit another vertical span, so dx is needed. |
| 1703 | If there was a winding, then it may or may not need adjusting. If the span the winding was borrowed |
| 1704 | from has the same x direction as this span, the winding should change. If the dx is opposite, then |
| 1705 | the same winding is shared by both. |
| 1706 | */ |
| 1707 | void SkOpSegment::initWinding(int start, int end, double tHit, int winding, SkScalar hitDx, |
| 1708 | int oppWind, SkScalar hitOppDx) { |
| 1709 | SkASSERT(hitDx || !winding); |
| 1710 | SkScalar dx = (*CurveSlopeAtT[fVerb])(fPts, tHit).fX; |
| 1711 | SkASSERT(dx); |
| 1712 | int windVal = windValue(SkMin32(start, end)); |
| 1713 | #if DEBUG_WINDING_AT_T |
| 1714 | SkDebugf("%s oldWinding=%d hitDx=%c dx=%c windVal=%d", __FUNCTION__, winding, |
| 1715 | hitDx ? hitDx > 0 ? '+' : '-' : '0', dx > 0 ? '+' : '-', windVal); |
| 1716 | #endif |
| 1717 | if (!winding) { |
| 1718 | winding = dx < 0 ? windVal : -windVal; |
| 1719 | } else if (winding * dx < 0) { |
| 1720 | int sideWind = winding + (dx < 0 ? windVal : -windVal); |
| 1721 | if (abs(winding) < abs(sideWind)) { |
| 1722 | winding = sideWind; |
| 1723 | } |
| 1724 | } |
| 1725 | #if DEBUG_WINDING_AT_T |
| 1726 | SkDebugf(" winding=%d\n", winding); |
| 1727 | #endif |
| 1728 | SkDEBUGCODE(int oppLocal = oppSign(start, end)); |
| 1729 | SkASSERT(hitOppDx || !oppWind || !oppLocal); |
| 1730 | int oppWindVal = oppValue(SkMin32(start, end)); |
| 1731 | if (!oppWind) { |
| 1732 | oppWind = dx < 0 ? oppWindVal : -oppWindVal; |
| 1733 | } else if (hitOppDx * dx >= 0) { |
| 1734 | int oppSideWind = oppWind + (dx < 0 ? oppWindVal : -oppWindVal); |
| 1735 | if (abs(oppWind) < abs(oppSideWind)) { |
| 1736 | oppWind = oppSideWind; |
| 1737 | } |
| 1738 | } |
| 1739 | (void) markAndChaseWinding(start, end, winding, oppWind); |
| 1740 | } |
| 1741 | |
| 1742 | bool SkOpSegment::isLinear(int start, int end) const { |
| 1743 | if (fVerb == SkPath::kLine_Verb) { |
| 1744 | return true; |
| 1745 | } |
| 1746 | if (fVerb == SkPath::kQuad_Verb) { |
| 1747 | SkDQuad qPart = SkDQuad::SubDivide(fPts, fTs[start].fT, fTs[end].fT); |
| 1748 | return qPart.isLinear(0, 2); |
| 1749 | } else { |
| 1750 | SkASSERT(fVerb == SkPath::kCubic_Verb); |
| 1751 | SkDCubic cPart = SkDCubic::SubDivide(fPts, fTs[start].fT, fTs[end].fT); |
| 1752 | return cPart.isLinear(0, 3); |
| 1753 | } |
| 1754 | } |
| 1755 | |
| 1756 | // OPTIMIZE: successive calls could start were the last leaves off |
| 1757 | // or calls could specialize to walk forwards or backwards |
| 1758 | bool SkOpSegment::isMissing(double startT) const { |
| 1759 | size_t tCount = fTs.count(); |
| 1760 | for (size_t index = 0; index < tCount; ++index) { |
| 1761 | if (approximately_zero(startT - fTs[index].fT)) { |
| 1762 | return false; |
| 1763 | } |
| 1764 | } |
| 1765 | return true; |
| 1766 | } |
| 1767 | |
| 1768 | bool SkOpSegment::isSimple(int end) const { |
| 1769 | int count = fTs.count(); |
| 1770 | if (count == 2) { |
| 1771 | return true; |
| 1772 | } |
| 1773 | double t = fTs[end].fT; |
| 1774 | if (approximately_less_than_zero(t)) { |
| 1775 | return !approximately_less_than_zero(fTs[1].fT); |
| 1776 | } |
| 1777 | if (approximately_greater_than_one(t)) { |
| 1778 | return !approximately_greater_than_one(fTs[count - 2].fT); |
| 1779 | } |
| 1780 | return false; |
| 1781 | } |
| 1782 | |
| 1783 | // this span is excluded by the winding rule -- chase the ends |
| 1784 | // as long as they are unambiguous to mark connections as done |
| 1785 | // and give them the same winding value |
| 1786 | SkOpSpan* SkOpSegment::markAndChaseDone(int index, int endIndex, int winding) { |
| 1787 | int step = SkSign32(endIndex - index); |
| 1788 | int min = SkMin32(index, endIndex); |
| 1789 | markDone(min, winding); |
| 1790 | SkOpSpan* last; |
| 1791 | SkOpSegment* other = this; |
| 1792 | while ((other = other->nextChase(&index, step, &min, &last))) { |
| 1793 | other->markDone(min, winding); |
| 1794 | } |
| 1795 | return last; |
| 1796 | } |
| 1797 | |
| 1798 | SkOpSpan* SkOpSegment::markAndChaseDoneBinary(const SkOpAngle* angle, int winding, int oppWinding) { |
| 1799 | int index = angle->start(); |
| 1800 | int endIndex = angle->end(); |
| 1801 | int step = SkSign32(endIndex - index); |
| 1802 | int min = SkMin32(index, endIndex); |
| 1803 | markDoneBinary(min, winding, oppWinding); |
| 1804 | SkOpSpan* last; |
| 1805 | SkOpSegment* other = this; |
| 1806 | while ((other = other->nextChase(&index, step, &min, &last))) { |
| 1807 | other->markDoneBinary(min, winding, oppWinding); |
| 1808 | } |
| 1809 | return last; |
| 1810 | } |
| 1811 | |
| 1812 | SkOpSpan* SkOpSegment::markAndChaseDoneBinary(int index, int endIndex) { |
| 1813 | int step = SkSign32(endIndex - index); |
| 1814 | int min = SkMin32(index, endIndex); |
| 1815 | markDoneBinary(min); |
| 1816 | SkOpSpan* last; |
| 1817 | SkOpSegment* other = this; |
| 1818 | while ((other = other->nextChase(&index, step, &min, &last))) { |
| 1819 | if (other->done()) { |
| 1820 | return NULL; |
| 1821 | } |
| 1822 | other->markDoneBinary(min); |
| 1823 | } |
| 1824 | return last; |
| 1825 | } |
| 1826 | |
| 1827 | SkOpSpan* SkOpSegment::markAndChaseDoneUnary(int index, int endIndex) { |
| 1828 | int step = SkSign32(endIndex - index); |
| 1829 | int min = SkMin32(index, endIndex); |
| 1830 | markDoneUnary(min); |
| 1831 | SkOpSpan* last; |
| 1832 | SkOpSegment* other = this; |
| 1833 | while ((other = other->nextChase(&index, step, &min, &last))) { |
| 1834 | if (other->done()) { |
