caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2013 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
reed | 0dc4dd6 | 2015-03-24 13:55:33 -0700 | [diff] [blame^] | 7 | #include "SkIntersections.h" |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 8 | #include "SkOpContour.h" |
| 9 | #include "SkPathWriter.h" |
commit-bot@chromium.org | b76d3b6 | 2013-04-22 19:55:19 +0000 | [diff] [blame] | 10 | #include "SkTSort.h" |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 11 | |
reed | 0dc4dd6 | 2015-03-24 13:55:33 -0700 | [diff] [blame^] | 12 | bool SkOpContour::addCoincident(int index, SkOpContour* other, int otherIndex, |
| 13 | const SkIntersections& ts, bool swap) { |
| 14 | SkPoint pt0 = ts.pt(0).asSkPoint(); |
| 15 | SkPoint pt1 = ts.pt(1).asSkPoint(); |
| 16 | if (pt0 == pt1 || ts[0][0] == ts[0][1] || ts[1][0] == ts[1][1]) { |
| 17 | // FIXME: one could imagine a case where it would be incorrect to ignore this |
| 18 | // suppose two self-intersecting cubics overlap to be coincident -- |
| 19 | // this needs to check that by some measure the t values are far enough apart |
| 20 | // or needs to check to see if the self-intersection bit was set on the cubic segment |
| 21 | return false; |
caryclark@google.com | 7eaa53d | 2013-10-02 14:49:34 +0000 | [diff] [blame] | 22 | } |
reed | 0dc4dd6 | 2015-03-24 13:55:33 -0700 | [diff] [blame^] | 23 | SkCoincidence& coincidence = fCoincidences.push_back(); |
| 24 | coincidence.fOther = other; |
| 25 | coincidence.fSegments[0] = index; |
| 26 | coincidence.fSegments[1] = otherIndex; |
| 27 | coincidence.fTs[swap][0] = ts[0][0]; |
| 28 | coincidence.fTs[swap][1] = ts[0][1]; |
| 29 | coincidence.fTs[!swap][0] = ts[1][0]; |
| 30 | coincidence.fTs[!swap][1] = ts[1][1]; |
| 31 | coincidence.fPts[swap][0] = pt0; |
| 32 | coincidence.fPts[swap][1] = pt1; |
| 33 | bool nearStart = ts.nearlySame(0); |
| 34 | bool nearEnd = ts.nearlySame(1); |
| 35 | coincidence.fPts[!swap][0] = nearStart ? ts.pt2(0).asSkPoint() : pt0; |
| 36 | coincidence.fPts[!swap][1] = nearEnd ? ts.pt2(1).asSkPoint() : pt1; |
| 37 | coincidence.fNearly[0] = nearStart; |
| 38 | coincidence.fNearly[1] = nearEnd; |
| 39 | return true; |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 40 | } |
| 41 | |
reed | 0dc4dd6 | 2015-03-24 13:55:33 -0700 | [diff] [blame^] | 42 | SkOpSegment* SkOpContour::nonVerticalSegment(int* start, int* end) { |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 43 | int segmentCount = fSortedSegments.count(); |
| 44 | SkASSERT(segmentCount > 0); |
| 45 | for (int sortedIndex = fFirstSorted; sortedIndex < segmentCount; ++sortedIndex) { |
| 46 | SkOpSegment* testSegment = fSortedSegments[sortedIndex]; |
| 47 | if (testSegment->done()) { |
| 48 | continue; |
| 49 | } |
reed | 0dc4dd6 | 2015-03-24 13:55:33 -0700 | [diff] [blame^] | 50 | *start = *end = 0; |
| 51 | while (testSegment->nextCandidate(start, end)) { |
| 52 | if (!testSegment->isVertical(*start, *end)) { |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 53 | return testSegment; |
| 54 | } |
| 55 | } |
| 56 | } |
| 57 | return NULL; |
| 58 | } |
| 59 | |
reed | 0dc4dd6 | 2015-03-24 13:55:33 -0700 | [diff] [blame^] | 60 | // if one is very large the smaller may have collapsed to nothing |
| 61 | static void bump_out_close_span(double* startTPtr, double* endTPtr) { |
| 62 | double startT = *startTPtr; |
| 63 | double endT = *endTPtr; |
| 64 | if (approximately_negative(endT - startT)) { |
| 65 | if (endT <= 1 - FLT_EPSILON) { |
| 66 | *endTPtr += FLT_EPSILON; |
| 67 | SkASSERT(*endTPtr <= 1); |
| 68 | } else { |
| 69 | *startTPtr -= FLT_EPSILON; |
| 70 | SkASSERT(*startTPtr >= 0); |
| 71 | } |
| 72 | } |
| 73 | } |
| 74 | |
| 75 | // first pass, add missing T values |
| 76 | // second pass, determine winding values of overlaps |
| 77 | void SkOpContour::addCoincidentPoints() { |
| 78 | int count = fCoincidences.count(); |
| 79 | for (int index = 0; index < count; ++index) { |
| 80 | SkCoincidence& coincidence = fCoincidences[index]; |
| 81 | int thisIndex = coincidence.fSegments[0]; |