| 1835 | return NULL; |
| 1836 | } |
| 1837 | other->markDoneUnary(min); |
| 1838 | } |
| 1839 | return last; |
| 1840 | } |
| 1841 | |
| 1842 | SkOpSpan* SkOpSegment::markAndChaseDoneUnary(const SkOpAngle* angle, int winding) { |
| 1843 | int index = angle->start(); |
| 1844 | int endIndex = angle->end(); |
| 1845 | return markAndChaseDone(index, endIndex, winding); |
| 1846 | } |
| 1847 | |
| 1848 | SkOpSpan* SkOpSegment::markAndChaseWinding(const SkOpAngle* angle, const int winding) { |
| 1849 | int index = angle->start(); |
| 1850 | int endIndex = angle->end(); |
| 1851 | int step = SkSign32(endIndex - index); |
| 1852 | int min = SkMin32(index, endIndex); |
| 1853 | markWinding(min, winding); |
| 1854 | SkOpSpan* last; |
| 1855 | SkOpSegment* other = this; |
| 1856 | while ((other = other->nextChase(&index, step, &min, &last))) { |
| 1857 | if (other->fTs[min].fWindSum != SK_MinS32) { |
| 1858 | SkASSERT(other->fTs[min].fWindSum == winding); |
| 1859 | return NULL; |
| 1860 | } |
| 1861 | other->markWinding(min, winding); |
| 1862 | } |
| 1863 | return last; |
| 1864 | } |
| 1865 | |
| 1866 | SkOpSpan* SkOpSegment::markAndChaseWinding(int index, int endIndex, int winding, int oppWinding) { |
| 1867 | int min = SkMin32(index, endIndex); |
| 1868 | int step = SkSign32(endIndex - index); |
| 1869 | markWinding(min, winding, oppWinding); |
| 1870 | SkOpSpan* last; |
| 1871 | SkOpSegment* other = this; |
| 1872 | while ((other = other->nextChase(&index, step, &min, &last))) { |
| 1873 | if (other->fTs[min].fWindSum != SK_MinS32) { |
| 1874 | SkASSERT(other->fTs[min].fWindSum == winding || other->fTs[min].fLoop); |
| 1875 | return NULL; |
| 1876 | } |
| 1877 | other->markWinding(min, winding, oppWinding); |
| 1878 | } |
| 1879 | return last; |
| 1880 | } |
| 1881 | |
| 1882 | SkOpSpan* SkOpSegment::markAndChaseWinding(const SkOpAngle* angle, int winding, int oppWinding) { |
| 1883 | int start = angle->start(); |
| 1884 | int end = angle->end(); |
| 1885 | return markAndChaseWinding(start, end, winding, oppWinding); |
| 1886 | } |
| 1887 | |
| 1888 | SkOpSpan* SkOpSegment::markAngle(int maxWinding, int sumWinding, bool activeAngle, |
| 1889 | const SkOpAngle* angle) { |
| 1890 | SkASSERT(angle->segment() == this); |
| 1891 | if (UseInnerWinding(maxWinding, sumWinding)) { |
| 1892 | maxWinding = sumWinding; |
| 1893 | } |
| 1894 | SkOpSpan* last; |
| 1895 | if (activeAngle) { |
| 1896 | last = markAndChaseWinding(angle, maxWinding); |
| 1897 | } else { |
| 1898 | last = markAndChaseDoneUnary(angle, maxWinding); |
| 1899 | } |
| 1900 | return last; |
| 1901 | } |
| 1902 | |
| 1903 | SkOpSpan* SkOpSegment::markAngle(int maxWinding, int sumWinding, int oppMaxWinding, |
| 1904 | int oppSumWinding, bool activeAngle, const SkOpAngle* angle) { |
| 1905 | SkASSERT(angle->segment() == this); |
| 1906 | if (UseInnerWinding(maxWinding, sumWinding)) { |
| 1907 | maxWinding = sumWinding; |
| 1908 | } |
| 1909 | if (oppMaxWinding != oppSumWinding && UseInnerWinding(oppMaxWinding, oppSumWinding)) { |
| 1910 | oppMaxWinding = oppSumWinding; |
| 1911 | } |
| 1912 | SkOpSpan* last; |
| 1913 | if (activeAngle) { |
| 1914 | last = markAndChaseWinding(angle, maxWinding, oppMaxWinding); |
| 1915 | } else { |
| 1916 | last = markAndChaseDoneBinary(angle, maxWinding, oppMaxWinding); |
| 1917 | } |
| 1918 | return last; |
| 1919 | } |
| 1920 | |
| 1921 | // FIXME: this should also mark spans with equal (x,y) |
| 1922 | // This may be called when the segment is already marked done. While this |
| 1923 | // wastes time, it shouldn't do any more than spin through the T spans. |
| 1924 | // OPTIMIZATION: abort on first done found (assuming that this code is |
| 1925 | // always called to mark segments done). |
| 1926 | void SkOpSegment::markDone(int index, int winding) { |
| 1927 | // SkASSERT(!done()); |
| 1928 | SkASSERT(winding); |
| 1929 | double referenceT = fTs[index].fT; |
| 1930 | int lesser = index; |
| 1931 | while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { |
| 1932 | markOneDone(__FUNCTION__, lesser, winding); |
| 1933 | } |
| 1934 | do { |
| 1935 | markOneDone(__FUNCTION__, index, winding); |
| 1936 | } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); |
| 1937 | } |
| 1938 | |
| 1939 | void SkOpSegment::markDoneBinary(int index, int winding, int oppWinding) { |
| 1940 | // SkASSERT(!done()); |
| 1941 | SkASSERT(winding || oppWinding); |
| 1942 | double referenceT = fTs[index].fT; |
| 1943 | int lesser = index; |
| 1944 | while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { |
| 1945 | markOneDoneBinary(__FUNCTION__, lesser, winding, oppWinding); |
| 1946 | } |
| 1947 | do { |
| 1948 | markOneDoneBinary(__FUNCTION__, index, winding, oppWinding); |
| 1949 | } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); |
| 1950 | } |
| 1951 | |
| 1952 | void SkOpSegment::markDoneBinary(int index) { |
| 1953 | double referenceT = fTs[index].fT; |
| 1954 | int lesser = index; |
| 1955 | while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { |
| 1956 | markOneDoneBinary(__FUNCTION__, lesser); |
| 1957 | } |
| 1958 | do { |
| 1959 | markOneDoneBinary(__FUNCTION__, index); |
| 1960 | } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); |
| 1961 | } |
| 1962 | |
| 1963 | void SkOpSegment::markDoneUnary(int index) { |
| 1964 | double referenceT = fTs[index].fT; |
| 1965 | int lesser = index; |
| 1966 | while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { |
| 1967 | markOneDoneUnary(__FUNCTION__, lesser); |
| 1968 | } |
| 1969 | do { |
| 1970 | markOneDoneUnary(__FUNCTION__, index); |
| 1971 | } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); |
| 1972 | } |
| 1973 | |
| 1974 | void SkOpSegment::markOneDone(const char* funName, int tIndex, int winding) { |
| 1975 | SkOpSpan* span = markOneWinding(funName, tIndex, winding); |
| 1976 | if (!span) { |
| 1977 | return; |
| 1978 | } |
| 1979 | span->fDone = true; |
| 1980 | fDoneSpans++; |
| 1981 | } |
| 1982 | |
| 1983 | void SkOpSegment::markOneDoneBinary(const char* funName, int tIndex) { |
| 1984 | SkOpSpan* span = verifyOneWinding(funName, tIndex); |
| 1985 | if (!span) { |
| 1986 | return; |
| 1987 | } |
| 1988 | span->fDone = true; |
| 1989 | fDoneSpans++; |
| 1990 | } |
| 1991 | |
| 1992 | void SkOpSegment::markOneDoneBinary(const char* funName, int tIndex, int winding, int oppWinding) { |
| 1993 | SkOpSpan* span = markOneWinding(funName, tIndex, winding, oppWinding); |
| 1994 | if (!span) { |
| 1995 | return; |
| 1996 | } |
| 1997 | span->fDone = true; |
| 1998 | fDoneSpans++; |
| 1999 | } |
| 2000 | |
| 2001 | void SkOpSegment::markOneDoneUnary(const char* funName, int tIndex) { |
| 2002 | SkOpSpan* span = verifyOneWindingU(funName, tIndex); |
| 2003 | if (!span) { |
| 2004 | return; |
| 2005 | } |
| 2006 | span->fDone = true; |
| 2007 | fDoneSpans++; |
| 2008 | } |
| 2009 | |
| 2010 | SkOpSpan* SkOpSegment::markOneWinding(const char* funName, int tIndex, int winding) { |
| 2011 | SkOpSpan& span = fTs[tIndex]; |
| 2012 | if (span.fDone) { |
| 2013 | return NULL; |
| 2014 | } |
| 2015 | #if DEBUG_MARK_DONE |
| 2016 | debugShowNewWinding(funName, span, winding); |
| 2017 | #endif |
| 2018 | SkASSERT(span.fWindSum == SK_MinS32 || span.fWindSum == winding); |
| 2019 | #ifdef SK_DEBUG |
| 2020 | SkASSERT(abs(winding) <= gDebugMaxWindSum); |
| 2021 | #endif |
| 2022 | span.fWindSum = winding; |
| 2023 | return &span; |
| 2024 | } |
| 2025 | |
| 2026 | SkOpSpan* SkOpSegment::markOneWinding(const char* funName, int tIndex, int winding, |
| 2027 | int oppWinding) { |
| 2028 | SkOpSpan& span = fTs[tIndex]; |
| 2029 | if (span.fDone) { |
| 2030 | return NULL; |
| 2031 | } |
| 2032 | #if DEBUG_MARK_DONE |
| 2033 | debugShowNewWinding(funName, span, winding, oppWinding); |
| 2034 | #endif |
| 2035 | SkASSERT(span.fWindSum == SK_MinS32 || span.fWindSum == winding); |
| 2036 | #ifdef SK_DEBUG |
| 2037 | SkASSERT(abs(winding) <= gDebugMaxWindSum); |
| 2038 | #endif |
| 2039 | span.fWindSum = winding; |
| 2040 | SkASSERT(span.fOppSum == SK_MinS32 || span.fOppSum == oppWinding); |
| 2041 | #ifdef SK_DEBUG |
| 2042 | SkASSERT(abs(oppWinding) <= gDebugMaxWindSum); |
| 2043 | #endif |
| 2044 | span.fOppSum = oppWinding; |
| 2045 | return &span; |
| 2046 | } |
| 2047 | |
| 2048 | // from http://stackoverflow.com/questions/1165647/how-to-determine-if-a-list-of-polygon-points-are-in-clockwise-order |
| 2049 | bool SkOpSegment::clockwise(int tStart, int tEnd) const { |
| 2050 | SkASSERT(fVerb != SkPath::kLine_Verb); |
| 2051 | SkPoint edge[4]; |
| 2052 | subDivide(tStart, tEnd, edge); |
| 2053 | double sum = (edge[0].fX - edge[fVerb].fX) * (edge[0].fY + edge[fVerb].fY); |
| 2054 | if (fVerb == SkPath::kCubic_Verb) { |
| 2055 | SkScalar lesser = SkTMin<SkScalar>(edge[0].fY, edge[3].fY); |
| 2056 | if (edge[1].fY < lesser && edge[2].fY < lesser) { |
| 2057 | SkDLine tangent1 = {{ {edge[0].fX, edge[0].fY}, {edge[1].fX, edge[1].fY} }}; |
| 2058 | SkDLine tangent2 = {{ {edge[2].fX, edge[2].fY}, {edge[3].fX, edge[3].fY} }}; |
| 2059 | if (SkIntersections::Test(tangent1, tangent2)) { |
| 2060 | SkPoint topPt = cubic_top(fPts, fTs[tStart].fT, fTs[tEnd].fT); |
| 2061 | sum += (topPt.fX - edge[0].fX) * (topPt.fY + edge[0].fY); |
| 2062 | sum += (edge[3].fX - topPt.fX) * (edge[3].fY + topPt.fY); |
| 2063 | return sum <= 0; |
| 2064 | } |
| 2065 | } |
| 2066 | } |
| 2067 | for (int idx = 0; idx < fVerb; ++idx){ |
| 2068 | sum += (edge[idx + 1].fX - edge[idx].fX) * (edge[idx + 1].fY + edge[idx].fY); |
| 2069 | } |
| 2070 | return sum <= 0; |
| 2071 | } |
| 2072 | |
| 2073 | bool SkOpSegment::monotonicInY(int tStart, int tEnd) const { |
| 2074 | if (fVerb == SkPath::kLine_Verb) { |
| 2075 | return false; |
| 2076 | } |
| 2077 | if (fVerb == SkPath::kQuad_Verb) { |
| 2078 | SkDQuad dst = SkDQuad::SubDivide(fPts, fTs[tStart].fT, fTs[tEnd].fT); |
| 2079 | return dst.monotonicInY(); |
| 2080 | } |
| 2081 | SkASSERT(fVerb == SkPath::kCubic_Verb); |
| 2082 | SkDCubic dst = SkDCubic::SubDivide(fPts, fTs[tStart].fT, fTs[tEnd].fT); |
| 2083 | return dst.monotonicInY(); |
| 2084 | } |
| 2085 | |
| 2086 | bool SkOpSegment::serpentine(int tStart, int tEnd) const { |
| 2087 | if (fVerb != SkPath::kCubic_Verb) { |
| 2088 | return false; |
| 2089 | } |
| 2090 | SkDCubic dst = SkDCubic::SubDivide(fPts, fTs[tStart].fT, fTs[tEnd].fT); |
| 2091 | return dst.serpentine(); |
| 2092 | } |
| 2093 | |
| 2094 | SkOpSpan* SkOpSegment::verifyOneWinding(const char* funName, int tIndex) { |
| 2095 | SkOpSpan& span = fTs[tIndex]; |
| 2096 | if (span.fDone) { |
| 2097 | return NULL; |
| 2098 | } |
| 2099 | #if DEBUG_MARK_DONE |
| 2100 | debugShowNewWinding(funName, span, span.fWindSum, span.fOppSum); |
| 2101 | #endif |
| 2102 | SkASSERT(span.fWindSum != SK_MinS32); |
| 2103 | SkASSERT(span.fOppSum != SK_MinS32); |
| 2104 | return &span; |
| 2105 | } |
| 2106 | |
| 2107 | SkOpSpan* SkOpSegment::verifyOneWindingU(const char* funName, int tIndex) { |
| 2108 | SkOpSpan& span = fTs[tIndex]; |
| 2109 | if (span.fDone) { |
| 2110 | return NULL; |
| 2111 | } |