| 82 | SkOpSegment& thisOne = fSegments[thisIndex]; |
| 83 | SkOpContour* otherContour = coincidence.fOther; |
| 84 | int otherIndex = coincidence.fSegments[1]; |
| 85 | SkOpSegment& other = otherContour->fSegments[otherIndex]; |
| 86 | if ((thisOne.done() || other.done()) && thisOne.complete() && other.complete()) { |
| 87 | // OPTIMIZATION: remove from array |
| 88 | continue; |
| 89 | } |
| 90 | #if DEBUG_CONCIDENT |
| 91 | thisOne.debugShowTs("-"); |
| 92 | other.debugShowTs("o"); |
| 93 | #endif |
| 94 | double startT = coincidence.fTs[0][0]; |
| 95 | double endT = coincidence.fTs[0][1]; |
| 96 | bool startSwapped, oStartSwapped, cancelers; |
| 97 | if ((cancelers = startSwapped = startT > endT)) { |
| 98 | SkTSwap(startT, endT); |
| 99 | } |
| 100 | bump_out_close_span(&startT, &endT); |
| 101 | SkASSERT(!approximately_negative(endT - startT)); |
| 102 | double oStartT = coincidence.fTs[1][0]; |
| 103 | double oEndT = coincidence.fTs[1][1]; |
| 104 | if ((oStartSwapped = oStartT > oEndT)) { |
| 105 | SkTSwap(oStartT, oEndT); |
| 106 | cancelers ^= true; |
| 107 | } |
| 108 | bump_out_close_span(&oStartT, &oEndT); |
| 109 | SkASSERT(!approximately_negative(oEndT - oStartT)); |
| 110 | const SkPoint& startPt = coincidence.fPts[0][startSwapped]; |
| 111 | if (cancelers) { |
| 112 | // make sure startT and endT have t entries |
| 113 | if (startT > 0 || oEndT < 1 |
| 114 | || thisOne.isMissing(startT, startPt) || other.isMissing(oEndT, startPt)) { |
| 115 | thisOne.addTPair(startT, &other, oEndT, true, startPt, |
| 116 | coincidence.fPts[1][startSwapped]); |
| 117 | } |
| 118 | const SkPoint& oStartPt = coincidence.fPts[1][oStartSwapped]; |
| 119 | if (oStartT > 0 || endT < 1 |
| 120 | || thisOne.isMissing(endT, oStartPt) || other.isMissing(oStartT, oStartPt)) { |
| 121 | other.addTPair(oStartT, &thisOne, endT, true, oStartPt, |
| 122 | coincidence.fPts[0][oStartSwapped]); |
| 123 | } |
| 124 | } else { |
| 125 | if (startT > 0 || oStartT > 0 |
| 126 | || thisOne.isMissing(startT, startPt) || other.isMissing(oStartT, startPt)) { |
| 127 | thisOne.addTPair(startT, &other, oStartT, true, startPt, |
| 128 | coincidence.fPts[1][startSwapped]); |
| 129 | } |
| 130 | const SkPoint& oEndPt = coincidence.fPts[1][!oStartSwapped]; |
| 131 | if (endT < 1 || oEndT < 1 |
| 132 | || thisOne.isMissing(endT, oEndPt) || other.isMissing(oEndT, oEndPt)) { |
| 133 | other.addTPair(oEndT, &thisOne, endT, true, oEndPt, |
| 134 | coincidence.fPts[0][!oStartSwapped]); |
| 135 | } |
| 136 | } |
| 137 | #if DEBUG_CONCIDENT |
| 138 | thisOne.debugShowTs("+"); |
| 139 | other.debugShowTs("o"); |
| 140 | #endif |
| 141 | } |
| 142 | // if there are multiple pairs of coincidence that share an edge, see if the opposite |
| 143 | // are also coincident |
| 144 | for (int index = 0; index < count - 1; ++index) { |
| 145 | const SkCoincidence& coincidence = fCoincidences[index]; |
| 146 | int thisIndex = coincidence.fSegments[0]; |
| 147 | SkOpContour* otherContour = coincidence.fOther; |
| 148 | int otherIndex = coincidence.fSegments[1]; |
| 149 | for (int idx2 = 1; idx2 < count; ++idx2) { |
| 150 | const SkCoincidence& innerCoin = fCoincidences[idx2]; |
| 151 | int innerThisIndex = innerCoin.fSegments[0]; |
| 152 | if (thisIndex == innerThisIndex) { |
| 153 | checkCoincidentPair(coincidence, 1, innerCoin, 1, false); |
| 154 | } |
| 155 | if (this == otherContour && otherIndex == innerThisIndex) { |
| 156 | checkCoincidentPair(coincidence, 0, innerCoin, 1, false); |
| 157 | } |
| 158 | SkOpContour* innerOtherContour = innerCoin.fOther; |
| 159 | innerThisIndex = innerCoin.fSegments[1]; |
| 160 | if (this == innerOtherContour && thisIndex == innerThisIndex) { |
| 161 | checkCoincidentPair(coincidence, 1, innerCoin, 0, false); |
| 162 | } |
| 163 | if (otherContour == innerOtherContour && otherIndex == innerThisIndex) { |
| 164 | checkCoincidentPair(coincidence, 0, innerCoin, 0, false); |
| 165 | } |
| 166 | } |
| 167 | } |
| 168 | } |
| 169 | |
| 170 | bool SkOpContour::addPartialCoincident(int index, SkOpContour* other, int otherIndex, |
| 171 | const SkIntersections& ts, int ptIndex, bool swap) { |
| 172 | SkPoint pt0 = ts.pt(ptIndex).asSkPoint(); |
| 173 | SkPoint pt1 = ts.pt(ptIndex + 1).asSkPoint(); |
| 174 | if (SkDPoint::ApproximatelyEqual(pt0, pt1)) { |
| 175 | // FIXME: one could imagine a case where it would be incorrect to ignore this |
| 176 | // suppose two self-intersecting cubics overlap to form a partial coincidence -- |
| 177 | // although it isn't clear why the regular coincidence could wouldn't pick this up |
| 178 | // this is exceptional enough to ignore for now |
| 179 | return false; |
| 180 | } |
| 181 | SkCoincidence& coincidence = fPartialCoincidences.push_back(); |
| 182 | coincidence.fOther = other; |
| 183 | coincidence.fSegments[0] = index; |
| 184 | coincidence.fSegments[1] = otherIndex; |
| 185 | coincidence.fTs[swap][0] = ts[0][ptIndex]; |
| 186 | coincidence.fTs[swap][1] = ts[0][ptIndex + 1]; |
| 187 | coincidence.fTs[!swap][0] = ts[1][ptIndex]; |
| 188 | coincidence.fTs[!swap][1] = ts[1][ptIndex + 1]; |
| 189 | coincidence.fPts[0][0] = coincidence.fPts[1][0] = pt0; |
| 190 | coincidence.fPts[0][1] = coincidence.fPts[1][1] = pt1; |
| 191 | coincidence.fNearly[0] = 0; |
| 192 | coincidence.fNearly[1] = 0; |
| 193 | return true; |
| 194 | } |
| 195 | |
| 196 | void SkOpContour::align(const SkOpSegment::AlignedSpan& aligned, bool swap, |
| 197 | SkCoincidence* coincidence) { |
| 198 | for (int idx2 = 0; idx2 < 2; ++idx2) { |
| 199 | if (coincidence->fPts[0][idx2] == aligned.fOldPt |
| 200 | && coincidence->fTs[swap][idx2] == aligned.fOldT) { |
| 201 | SkASSERT(SkDPoint::RoughlyEqual(coincidence->fPts[0][idx2], aligned.fPt)); |
| 202 | coincidence->fPts[0][idx2] = aligned.fPt; |
| 203 | SkASSERT(way_roughly_equal(coincidence->fTs[swap][idx2], aligned.fT)); |
| 204 | coincidence->fTs[swap][idx2] = aligned.fT; |
| 205 | } |
| 206 | } |
| 207 | } |
| 208 | |
| 209 | void SkOpContour::alignCoincidence(const SkOpSegment::AlignedSpan& aligned, |
| 210 | SkTArray<SkCoincidence, true>* coincidences) { |
| 211 | int count = coincidences->count(); |
| 212 | for (int index = 0; index < count; ++index) { |
| 213 | SkCoincidence& coincidence = (*coincidences)[index]; |
| 214 | int thisIndex = coincidence.fSegments[0]; |
| 215 | const SkOpSegment* thisOne = &fSegments[thisIndex]; |
| 216 | const SkOpContour* otherContour = coincidence.fOther; |
| 217 | int otherIndex = coincidence.fSegments[1]; |
| 218 | const SkOpSegment* other = &otherContour->fSegments[otherIndex]; |
| 219 | if (thisOne == aligned.fOther1 && other == aligned.fOther2) { |
| 220 | align(aligned, false, &coincidence); |
| 221 | } else if (thisOne == aligned.fOther2 && other == aligned.fOther1) { |
| 222 | align(aligned, true, &coincidence); |
| 223 | } |
| 224 | } |
| 225 | } |
| 226 | |
| 227 | void SkOpContour::alignTPt(int segmentIndex, const SkOpContour* other, int otherIndex, |
| 228 | bool swap, int tIndex, SkIntersections* ts, SkPoint* point) const { |
| 229 | int zeroPt; |
| 230 | if ((zeroPt = alignT(swap, tIndex, ts)) >= 0) { |
| 231 | alignPt(segmentIndex, point, zeroPt); |
| 232 | } |
| 233 | if ((zeroPt = other->alignT(!swap, tIndex, ts)) >= 0) { |
| 234 | other->alignPt(otherIndex, point, zeroPt); |
| 235 | } |
| 236 | } |
| 237 | |
| 238 | void SkOpContour::alignPt(int index, SkPoint* point, int zeroPt) const { |
| 239 | const SkOpSegment& segment = fSegments[index]; |
| 240 | if (0 == zeroPt) { |
| 241 | *point = segment.pts()[0]; |
| 242 | } else { |
| 243 | *point = segment.pts()[SkPathOpsVerbToPoints(segment.verb())]; |
| 244 | } |
| 245 | } |
| 246 | |
| 247 | int SkOpContour::alignT(bool swap, int tIndex, SkIntersections* ts) const { |
| 248 | double tVal = (*ts)[swap][tIndex]; |
| 249 | if (tVal != 0 && precisely_zero(tVal)) { |
| 250 | ts->set(swap, tIndex, 0); |
| 251 | return 0; |
| 252 | } |
| 253 | if (tVal != 1 && precisely_equal(tVal, 1)) { |
| 254 | ts->set(swap, tIndex, 1); |
| 255 | return 1; |
| 256 | } |
| 257 | return -1; |
| 258 | } |
| 259 | |
| 260 | bool SkOpContour::calcAngles() { |