| 2112 | #if DEBUG_MARK_DONE |
| 2113 | debugShowNewWinding(funName, span, span.fWindSum); |
| 2114 | #endif |
| 2115 | SkASSERT(span.fWindSum != SK_MinS32); |
| 2116 | return &span; |
| 2117 | } |
| 2118 | |
| 2119 | // note that just because a span has one end that is unsortable, that's |
| 2120 | // not enough to mark it done. The other end may be sortable, allowing the |
| 2121 | // span to be added. |
| 2122 | // FIXME: if abs(start - end) > 1, mark intermediates as unsortable on both ends |
| 2123 | void SkOpSegment::markUnsortable(int start, int end) { |
| 2124 | SkOpSpan* span = &fTs[start]; |
| 2125 | if (start < end) { |
| 2126 | #if DEBUG_UNSORTABLE |
| 2127 | debugShowNewWinding(__FUNCTION__, *span, 0); |
| 2128 | #endif |
| 2129 | span->fUnsortableStart = true; |
| 2130 | } else { |
| 2131 | --span; |
| 2132 | #if DEBUG_UNSORTABLE |
| 2133 | debugShowNewWinding(__FUNCTION__, *span, 0); |
| 2134 | #endif |
| 2135 | span->fUnsortableEnd = true; |
| 2136 | } |
| 2137 | if (!span->fUnsortableStart || !span->fUnsortableEnd || span->fDone) { |
| 2138 | return; |
| 2139 | } |
| 2140 | span->fDone = true; |
| 2141 | fDoneSpans++; |
| 2142 | } |
| 2143 | |
| 2144 | void SkOpSegment::markWinding(int index, int winding) { |
| 2145 | // SkASSERT(!done()); |
| 2146 | SkASSERT(winding); |
| 2147 | double referenceT = fTs[index].fT; |
| 2148 | int lesser = index; |
| 2149 | while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { |
| 2150 | markOneWinding(__FUNCTION__, lesser, winding); |
| 2151 | } |
| 2152 | do { |
| 2153 | markOneWinding(__FUNCTION__, index, winding); |
| 2154 | } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); |
| 2155 | } |
| 2156 | |
| 2157 | void SkOpSegment::markWinding(int index, int winding, int oppWinding) { |
| 2158 | // SkASSERT(!done()); |
| 2159 | SkASSERT(winding || oppWinding); |
| 2160 | double referenceT = fTs[index].fT; |
| 2161 | int lesser = index; |
| 2162 | while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { |
| 2163 | markOneWinding(__FUNCTION__, lesser, winding, oppWinding); |
| 2164 | } |
| 2165 | do { |
| 2166 | markOneWinding(__FUNCTION__, index, winding, oppWinding); |
| 2167 | } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); |
| 2168 | } |
| 2169 | |
| 2170 | void SkOpSegment::matchWindingValue(int tIndex, double t, bool borrowWind) { |
| 2171 | int nextDoorWind = SK_MaxS32; |
| 2172 | int nextOppWind = SK_MaxS32; |
| 2173 | if (tIndex > 0) { |
| 2174 | const SkOpSpan& below = fTs[tIndex - 1]; |
| 2175 | if (approximately_negative(t - below.fT)) { |
| 2176 | nextDoorWind = below.fWindValue; |
| 2177 | nextOppWind = below.fOppValue; |
| 2178 | } |
| 2179 | } |
| 2180 | if (nextDoorWind == SK_MaxS32 && tIndex + 1 < fTs.count()) { |
| 2181 | const SkOpSpan& above = fTs[tIndex + 1]; |
| 2182 | if (approximately_negative(above.fT - t)) { |
| 2183 | nextDoorWind = above.fWindValue; |
| 2184 | nextOppWind = above.fOppValue; |
| 2185 | } |
| 2186 | } |
| 2187 | if (nextDoorWind == SK_MaxS32 && borrowWind && tIndex > 0 && t < 1) { |
| 2188 | const SkOpSpan& below = fTs[tIndex - 1]; |
| 2189 | nextDoorWind = below.fWindValue; |
| 2190 | nextOppWind = below.fOppValue; |
| 2191 | } |
| 2192 | if (nextDoorWind != SK_MaxS32) { |
| 2193 | SkOpSpan& newSpan = fTs[tIndex]; |
| 2194 | newSpan.fWindValue = nextDoorWind; |
| 2195 | newSpan.fOppValue = nextOppWind; |
| 2196 | if (!nextDoorWind && !nextOppWind && !newSpan.fDone) { |
| 2197 | newSpan.fDone = true; |
| 2198 | ++fDoneSpans; |
| 2199 | } |
| 2200 | } |
| 2201 | } |
| 2202 | |
| 2203 | // return span if when chasing, two or more radiating spans are not done |
| 2204 | // OPTIMIZATION: ? multiple spans is detected when there is only one valid |
| 2205 | // candidate and the remaining spans have windValue == 0 (canceled by |
| 2206 | // coincidence). The coincident edges could either be removed altogether, |
| 2207 | // or this code could be more complicated in detecting this case. Worth it? |
| 2208 | bool SkOpSegment::multipleSpans(int end) const { |
| 2209 | return end > 0 && end < fTs.count() - 1; |
| 2210 | } |
| 2211 | |
| 2212 | bool SkOpSegment::nextCandidate(int* start, int* end) const { |
| 2213 | while (fTs[*end].fDone) { |
| 2214 | if (fTs[*end].fT == 1) { |
| 2215 | return false; |
| 2216 | } |
| 2217 | ++(*end); |
| 2218 | } |
| 2219 | *start = *end; |
| 2220 | *end = nextExactSpan(*start, 1); |
| 2221 | return true; |
| 2222 | } |
| 2223 | |
| 2224 | SkOpSegment* SkOpSegment::nextChase(int* index, const int step, int* min, SkOpSpan** last) { |
| 2225 | int end = nextExactSpan(*index, step); |
| 2226 | SkASSERT(end >= 0); |
| 2227 | if (multipleSpans(end)) { |
| 2228 | *last = &fTs[end]; |
| 2229 | return NULL; |
| 2230 | } |
| 2231 | const SkOpSpan& endSpan = fTs[end]; |
| 2232 | SkOpSegment* other = endSpan.fOther; |
| 2233 | *index = endSpan.fOtherIndex; |
| 2234 | SkASSERT(index >= 0); |
| 2235 | int otherEnd = other->nextExactSpan(*index, step); |
| 2236 | SkASSERT(otherEnd >= 0); |
| 2237 | *min = SkMin32(*index, otherEnd); |
| 2238 | return other; |
| 2239 | } |
| 2240 | |
| 2241 | // This has callers for two different situations: one establishes the end |
| 2242 | // of the current span, and one establishes the beginning of the next span |
| 2243 | // (thus the name). When this is looking for the end of the current span, |
| 2244 | // coincidence is found when the beginning Ts contain -step and the end |
| 2245 | // contains step. When it is looking for the beginning of the next, the |