| 261 | int segmentCount = fSegments.count(); |
| 262 | for (int test = 0; test < segmentCount; ++test) { |
| 263 | if (!fSegments[test].calcAngles()) { |
| 264 | return false; |
| 265 | } |
| 266 | } |
| 267 | return true; |
| 268 | } |
| 269 | |
| 270 | bool SkOpContour::calcCoincidentWinding() { |
| 271 | int count = fCoincidences.count(); |
| 272 | #if DEBUG_CONCIDENT |
| 273 | if (count > 0) { |
| 274 | SkDebugf("%s count=%d\n", __FUNCTION__, count); |
| 275 | } |
| 276 | #endif |
| 277 | for (int index = 0; index < count; ++index) { |
| 278 | SkCoincidence& coincidence = fCoincidences[index]; |
| 279 | if (!calcCommonCoincidentWinding(coincidence)) { |
| 280 | return false; |
| 281 | } |
| 282 | } |
| 283 | return true; |
| 284 | } |
| 285 | |
| 286 | void SkOpContour::calcPartialCoincidentWinding() { |
| 287 | int count = fPartialCoincidences.count(); |
| 288 | #if DEBUG_CONCIDENT |
| 289 | if (count > 0) { |
| 290 | SkDebugf("%s count=%d\n", __FUNCTION__, count); |
| 291 | } |
| 292 | #endif |
| 293 | for (int index = 0; index < count; ++index) { |
| 294 | SkCoincidence& coincidence = fPartialCoincidences[index]; |
| 295 | calcCommonCoincidentWinding(coincidence); |
| 296 | } |
| 297 | // if there are multiple pairs of partial coincidence that share an edge, see if the opposite |
| 298 | // are also coincident |
| 299 | for (int index = 0; index < count - 1; ++index) { |
| 300 | const SkCoincidence& coincidence = fPartialCoincidences[index]; |
| 301 | int thisIndex = coincidence.fSegments[0]; |
| 302 | SkOpContour* otherContour = coincidence.fOther; |
| 303 | int otherIndex = coincidence.fSegments[1]; |
| 304 | for (int idx2 = 1; idx2 < count; ++idx2) { |
| 305 | const SkCoincidence& innerCoin = fPartialCoincidences[idx2]; |
| 306 | int innerThisIndex = innerCoin.fSegments[0]; |
| 307 | if (thisIndex == innerThisIndex) { |
| 308 | checkCoincidentPair(coincidence, 1, innerCoin, 1, true); |
| 309 | } |
| 310 | if (this == otherContour && otherIndex == innerThisIndex) { |
| 311 | checkCoincidentPair(coincidence, 0, innerCoin, 1, true); |
| 312 | } |
| 313 | SkOpContour* innerOtherContour = innerCoin.fOther; |
| 314 | innerThisIndex = innerCoin.fSegments[1]; |
| 315 | if (this == innerOtherContour && thisIndex == innerThisIndex) { |
| 316 | checkCoincidentPair(coincidence, 1, innerCoin, 0, true); |
| 317 | } |
| 318 | if (otherContour == innerOtherContour && otherIndex == innerThisIndex) { |
| 319 | checkCoincidentPair(coincidence, 0, innerCoin, 0, true); |
| 320 | } |
| 321 | } |
| 322 | } |
| 323 | } |
| 324 | |
| 325 | void SkOpContour::checkCoincidentPair(const SkCoincidence& oneCoin, int oneIdx, |
| 326 | const SkCoincidence& twoCoin, int twoIdx, bool partial) { |
| 327 | SkASSERT((oneIdx ? this : oneCoin.fOther) == (twoIdx ? this : twoCoin.fOther)); |
| 328 | SkASSERT(oneCoin.fSegments[!oneIdx] == twoCoin.fSegments[!twoIdx]); |
| 329 | // look for common overlap |
| 330 | double min = SK_ScalarMax; |
| 331 | double max = SK_ScalarMin; |
| 332 | double min1 = oneCoin.fTs[!oneIdx][0]; |
| 333 | double max1 = oneCoin.fTs[!oneIdx][1]; |
| 334 | double min2 = twoCoin.fTs[!twoIdx][0]; |
| 335 | double max2 = twoCoin.fTs[!twoIdx][1]; |
| 336 | bool cancelers = (min1 < max1) != (min2 < max2); |
| 337 | if (min1 > max1) { |
| 338 | SkTSwap(min1, max1); |
| 339 | } |
| 340 | if (min2 > max2) { |
| 341 | SkTSwap(min2, max2); |
| 342 | } |
| 343 | if (between(min1, min2, max1)) { |
| 344 | min = min2; |
| 345 | } |
| 346 | if (between(min1, max2, max1)) { |
| 347 | max = max2; |
| 348 | } |
| 349 | if (between(min2, min1, max2)) { |
| 350 | min = SkTMin(min, min1); |
| 351 | } |
| 352 | if (between(min2, max1, max2)) { |
| 353 | max = SkTMax(max, max1); |
| 354 | } |
| 355 | if (min >= max) { |
| 356 | return; // no overlap |
| 357 | } |
| 358 | // look to see if opposite are different segments |
| 359 | int seg1Index = oneCoin.fSegments[oneIdx]; |
| 360 | int seg2Index = twoCoin.fSegments[twoIdx]; |
| 361 | if (seg1Index == seg2Index) { |
| 362 | return; |
| 363 | } |
| 364 | SkOpContour* contour1 = oneIdx ? oneCoin.fOther : this; |
| 365 | SkOpContour* contour2 = twoIdx ? twoCoin.fOther : this; |
| 366 | SkOpSegment* segment1 = &contour1->fSegments[seg1Index]; |
| 367 | SkOpSegment* segment2 = &contour2->fSegments[seg2Index]; |
| 368 | // find opposite t value ranges corresponding to reference min/max range |
| 369 | const SkOpContour* refContour = oneIdx ? this : oneCoin.fOther; |
| 370 | const int refSegIndex = oneCoin.fSegments[!oneIdx]; |
| 371 | const SkOpSegment* refSegment = &refContour->fSegments[refSegIndex]; |
| 372 | int seg1Start = segment1->findOtherT(min, refSegment); |
| 373 | int seg1End = segment1->findOtherT(max, refSegment); |
| 374 | int seg2Start = segment2->findOtherT(min, refSegment); |
| 375 | int seg2End = segment2->findOtherT(max, refSegment); |
| 376 | // if the opposite pairs already contain min/max, we're done |
| 377 | if (seg1Start >= 0 && seg1End >= 0 && seg2Start >= 0 && seg2End >= 0) { |
| 378 | return; |
| 379 | } |
| 380 | double loEnd = SkTMin(min1, min2); |
| 381 | double hiEnd = SkTMax(max1, max2); |
| 382 | // insert the missing coincident point(s) |
| 383 | double missingT1 = -1; |
| 384 | double otherT1 = -1; |
| 385 | if (seg1Start < 0) { |
| 386 | if (seg2Start < 0) { |
| 387 | return; |
| 388 | } |
| 389 | missingT1 = segment1->calcMissingTStart(refSegment, loEnd, min, max, hiEnd, |
| 390 | segment2, seg1End); |
| 391 | if (missingT1 < 0) { |
| 392 | return; |
| 393 | } |
| 394 | const SkOpSpan* missingSpan = &segment2->span(seg2Start); |
| 395 | otherT1 = missingSpan->fT; |
| 396 | } else if (seg2Start < 0) { |
| 397 | SkASSERT(seg1Start >= 0); |
| 398 | missingT1 = segment2->calcMissingTStart(refSegment, loEnd, min, max, hiEnd, |
| 399 | segment1, seg2End); |
| 400 | if (missingT1 < 0) { |
| 401 | return; |
| 402 | } |
| 403 | const SkOpSpan* missingSpan = &segment1->span(seg1Start); |
| 404 | otherT1 = missingSpan->fT; |
| 405 | } |
| 406 | SkPoint missingPt1; |
| 407 | SkOpSegment* addTo1 = NULL; |
| 408 | SkOpSegment* addOther1 = seg1Start < 0 ? segment2 : segment1; |
| 409 | int minTIndex = refSegment->findExactT(min, addOther1); |
| 410 | SkASSERT(minTIndex >= 0); |
| 411 | if (missingT1 >= 0) { |
| 412 | missingPt1 = refSegment->span(minTIndex).fPt; |
| 413 | addTo1 = seg1Start < 0 ? segment1 : segment2; |
| 414 | } |
| 415 | double missingT2 = -1; |
| 416 | double otherT2 = -1; |
| 417 | if (seg1End < 0) { |
| 418 | if (seg2End < 0) { |
| 419 | return; |
| 420 | } |
| 421 | missingT2 = segment1->calcMissingTEnd(refSegment, loEnd, min, max, hiEnd, |
| 422 | segment2, seg1Start); |
| 423 | if (missingT2 < 0) { |
| 424 | return; |
| 425 | } |
| 426 | const SkOpSpan* missingSpan = &segment2->span(seg2End); |
| 427 | otherT2 = missingSpan->fT; |
| 428 | } else if (seg2End < 0) { |
| 429 | SkASSERT(seg1End >= 0); |
| 430 | missingT2 = segment2->calcMissingTEnd(refSegment, loEnd, min, max, hiEnd, |
| 431 | segment1, seg2Start); |
| 432 | if (missingT2 < 0) { |
| 433 | return; |
| 434 | } |
| 435 | const SkOpSpan* missingSpan = &segment1->span(seg1End); |
| 436 | otherT2 = missingSpan->fT; |
| 437 | } |
| 438 | SkPoint missingPt2; |
| 439 | SkOpSegment* addTo2 = NULL; |
| 440 | SkOpSegment* addOther2 = seg1End < 0 ? segment2 : segment1; |
| 441 | int maxTIndex = refSegment->findExactT(max, addOther2); |
| 442 | SkASSERT(maxTIndex >= 0); |
| 443 | if (missingT2 >= 0) { |
| 444 | missingPt2 = refSegment->span(maxTIndex).fPt; |
| 445 | addTo2 = seg1End < 0 ? segment1 : segment2; |
| 446 | } |
| 447 | if (missingT1 >= 0) { |
| 448 | addTo1->pinT(missingPt1, &missingT1); |
| 449 | addTo1->addTPair(missingT1, addOther1, otherT1, false, missingPt1); |
| 450 | } else { |
| 451 | SkASSERT(minTIndex >= 0); |
| 452 | missingPt1 = refSegment->span(minTIndex).fPt; |
| 453 | } |
| 454 | if (missingT2 >= 0) { |
| 455 | addTo2->pinT(missingPt2, &missingT2); |
| 456 | addTo2->addTPair(missingT2, addOther2, otherT2, false, missingPt2); |
| 457 | } else { |
| 458 | SkASSERT(minTIndex >= 0); |
| 459 | missingPt2 = refSegment->span(maxTIndex).fPt; |
| 460 | } |
| 461 | if (!partial) { |