| 2246 | // first Ts found can be ignored and the last Ts should contain -step. |
| 2247 | // OPTIMIZATION: probably should split into two functions |
| 2248 | int SkOpSegment::nextSpan(int from, int step) const { |
| 2249 | const SkOpSpan& fromSpan = fTs[from]; |
| 2250 | int count = fTs.count(); |
| 2251 | int to = from; |
| 2252 | while (step > 0 ? ++to < count : --to >= 0) { |
| 2253 | const SkOpSpan& span = fTs[to]; |
| 2254 | if (approximately_zero(span.fT - fromSpan.fT)) { |
| 2255 | continue; |
| 2256 | } |
| 2257 | return to; |
| 2258 | } |
| 2259 | return -1; |
| 2260 | } |
| 2261 | |
| 2262 | // FIXME |
| 2263 | // this returns at any difference in T, vs. a preset minimum. It may be |
| 2264 | // that all callers to nextSpan should use this instead. |
| 2265 | // OPTIMIZATION splitting this into separate loops for up/down steps |
| 2266 | // would allow using precisely_negative instead of precisely_zero |
| 2267 | int SkOpSegment::nextExactSpan(int from, int step) const { |
| 2268 | const SkOpSpan& fromSpan = fTs[from]; |
| 2269 | int count = fTs.count(); |
| 2270 | int to = from; |
| 2271 | while (step > 0 ? ++to < count : --to >= 0) { |
| 2272 | const SkOpSpan& span = fTs[to]; |
| 2273 | if (precisely_zero(span.fT - fromSpan.fT)) { |
| 2274 | continue; |
| 2275 | } |
| 2276 | return to; |
| 2277 | } |
| 2278 | return -1; |
| 2279 | } |
| 2280 | |
| 2281 | void SkOpSegment::setUpWindings(int index, int endIndex, int* sumMiWinding, int* sumSuWinding, |
| 2282 | int* maxWinding, int* sumWinding, int* oppMaxWinding, int* oppSumWinding) { |
| 2283 | int deltaSum = spanSign(index, endIndex); |
| 2284 | int oppDeltaSum = oppSign(index, endIndex); |
| 2285 | if (operand()) { |
| 2286 | *maxWinding = *sumSuWinding; |
| 2287 | *sumWinding = *sumSuWinding -= deltaSum; |
| 2288 | *oppMaxWinding = *sumMiWinding; |
| 2289 | *oppSumWinding = *sumMiWinding -= oppDeltaSum; |
| 2290 | } else { |
| 2291 | *maxWinding = *sumMiWinding; |
| 2292 | *sumWinding = *sumMiWinding -= deltaSum; |
| 2293 | *oppMaxWinding = *sumSuWinding; |
| 2294 | *oppSumWinding = *sumSuWinding -= oppDeltaSum; |
| 2295 | } |
| 2296 | } |
| 2297 | |
| 2298 | // This marks all spans unsortable so that this info is available for early |
| 2299 | // exclusion in find top and others. This could be optimized to only mark |
| 2300 | // adjacent spans that unsortable. However, this makes it difficult to later |
| 2301 | // determine starting points for edge detection in find top and the like. |
| 2302 | bool SkOpSegment::SortAngles(const SkTDArray<SkOpAngle>& angles, |
| 2303 | SkTDArray<SkOpAngle*>* angleList) { |
| 2304 | bool sortable = true; |
| 2305 | int angleCount = angles.count(); |
| 2306 | int angleIndex; |
| 2307 | angleList->setReserve(angleCount); |
| 2308 | for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) { |
| 2309 | const SkOpAngle& angle = angles[angleIndex]; |
| 2310 | *angleList->append() = const_cast<SkOpAngle*>(&angle); |
| 2311 | sortable &= !angle.unsortable(); |
| 2312 | } |
| 2313 | if (sortable) { |
| 2314 | QSort<SkOpAngle>(angleList->begin(), angleList->end() - 1); |
| 2315 | for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) { |
| 2316 | if (angles[angleIndex].unsortable()) { |
| 2317 | sortable = false; |
| 2318 | break; |
| 2319 | } |
| 2320 | } |
| 2321 | } |
| 2322 | if (!sortable) { |
| 2323 | for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) { |
| 2324 | const SkOpAngle& angle = angles[angleIndex]; |
| 2325 | angle.segment()->markUnsortable(angle.start(), angle.end()); |
| 2326 | } |
| 2327 | } |
| 2328 | return sortable; |
| 2329 | } |
| 2330 | |
| 2331 | void SkOpSegment::subDivide(int start, int end, SkPoint edge[4]) const { |
| 2332 | edge[0] = fTs[start].fPt; |
| 2333 | edge[fVerb] = fTs[end].fPt; |
| 2334 | if (fVerb == SkPath::kQuad_Verb || fVerb == SkPath::kCubic_Verb) { |
| 2335 | SkDPoint sub[2] = {{ edge[0].fX, edge[0].fY}, {edge[fVerb].fX, edge[fVerb].fY }}; |
| 2336 | if (fVerb == SkPath::kQuad_Verb) { |
| 2337 | edge[1] = SkDQuad::SubDivide(fPts, sub[0], sub[1], fTs[start].fT, |
| 2338 | fTs[end].fT).asSkPoint(); |
| 2339 | } else { |
| 2340 | SkDCubic::SubDivide(fPts, sub[0], sub[1], fTs[start].fT, fTs[end].fT, sub); |
| 2341 | edge[1] = sub[0].asSkPoint(); |
| 2342 | edge[2] = sub[1].asSkPoint(); |
| 2343 | } |
| 2344 | } |
| 2345 | } |
| 2346 | |
| 2347 | void SkOpSegment::subDivideBounds(int start, int end, SkPathOpsBounds* bounds) const { |
| 2348 | SkPoint edge[4]; |
| 2349 | subDivide(start, end, edge); |
| 2350 | (bounds->*SetCurveBounds[fVerb])(edge); |
| 2351 | } |
| 2352 | |
| 2353 | bool SkOpSegment::tiny(const SkOpAngle* angle) const { |
| 2354 | int start = angle->start(); |
| 2355 | int end = angle->end(); |
| 2356 | const SkOpSpan& mSpan = fTs[SkMin32(start, end)]; |
| 2357 | return mSpan.fTiny; |
| 2358 | } |
| 2359 | |
| 2360 | void SkOpSegment::TrackOutside(SkTDArray<double>* outsideTs, double end, double start) { |
| 2361 | int outCount = outsideTs->count(); |
| 2362 | if (outCount == 0 || !approximately_negative(end - (*outsideTs)[outCount - 2])) { |
| 2363 | *outsideTs->append() = end; |
| 2364 | *outsideTs->append() = start; |
| 2365 | } |
| 2366 | } |
| 2367 | |
| 2368 | void SkOpSegment::undoneSpan(int* start, int* end) { |
| 2369 | size_t tCount = fTs.count(); |
| 2370 | size_t index; |
| 2371 | for (index = 0; index < tCount; ++index) { |
| 2372 | if (!fTs[index].fDone) { |
| 2373 | break; |
| 2374 | } |
| 2375 | } |
| 2376 | SkASSERT(index < tCount - 1); |
| 2377 | *start = index; |