| 462 | return; |
| 463 | } |
| 464 | if (cancelers) { |
| 465 | if (missingT1 >= 0) { |
| 466 | if (addTo1->reversePoints(missingPt1, missingPt2)) { |
| 467 | SkTSwap(missingPt1, missingPt2); |
| 468 | } |
| 469 | addTo1->addTCancel(missingPt1, missingPt2, addOther1); |
| 470 | } else { |
| 471 | if (addTo2->reversePoints(missingPt1, missingPt2)) { |
| 472 | SkTSwap(missingPt1, missingPt2); |
| 473 | } |
| 474 | addTo2->addTCancel(missingPt1, missingPt2, addOther2); |
| 475 | } |
| 476 | } else if (missingT1 >= 0) { |
| 477 | SkAssertResult(addTo1->addTCoincident(missingPt1, missingPt2, |
| 478 | addTo1 == addTo2 ? missingT2 : otherT2, addOther1)); |
| 479 | } else { |
| 480 | SkAssertResult(addTo2->addTCoincident(missingPt2, missingPt1, |
| 481 | addTo2 == addTo1 ? missingT1 : otherT1, addOther2)); |
| 482 | } |
| 483 | } |
| 484 | |
| 485 | void SkOpContour::joinCoincidence(const SkTArray<SkCoincidence, true>& coincidences, bool partial) { |
| 486 | int count = coincidences.count(); |
| 487 | #if DEBUG_CONCIDENT |
| 488 | if (count > 0) { |
| 489 | SkDebugf("%s count=%d\n", __FUNCTION__, count); |
| 490 | } |
| 491 | #endif |
| 492 | // look for a lineup where the partial implies another adjoining coincidence |
| 493 | for (int index = 0; index < count; ++index) { |
| 494 | const SkCoincidence& coincidence = coincidences[index]; |
| 495 | int thisIndex = coincidence.fSegments[0]; |
| 496 | SkOpSegment& thisOne = fSegments[thisIndex]; |
| 497 | if (thisOne.done()) { |
| 498 | continue; |
| 499 | } |
| 500 | SkOpContour* otherContour = coincidence.fOther; |
| 501 | int otherIndex = coincidence.fSegments[1]; |
| 502 | SkOpSegment& other = otherContour->fSegments[otherIndex]; |
| 503 | if (other.done()) { |
| 504 | continue; |
| 505 | } |
| 506 | double startT = coincidence.fTs[0][0]; |
| 507 | double endT = coincidence.fTs[0][1]; |
| 508 | if (startT == endT) { // this can happen in very large compares |
| 509 | continue; |
| 510 | } |
| 511 | double oStartT = coincidence.fTs[1][0]; |
| 512 | double oEndT = coincidence.fTs[1][1]; |
| 513 | if (oStartT == oEndT) { |
| 514 | continue; |
| 515 | } |
| 516 | bool swapStart = startT > endT; |
| 517 | bool swapOther = oStartT > oEndT; |
| 518 | const SkPoint* startPt = &coincidence.fPts[0][0]; |
| 519 | const SkPoint* endPt = &coincidence.fPts[0][1]; |
| 520 | if (swapStart) { |
| 521 | SkTSwap(startT, endT); |
| 522 | SkTSwap(oStartT, oEndT); |
| 523 | SkTSwap(startPt, endPt); |
| 524 | } |
| 525 | bool cancel = swapOther != swapStart; |
| 526 | int step = swapStart ? -1 : 1; |
| 527 | int oStep = swapOther ? -1 : 1; |
| 528 | double oMatchStart = cancel ? oEndT : oStartT; |
| 529 | if (partial ? startT != 0 || oMatchStart != 0 : (startT == 0) != (oMatchStart == 0)) { |
| 530 | bool added = false; |
| 531 | if (oMatchStart != 0) { |
| 532 | const SkPoint& oMatchStartPt = cancel ? *endPt : *startPt; |
| 533 | added = thisOne.joinCoincidence(&other, oMatchStart, oMatchStartPt, oStep, cancel); |
| 534 | } |
| 535 | if (!cancel && startT != 0 && !added) { |
| 536 | (void) other.joinCoincidence(&thisOne, startT, *startPt, step, cancel); |
| 537 | } |
| 538 | } |
| 539 | double oMatchEnd = cancel ? oStartT : oEndT; |
| 540 | if (partial ? endT != 1 || oMatchEnd != 1 : (endT == 1) != (oMatchEnd == 1)) { |
| 541 | bool added = false; |
| 542 | if (cancel && endT != 1 && !added) { |
| 543 | (void) other.joinCoincidence(&thisOne, endT, *endPt, -step, cancel); |
| 544 | } |
| 545 | } |
| 546 | } |
| 547 | } |
| 548 | |
| 549 | bool SkOpContour::calcCommonCoincidentWinding(const SkCoincidence& coincidence) { |
| 550 | if (coincidence.fNearly[0] && coincidence.fNearly[1]) { |
| 551 | return true; |
| 552 | } |
| 553 | int thisIndex = coincidence.fSegments[0]; |
| 554 | SkOpSegment& thisOne = fSegments[thisIndex]; |
| 555 | if (thisOne.done()) { |
| 556 | return true; |
| 557 | } |
| 558 | SkOpContour* otherContour = coincidence.fOther; |
| 559 | int otherIndex = coincidence.fSegments[1]; |
| 560 | SkOpSegment& other = otherContour->fSegments[otherIndex]; |
| 561 | if (other.done()) { |
| 562 | return true; |
| 563 | } |
| 564 | double startT = coincidence.fTs[0][0]; |
| 565 | double endT = coincidence.fTs[0][1]; |
| 566 | const SkPoint* startPt = &coincidence.fPts[0][0]; |
| 567 | const SkPoint* endPt = &coincidence.fPts[0][1]; |
| 568 | bool cancelers; |
| 569 | if ((cancelers = startT > endT)) { |
| 570 | SkTSwap<double>(startT, endT); |
| 571 | SkTSwap<const SkPoint*>(startPt, endPt); |
| 572 | } |
| 573 | bump_out_close_span(&startT, &endT); |
| 574 | SkASSERT(!approximately_negative(endT - startT)); |
| 575 | double oStartT = coincidence.fTs[1][0]; |
| 576 | double oEndT = coincidence.fTs[1][1]; |
| 577 | if (oStartT > oEndT) { |
| 578 | SkTSwap<double>(oStartT, oEndT); |
| 579 | cancelers ^= true; |
| 580 | } |
| 581 | bump_out_close_span(&oStartT, &oEndT); |
| 582 | SkASSERT(!approximately_negative(oEndT - oStartT)); |
| 583 | bool success = true; |
| 584 | if (cancelers) { |
| 585 | thisOne.addTCancel(*startPt, *endPt, &other); |
| 586 | } else { |
| 587 | success = thisOne.addTCoincident(*startPt, *endPt, endT, &other); |
| 588 | } |
| 589 | #if DEBUG_CONCIDENT |
| 590 | thisOne.debugShowTs("p"); |
| 591 | other.debugShowTs("o"); |
| 592 | #endif |
| 593 | return success; |
| 594 | } |
| 595 | |
| 596 | void SkOpContour::resolveNearCoincidence() { |
| 597 | int count = fCoincidences.count(); |
| 598 | for (int index = 0; index < count; ++index) { |
| 599 | SkCoincidence& coincidence = fCoincidences[index]; |
| 600 | if (!coincidence.fNearly[0] || !coincidence.fNearly[1]) { |
| 601 | continue; |
| 602 | } |
| 603 | int thisIndex = coincidence.fSegments[0]; |
| 604 | SkOpSegment& thisOne = fSegments[thisIndex]; |
| 605 | SkOpContour* otherContour = coincidence.fOther; |
| 606 | int otherIndex = coincidence.fSegments[1]; |
| 607 | SkOpSegment& other = otherContour->fSegments[otherIndex]; |
| 608 | if ((thisOne.done() || other.done()) && thisOne.complete() && other.complete()) { |
| 609 | // OPTIMIZATION: remove from coincidence array |
| 610 | continue; |
| 611 | } |
| 612 | #if DEBUG_CONCIDENT |
| 613 | thisOne.debugShowTs("-"); |
| 614 | other.debugShowTs("o"); |
| 615 | #endif |
| 616 | double startT = coincidence.fTs[0][0]; |
| 617 | double endT = coincidence.fTs[0][1]; |
| 618 | bool cancelers; |
| 619 | if ((cancelers = startT > endT)) { |
| 620 | SkTSwap<double>(startT, endT); |
| 621 | } |
| 622 | if (startT == endT) { // if span is very large, the smaller may have collapsed to nothing |
| 623 | if (endT <= 1 - FLT_EPSILON) { |
| 624 | endT += FLT_EPSILON; |
| 625 | SkASSERT(endT <= 1); |
| 626 | } else { |
| 627 | startT -= FLT_EPSILON; |
| 628 | SkASSERT(startT >= 0); |
| 629 | } |
| 630 | } |
| 631 | SkASSERT(!approximately_negative(endT - startT)); |
| 632 | double oStartT = coincidence.fTs[1][0]; |
| 633 | double oEndT = coincidence.fTs[1][1]; |
| 634 | if (oStartT > oEndT) { |
| 635 | SkTSwap<double>(oStartT, oEndT); |
| 636 | cancelers ^= true; |
| 637 | } |
| 638 | SkASSERT(!approximately_negative(oEndT - oStartT)); |
| 639 | if (cancelers) { |
| 640 | thisOne.blindCancel(coincidence, &other); |
| 641 | } else { |
| 642 | thisOne.blindCoincident(coincidence, &other); |
| 643 | } |
| 644 | } |
| 645 | } |
| 646 | |
| 647 | void SkOpContour::sortAngles() { |
| 648 | int segmentCount = fSegments.count(); |
| 649 | for (int test = 0; test < segmentCount; ++test) { |
| 650 | fSegments[test].sortAngles(); |
| 651 | } |
| 652 | } |
| 653 | |
| 654 | void SkOpContour::sortSegments() { |
| 655 | int segmentCount = fSegments.count(); |
| 656 | fSortedSegments.push_back_n(segmentCount); |
| 657 | for (int test = 0; test < segmentCount; ++test) { |
| 658 | fSortedSegments[test] = &fSegments[test]; |
| 659 | } |
| 660 | SkTQSort<SkOpSegment>(fSortedSegments.begin(), fSortedSegments.end() - 1); |
| 661 | fFirstSorted = 0; |
| 662 | } |
| 663 | |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 664 | void SkOpContour::toPath(SkPathWriter* path) const { |
reed | 0dc4dd6 | 2015-03-24 13:55:33 -0700 | [diff] [blame^] | 665 | int segmentCount = fSegments.count(); |