| 2378 | double startT = fTs[index].fT; |
| 2379 | while (approximately_negative(fTs[++index].fT - startT)) |
| 2380 | SkASSERT(index < tCount); |
| 2381 | SkASSERT(index < tCount); |
| 2382 | *end = index; |
| 2383 | } |
| 2384 | |
| 2385 | int SkOpSegment::updateOppWinding(int index, int endIndex) const { |
| 2386 | int lesser = SkMin32(index, endIndex); |
| 2387 | int oppWinding = oppSum(lesser); |
| 2388 | int oppSpanWinding = oppSign(index, endIndex); |
| 2389 | if (oppSpanWinding && UseInnerWinding(oppWinding - oppSpanWinding, oppWinding) |
| 2390 | && oppWinding != SK_MaxS32) { |
| 2391 | oppWinding -= oppSpanWinding; |
| 2392 | } |
| 2393 | return oppWinding; |
| 2394 | } |
| 2395 | |
| 2396 | int SkOpSegment::updateOppWinding(const SkOpAngle* angle) const { |
| 2397 | int startIndex = angle->start(); |
| 2398 | int endIndex = angle->end(); |
| 2399 | return updateOppWinding(endIndex, startIndex); |
| 2400 | } |
| 2401 | |
| 2402 | int SkOpSegment::updateOppWindingReverse(const SkOpAngle* angle) const { |
| 2403 | int startIndex = angle->start(); |
| 2404 | int endIndex = angle->end(); |
| 2405 | return updateOppWinding(startIndex, endIndex); |
| 2406 | } |
| 2407 | |
| 2408 | int SkOpSegment::updateWinding(int index, int endIndex) const { |
| 2409 | int lesser = SkMin32(index, endIndex); |
| 2410 | int winding = windSum(lesser); |
| 2411 | int spanWinding = spanSign(index, endIndex); |
| 2412 | if (winding && UseInnerWinding(winding - spanWinding, winding) && winding != SK_MaxS32) { |
| 2413 | winding -= spanWinding; |
| 2414 | } |
| 2415 | return winding; |
| 2416 | } |
| 2417 | |
| 2418 | int SkOpSegment::updateWinding(const SkOpAngle* angle) const { |
| 2419 | int startIndex = angle->start(); |
| 2420 | int endIndex = angle->end(); |
| 2421 | return updateWinding(endIndex, startIndex); |
| 2422 | } |
| 2423 | |
| 2424 | int SkOpSegment::updateWindingReverse(const SkOpAngle* angle) const { |
| 2425 | int startIndex = angle->start(); |
| 2426 | int endIndex = angle->end(); |
| 2427 | return updateWinding(startIndex, endIndex); |
| 2428 | } |
| 2429 | |
| 2430 | int SkOpSegment::windingAtT(double tHit, int tIndex, bool crossOpp, SkScalar* dx) const { |
| 2431 | if (approximately_zero(tHit - t(tIndex))) { // if we hit the end of a span, disregard |
| 2432 | return SK_MinS32; |
| 2433 | } |
| 2434 | int winding = crossOpp ? oppSum(tIndex) : windSum(tIndex); |
| 2435 | SkASSERT(winding != SK_MinS32); |
| 2436 | int windVal = crossOpp ? oppValue(tIndex) : windValue(tIndex); |
| 2437 | #if DEBUG_WINDING_AT_T |
| 2438 | SkDebugf("%s oldWinding=%d windValue=%d", __FUNCTION__, winding, windVal); |
| 2439 | #endif |
| 2440 | // see if a + change in T results in a +/- change in X (compute x'(T)) |
| 2441 | *dx = (*CurveSlopeAtT[fVerb])(fPts, tHit).fX; |
| 2442 | if (fVerb > SkPath::kLine_Verb && approximately_zero(*dx)) { |
| 2443 | *dx = fPts[2].fX - fPts[1].fX - *dx; |
| 2444 | } |
| 2445 | if (*dx == 0) { |
| 2446 | #if DEBUG_WINDING_AT_T |
| 2447 | SkDebugf(" dx=0 winding=SK_MinS32\n"); |
| 2448 | #endif |
| 2449 | return SK_MinS32; |
| 2450 | } |
| 2451 | if (winding * *dx > 0) { // if same signs, result is negative |
| 2452 | winding += *dx > 0 ? -windVal : windVal; |
| 2453 | } |
| 2454 | #if DEBUG_WINDING_AT_T |
| 2455 | SkDebugf(" dx=%c winding=%d\n", *dx > 0 ? '+' : '-', winding); |
| 2456 | #endif |
| 2457 | return winding; |
| 2458 | } |
| 2459 | |
| 2460 | int SkOpSegment::windSum(const SkOpAngle* angle) const { |
| 2461 | int start = angle->start(); |
| 2462 | int end = angle->end(); |
| 2463 | int index = SkMin32(start, end); |
| 2464 | return windSum(index); |
| 2465 | } |
| 2466 | |
| 2467 | int SkOpSegment::windValue(const SkOpAngle* angle) const { |
| 2468 | int start = angle->start(); |
| 2469 | int end = angle->end(); |
| 2470 | int index = SkMin32(start, end); |
| 2471 | return windValue(index); |
| 2472 | } |
| 2473 | |
| 2474 | int SkOpSegment::windValueAt(double t) const { |
| 2475 | int count = fTs.count(); |
| 2476 | for (int index = 0; index < count; ++index) { |
| 2477 | if (fTs[index].fT == t) { |
| 2478 | return fTs[index].fWindValue; |
| 2479 | } |
| 2480 | } |
| 2481 | SkASSERT(0); |
| 2482 | return 0; |
| 2483 | } |
| 2484 | |
| 2485 | void SkOpSegment::zeroSpan(SkOpSpan* span) { |
| 2486 | SkASSERT(span->fWindValue > 0 || span->fOppValue > 0); |
| 2487 | span->fWindValue = 0; |
| 2488 | span->fOppValue = 0; |
| 2489 | SkASSERT(!span->fDone); |
| 2490 | span->fDone = true; |
| 2491 | ++fDoneSpans; |
| 2492 | } |
| 2493 | |
| 2494 | #if DEBUG_SWAP_TOP |
| 2495 | bool SkOpSegment::controlsContainedByEnds(int tStart, int tEnd) const { |
| 2496 | if (fVerb != SkPath::kCubic_Verb) { |
| 2497 | return false; |
| 2498 | } |
| 2499 | SkDCubic dst = SkDCubic::SubDivide(fPts, fTs[tStart].fT, fTs[tEnd].fT); |
| 2500 | return dst.controlsContainedByEnds(); |
| 2501 | } |
| 2502 | #endif |
| 2503 | |
| 2504 | #if DEBUG_CONCIDENT |
| 2505 | // SkASSERT if pair has not already been added |
| 2506 | void SkOpSegment::debugAddTPair(double t, const SkOpSegment& other, double otherT) const { |
| 2507 | for (int i = 0; i < fTs.count(); ++i) { |
| 2508 | if (fTs[i].fT == t && fTs[i].fOther == &other && fTs[i].fOtherT == otherT) { |
| 2509 | return; |
| 2510 | } |
| 2511 | } |
| 2512 | SkASSERT(0); |
| 2513 | } |
| 2514 | #endif |
| 2515 | |
| 2516 | #if DEBUG_CONCIDENT |
| 2517 | void SkOpSegment::debugShowTs() const { |
| 2518 | SkDebugf("%s id=%d", __FUNCTION__, fID); |
| 2519 | int lastWind = -1; |
| 2520 | int lastOpp = -1; |
| 2521 | double lastT = -1; |
| 2522 | int i; |
| 2523 | for (i = 0; i < fTs.count(); ++i) { |
| 2524 | bool change = lastT != fTs[i].fT || lastWind != fTs[i].fWindValue |
| 2525 | || lastOpp != fTs[i].fOppValue; |
| 2526 | if (change && lastWind >= 0) { |
| 2527 | SkDebugf(" t=%1.3g %1.9g,%1.9g w=%d o=%d]", |
| 2528 | lastT, xyAtT(i - 1).fX, xyAtT(i - 1).fY, lastWind, lastOpp); |
| 2529 | } |
| 2530 | if (change) { |
| 2531 | SkDebugf(" [o=%d", fTs[i].fOther->fID); |
| 2532 | lastWind = fTs[i].fWindValue; |
| 2533 | lastOpp = fTs[i].fOppValue; |
| 2534 | lastT = fTs[i].fT; |
| 2535 | } else { |
| 2536 | SkDebugf(",%d", fTs[i].fOther->fID); |
| 2537 | } |
| 2538 | } |
| 2539 | if (i <= 0) { |
| 2540 | return; |
| 2541 | } |
| 2542 | SkDebugf(" t=%1.3g %1.9g,%1.9g w=%d o=%d]", |
| 2543 | lastT, xyAtT(i - 1).fX, xyAtT(i - 1).fY, lastWind, lastOpp); |
| 2544 | if (fOperand) { |
| 2545 | SkDebugf(" operand"); |
| 2546 | } |
| 2547 | if (done()) { |
| 2548 | SkDebugf(" done"); |
| 2549 | } |
| 2550 | SkDebugf("\n"); |
| 2551 | } |
| 2552 | #endif |
| 2553 | |
| 2554 | #if DEBUG_ACTIVE_SPANS |
| 2555 | void SkOpSegment::debugShowActiveSpans() const { |
| 2556 | if (done()) { |
| 2557 | return; |
| 2558 | } |
| 2559 | #if DEBUG_ACTIVE_SPANS_SHORT_FORM |
| 2560 | int lastId = -1; |
| 2561 | double lastT = -1; |
| 2562 | #endif |
| 2563 | for (int i = 0; i < fTs.count(); ++i) { |
| 2564 | SkASSERT(&fTs[i] == &fTs[i].fOther->fTs[fTs[i].fOtherIndex].fOther-> |
| 2565 | fTs[fTs[i].fOther->fTs[fTs[i].fOtherIndex].fOtherIndex]); |
| 2566 | if (fTs[i].fDone) { |
| 2567 | continue; |
| 2568 | } |
| 2569 | #if DEBUG_ACTIVE_SPANS_SHORT_FORM |
| 2570 | if (lastId == fID && lastT == fTs[i].fT) { |
| 2571 | continue; |
| 2572 | } |
| 2573 | lastId = fID; |
| 2574 | lastT = fTs[i].fT; |
| 2575 | #endif |
| 2576 | SkDebugf("%s id=%d", __FUNCTION__, fID); |
| 2577 | SkDebugf(" (%1.9g,%1.9g", fPts[0].fX, fPts[0].fY); |
| 2578 | for (int vIndex = 1; vIndex <= fVerb; ++vIndex) { |
| 2579 | SkDebugf(" %1.9g,%1.9g", fPts[vIndex].fX, fPts[vIndex].fY); |
| 2580 | } |
| 2581 | const SkOpSpan* span = &fTs[i]; |
| 2582 | SkDebugf(") t=%1.9g (%1.9g,%1.9g)", span->fT, xAtT(span), yAtT(span)); |
| 2583 | int iEnd = i + 1; |
| 2584 | while (fTs[iEnd].fT < 1 && approximately_equal(fTs[i].fT, fTs[iEnd].fT)) { |
| 2585 | ++iEnd; |
| 2586 | } |
| 2587 | SkDebugf(" tEnd=%1.9g", fTs[iEnd].fT); |
| 2588 | const SkOpSegment* other = fTs[i].fOther; |
| 2589 | SkDebugf(" other=%d otherT=%1.9g otherIndex=%d windSum=", |
| 2590 | other->fID, fTs[i].fOtherT, fTs[i].fOtherIndex); |
| 2591 | if (fTs[i].fWindSum == SK_MinS32) { |
| 2592 | SkDebugf("?"); |
| 2593 | } else { |
| 2594 | SkDebugf("%d", fTs[i].fWindSum); |
| 2595 | } |
| 2596 | SkDebugf(" windValue=%d oppValue=%d\n", fTs[i].fWindValue, fTs[i].fOppValue); |
| 2597 | } |
| 2598 | } |
| 2599 | #endif |
| 2600 | |
| 2601 | |
| 2602 | #if DEBUG_MARK_DONE || DEBUG_UNSORTABLE |
| 2603 | void SkOpSegment::debugShowNewWinding(const char* fun, const SkOpSpan& span, int winding) { |
| 2604 | const SkPoint& pt = xyAtT(&span); |
| 2605 | SkDebugf("%s id=%d", fun, fID); |
| 2606 | SkDebugf(" (%1.9g,%1.9g", fPts[0].fX, fPts[0].fY); |
| 2607 | for (int vIndex = 1; vIndex <= fVerb; ++vIndex) { |
| 2608 | SkDebugf(" %1.9g,%1.9g", fPts[vIndex].fX, fPts[vIndex].fY); |
| 2609 | } |
| 2610 | SkASSERT(&span == &span.fOther->fTs[span.fOtherIndex].fOther-> |
| 2611 | fTs[span.fOther->fTs[span.fOtherIndex].fOtherIndex]); |
| 2612 | SkDebugf(") t=%1.9g [%d] (%1.9g,%1.9g) tEnd=%1.9g newWindSum=%d windSum=", |
| 2613 | span.fT, span.fOther->fTs[span.fOtherIndex].fOtherIndex, pt.fX, pt.fY, |
| 2614 | (&span)[1].fT, winding); |
| 2615 | if (span.fWindSum == SK_MinS32) { |
| 2616 | SkDebugf("?"); |
| 2617 | } else { |
| 2618 | SkDebugf("%d", span.fWindSum); |
| 2619 | } |
| 2620 | SkDebugf(" windValue=%d\n", span.fWindValue); |
| 2621 | } |
| 2622 | |
| 2623 | void SkOpSegment::debugShowNewWinding(const char* fun, const SkOpSpan& span, int winding, |
| 2624 | int oppWinding) { |
| 2625 | const SkPoint& pt = xyAtT(&span); |
| 2626 | SkDebugf("%s id=%d", fun, fID); |
| 2627 | SkDebugf(" (%1.9g,%1.9g", fPts[0].fX, fPts[0].fY); |
| 2628 | for (int vIndex = 1; vIndex <= fVerb; ++vIndex) { |
| 2629 | SkDebugf(" %1.9g,%1.9g", fPts[vIndex].fX, fPts[vIndex].fY); |
| 2630 | } |
| 2631 | SkASSERT(&span == &span.fOther->fTs[span.fOtherIndex].fOther-> |
| 2632 | fTs[span.fOther->fTs[span.fOtherIndex].fOtherIndex]); |
| 2633 | SkDebugf(") t=%1.9g [%d] (%1.9g,%1.9g) tEnd=%1.9g newWindSum=%d newOppSum=%d oppSum=", |
| 2634 | span.fT, span.fOther->fTs[span.fOtherIndex].fOtherIndex, pt.fX, pt.fY, |
| 2635 | (&span)[1].fT, winding, oppWinding); |
| 2636 | if (span.fOppSum == SK_MinS32) { |
| 2637 | SkDebugf("?"); |
| 2638 | } else { |
| 2639 | SkDebugf("%d", span.fOppSum); |
| 2640 | } |
| 2641 | SkDebugf(" windSum="); |
| 2642 | if (span.fWindSum == SK_MinS32) { |
| 2643 | SkDebugf("?"); |
| 2644 | } else { |
| 2645 | SkDebugf("%d", span.fWindSum); |
| 2646 | } |
| 2647 | SkDebugf(" windValue=%d\n", span.fWindValue); |
| 2648 | } |
| 2649 | #endif |
| 2650 | |
| 2651 | #if DEBUG_SORT || DEBUG_SWAP_TOP |
| 2652 | void SkOpSegment::debugShowSort(const char* fun, const SkTDArray<SkOpAngle*>& angles, int first, |
| 2653 | const int contourWinding, const int oppContourWinding) const { |
| 2654 | if (--gDebugSortCount < 0) { |
| 2655 | return; |
| 2656 | } |
| 2657 | SkASSERT(angles[first]->segment() == this); |
| 2658 | SkASSERT(angles.count() > 1); |