| 666 | const SkPoint& pt = fSegments.front().pts()[0]; |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 667 | path->deferredMove(pt); |
reed | 0dc4dd6 | 2015-03-24 13:55:33 -0700 | [diff] [blame^] | 668 | for (int test = 0; test < segmentCount; ++test) { |
| 669 | fSegments[test].addCurveTo(0, 1, path, true); |
| 670 | } |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 671 | path->close(); |
| 672 | } |
| 673 | |
| 674 | void SkOpContour::topSortableSegment(const SkPoint& topLeft, SkPoint* bestXY, |
| 675 | SkOpSegment** topStart) { |
| 676 | int segmentCount = fSortedSegments.count(); |
| 677 | SkASSERT(segmentCount > 0); |
| 678 | int sortedIndex = fFirstSorted; |
| 679 | fDone = true; // may be cleared below |
| 680 | for ( ; sortedIndex < segmentCount; ++sortedIndex) { |
| 681 | SkOpSegment* testSegment = fSortedSegments[sortedIndex]; |
| 682 | if (testSegment->done()) { |
| 683 | if (sortedIndex == fFirstSorted) { |
| 684 | ++fFirstSorted; |
| 685 | } |
| 686 | continue; |
| 687 | } |
| 688 | fDone = false; |
commit-bot@chromium.org | 8cb1daa | 2014-04-25 12:59:11 +0000 | [diff] [blame] | 689 | SkPoint testXY = testSegment->activeLeftTop(NULL); |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 690 | if (*topStart) { |
| 691 | if (testXY.fY < topLeft.fY) { |
| 692 | continue; |
| 693 | } |
| 694 | if (testXY.fY == topLeft.fY && testXY.fX < topLeft.fX) { |
| 695 | continue; |
| 696 | } |
| 697 | if (bestXY->fY < testXY.fY) { |
| 698 | continue; |
| 699 | } |
| 700 | if (bestXY->fY == testXY.fY && bestXY->fX < testXY.fX) { |
| 701 | continue; |
| 702 | } |
| 703 | } |
| 704 | *topStart = testSegment; |
| 705 | *bestXY = testXY; |
| 706 | } |
| 707 | } |
| 708 | |
reed | 0dc4dd6 | 2015-03-24 13:55:33 -0700 | [diff] [blame^] | 709 | SkOpSegment* SkOpContour::undoneSegment(int* start, int* end) { |
| 710 | int segmentCount = fSegments.count(); |
| 711 | for (int test = 0; test < segmentCount; ++test) { |
| 712 | SkOpSegment* testSegment = &fSegments[test]; |
| 713 | if (testSegment->done()) { |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 714 | continue; |
| 715 | } |
reed | 0dc4dd6 | 2015-03-24 13:55:33 -0700 | [diff] [blame^] | 716 | testSegment->undoneSpan(start, end); |
| 717 | return testSegment; |
| 718 | } |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 719 | return NULL; |
| 720 | } |
reed | 0dc4dd6 | 2015-03-24 13:55:33 -0700 | [diff] [blame^] | 721 | |
| 722 | #if DEBUG_SHOW_WINDING |
| 723 | int SkOpContour::debugShowWindingValues(int totalSegments, int ofInterest) { |
| 724 | int count = fSegments.count(); |
| 725 | int sum = 0; |
| 726 | for (int index = 0; index < count; ++index) { |
| 727 | sum += fSegments[index].debugShowWindingValues(totalSegments, ofInterest); |
| 728 | } |
| 729 | // SkDebugf("%s sum=%d\n", __FUNCTION__, sum); |
| 730 | return sum; |
| 731 | } |
| 732 | |
| 733 | void SkOpContour::debugShowWindingValues(const SkTArray<SkOpContour*, true>& contourList) { |
| 734 | // int ofInterest = 1 << 1 | 1 << 5 | 1 << 9 | 1 << 13; |
| 735 | // int ofInterest = 1 << 4 | 1 << 8 | 1 << 12 | 1 << 16; |
| 736 | int ofInterest = 1 << 5 | 1 << 8; |
| 737 | int total = 0; |
| 738 | int index; |
| 739 | for (index = 0; index < contourList.count(); ++index) { |
| 740 | total += contourList[index]->segments().count(); |
| 741 | } |
| 742 | int sum = 0; |
| 743 | for (index = 0; index < contourList.count(); ++index) { |
| 744 | sum += contourList[index]->debugShowWindingValues(total, ofInterest); |
| 745 | } |
| 746 | // SkDebugf("%s total=%d\n", __FUNCTION__, sum); |
| 747 | } |
| 748 | #endif |
| 749 | |
| 750 | void SkOpContour::setBounds() { |
| 751 | int count = fSegments.count(); |
| 752 | if (count == 0) { |
| 753 | SkDebugf("%s empty contour\n", __FUNCTION__); |
| 754 | SkASSERT(0); |
| 755 | // FIXME: delete empty contour? |
| 756 | return; |
| 757 | } |
| 758 | fBounds = fSegments.front().bounds(); |
| 759 | for (int index = 1; index < count; ++index) { |
| 760 | fBounds.add(fSegments[index].bounds()); |
| 761 | } |
| 762 | } |