| 2659 | int lastSum = contourWinding; |
| 2660 | int oppLastSum = oppContourWinding; |
| 2661 | const SkOpAngle* firstAngle = angles[first]; |
| 2662 | int windSum = lastSum - spanSign(firstAngle); |
| 2663 | int oppoSign = oppSign(firstAngle); |
| 2664 | int oppWindSum = oppLastSum - oppoSign; |
| 2665 | #define WIND_AS_STRING(x) char x##Str[12]; if (!valid_wind(x)) strcpy(x##Str, "?"); \ |
| 2666 | else snprintf(x##Str, sizeof(x##Str), "%d", x) |
| 2667 | WIND_AS_STRING(contourWinding); |
| 2668 | WIND_AS_STRING(oppContourWinding); |
| 2669 | SkDebugf("%s %s contourWinding=%s oppContourWinding=%s sign=%d\n", fun, __FUNCTION__, |
| 2670 | contourWindingStr, oppContourWindingStr, spanSign(angles[first])); |
| 2671 | int index = first; |
| 2672 | bool firstTime = true; |
| 2673 | do { |
| 2674 | const SkOpAngle& angle = *angles[index]; |
| 2675 | const SkOpSegment& segment = *angle.segment(); |
| 2676 | int start = angle.start(); |
| 2677 | int end = angle.end(); |
| 2678 | const SkOpSpan& sSpan = segment.fTs[start]; |
| 2679 | const SkOpSpan& eSpan = segment.fTs[end]; |
| 2680 | const SkOpSpan& mSpan = segment.fTs[SkMin32(start, end)]; |
| 2681 | bool opp = segment.fOperand ^ fOperand; |
| 2682 | if (!firstTime) { |
| 2683 | oppoSign = segment.oppSign(&angle); |
| 2684 | if (opp) { |
| 2685 | oppLastSum = oppWindSum; |
| 2686 | oppWindSum -= segment.spanSign(&angle); |
| 2687 | if (oppoSign) { |
| 2688 | lastSum = windSum; |
| 2689 | windSum -= oppoSign; |
| 2690 | } |
| 2691 | } else { |
| 2692 | lastSum = windSum; |
| 2693 | windSum -= segment.spanSign(&angle); |
| 2694 | if (oppoSign) { |
| 2695 | oppLastSum = oppWindSum; |
| 2696 | oppWindSum -= oppoSign; |
| 2697 | } |
| 2698 | } |
| 2699 | } |
| 2700 | SkDebugf("%s [%d] %s", __FUNCTION__, index, |
| 2701 | angle.unsortable() ? "*** UNSORTABLE *** " : ""); |
| 2702 | #if COMPACT_DEBUG_SORT |
| 2703 | SkDebugf("id=%d %s start=%d (%1.9g,%,1.9g) end=%d (%1.9g,%,1.9g)", |
| 2704 | segment.fID, kLVerbStr[segment.fVerb], |
| 2705 | start, segment.xAtT(&sSpan), segment.yAtT(&sSpan), end, |
| 2706 | segment.xAtT(&eSpan), segment.yAtT(&eSpan)); |
| 2707 | #else |
| 2708 | switch (segment.fVerb) { |
| 2709 | case SkPath::kLine_Verb: |
| 2710 | SkDebugf(LINE_DEBUG_STR, LINE_DEBUG_DATA(segment.fPts)); |
| 2711 | break; |
| 2712 | case SkPath::kQuad_Verb: |
| 2713 | SkDebugf(QUAD_DEBUG_STR, QUAD_DEBUG_DATA(segment.fPts)); |
| 2714 | break; |
| 2715 | case SkPath::kCubic_Verb: |
| 2716 | SkDebugf(CUBIC_DEBUG_STR, CUBIC_DEBUG_DATA(segment.fPts)); |
| 2717 | break; |
| 2718 | default: |
| 2719 | SkASSERT(0); |
| 2720 | } |
| 2721 | SkDebugf(" tStart=%1.9g tEnd=%1.9g", sSpan.fT, eSpan.fT); |
| 2722 | #endif |
| 2723 | SkDebugf(" sign=%d windValue=%d windSum=", angle.sign(), mSpan.fWindValue); |
| 2724 | #ifdef SK_DEBUG |
| 2725 | winding_printf(mSpan.fWindSum); |
| 2726 | #endif |
| 2727 | int last, wind; |
| 2728 | if (opp) { |
| 2729 | last = oppLastSum; |
| 2730 | wind = oppWindSum; |
| 2731 | } else { |
| 2732 | last = lastSum; |
| 2733 | wind = windSum; |
| 2734 | } |
| 2735 | bool useInner = valid_wind(last) && valid_wind(wind) && UseInnerWinding(last, wind); |
| 2736 | WIND_AS_STRING(last); |
| 2737 | WIND_AS_STRING(wind); |
| 2738 | WIND_AS_STRING(lastSum); |
| 2739 | WIND_AS_STRING(oppLastSum); |
| 2740 | WIND_AS_STRING(windSum); |
| 2741 | WIND_AS_STRING(oppWindSum); |
| 2742 | #undef WIND_AS_STRING |
| 2743 | if (!oppoSign) { |
| 2744 | SkDebugf(" %s->%s (max=%s)", lastStr, windStr, useInner ? windStr : lastStr); |
| 2745 | } else { |
| 2746 | SkDebugf(" %s->%s (%s->%s)", lastStr, windStr, opp ? lastSumStr : oppLastSumStr, |
| 2747 | opp ? windSumStr : oppWindSumStr); |
| 2748 | } |
| 2749 | SkDebugf(" done=%d tiny=%d opp=%d\n", mSpan.fDone, mSpan.fTiny, opp); |
| 2750 | #if false && DEBUG_ANGLE |
| 2751 | angle.debugShow(segment.xyAtT(&sSpan)); |
| 2752 | #endif |
| 2753 | ++index; |
| 2754 | if (index == angles.count()) { |
| 2755 | index = 0; |
| 2756 | } |
| 2757 | if (firstTime) { |
| 2758 | firstTime = false; |
| 2759 | } |
| 2760 | } while (index != first); |
| 2761 | } |
| 2762 | |
| 2763 | void SkOpSegment::debugShowSort(const char* fun, const SkTDArray<SkOpAngle*>& angles, int first) { |
| 2764 | const SkOpAngle* firstAngle = angles[first]; |
| 2765 | const SkOpSegment* segment = firstAngle->segment(); |
| 2766 | int winding = segment->updateWinding(firstAngle); |
| 2767 | int oppWinding = segment->updateOppWinding(firstAngle); |
| 2768 | debugShowSort(fun, angles, first, winding, oppWinding); |
| 2769 | } |
| 2770 | |
| 2771 | #endif |
| 2772 | |
| 2773 | #if DEBUG_SHOW_WINDING |
| 2774 | int SkOpSegment::debugShowWindingValues(int slotCount, int ofInterest) const { |
| 2775 | if (!(1 << fID & ofInterest)) { |
| 2776 | return 0; |
| 2777 | } |
| 2778 | int sum = 0; |
| 2779 | SkTDArray<char> slots; |
| 2780 | slots.setCount(slotCount * 2); |
| 2781 | memset(slots.begin(), ' ', slotCount * 2); |
| 2782 | for (int i = 0; i < fTs.count(); ++i) { |
| 2783 | // if (!(1 << fTs[i].fOther->fID & ofInterest)) { |
| 2784 | // continue; |
| 2785 | // } |
| 2786 | sum += fTs[i].fWindValue; |
| 2787 | slots[fTs[i].fOther->fID - 1] = as_digit(fTs[i].fWindValue); |
| 2788 | sum += fTs[i].fOppValue; |
| 2789 | slots[slotCount + fTs[i].fOther->fID - 1] = as_digit(fTs[i].fOppValue); |
| 2790 | } |
| 2791 | SkDebugf("%s id=%2d %.*s | %.*s\n", __FUNCTION__, fID, slotCount, slots.begin(), slotCount, |
| 2792 | slots.begin() + slotCount); |
| 2793 | return sum; |
| 2794 | } |
| 2795 | #endif |