blob: f37507b5a7aa7bf9f14c96bebc757885ad4bdc8e [file] [log] [blame]
caryclark@google.com27accef2012-01-25 18:57:23 +00001#include "CubicIntersection.h"
2#include "CubicUtilities.h"
3#include "Intersections.h"
4#include "LineUtilities.h"
5
6/*
7Find the interection of a line and cubic by solving for valid t values.
8
9Analogous to line-quadratic intersection, solve line-cubic intersection by
10representing the cubic as:
11 x = a(1-t)^3 + 2b(1-t)^2t + c(1-t)t^2 + dt^3
12 y = e(1-t)^3 + 2f(1-t)^2t + g(1-t)t^2 + ht^3
13and the line as:
14 y = i*x + j (if the line is more horizontal)
15or:
16 x = i*y + j (if the line is more vertical)
17
18Then using Mathematica, solve for the values of t where the cubic intersects the
19line:
20
21 (in) Resultant[
22 a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - x,
23 e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - i*x - j, x]
24 (out) -e + j +
25 3 e t - 3 f t -
26 3 e t^2 + 6 f t^2 - 3 g t^2 +
27 e t^3 - 3 f t^3 + 3 g t^3 - h t^3 +
28 i ( a -
29 3 a t + 3 b t +
30 3 a t^2 - 6 b t^2 + 3 c t^2 -
31 a t^3 + 3 b t^3 - 3 c t^3 + d t^3 )
32
33if i goes to infinity, we can rewrite the line in terms of x. Mathematica:
34
35 (in) Resultant[
36 a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - i*y - j,
37 e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y]
38 (out) a - j -
39 3 a t + 3 b t +
40 3 a t^2 - 6 b t^2 + 3 c t^2 -
41 a t^3 + 3 b t^3 - 3 c t^3 + d t^3 -
42 i ( e -
43 3 e t + 3 f t +
44 3 e t^2 - 6 f t^2 + 3 g t^2 -
45 e t^3 + 3 f t^3 - 3 g t^3 + h t^3 )
46
47Solving this with Mathematica produces an expression with hundreds of terms;
48instead, use Numeric Solutions recipe to solve the cubic.
49
50The near-horizontal case, in terms of: Ax^3 + Bx^2 + Cx + D == 0
51 A = (-(-e + 3*f - 3*g + h) + i*(-a + 3*b - 3*c + d) )
52 B = 3*(-( e - 2*f + g ) + i*( a - 2*b + c ) )
53 C = 3*(-(-e + f ) + i*(-a + b ) )
54 D = (-( e ) + i*( a ) + j )
55
56The near-vertical case, in terms of: Ax^3 + Bx^2 + Cx + D == 0
57 A = ( (-a + 3*b - 3*c + d) - i*(-e + 3*f - 3*g + h) )
58 B = 3*( ( a - 2*b + c ) - i*( e - 2*f + g ) )
59 C = 3*( (-a + b ) - i*(-e + f ) )
60 D = ( ( a ) - i*( e ) - j )
61 */
62
63class LineCubicIntersections : public Intersections {
64public:
65
66LineCubicIntersections(const Cubic& c, const _Line& l, Intersections& i)
67 : cubic(c)
68 , line(l)
69 , intersections(i) {
70}
71
72bool intersect() {
73 double slope;
74 double axisIntercept;
75 moreHorizontal = implicitLine(line, slope, axisIntercept);
76 double A = cubic[3].x; // d
77 double B = cubic[2].x * 3; // 3*c
78 double C = cubic[1].x * 3; // 3*b
79 double D = cubic[0].x; // a
80 A -= D - C + B; // A = -a + 3*b - 3*c + d
81 B += 3 * D - 2 * C; // B = 3*a - 6*b + 3*c
82 C -= 3 * D; // C = -3*a + 3*b
83 double E = cubic[3].y; // h
84 double F = cubic[2].y * 3; // 3*g
85 double G = cubic[1].y * 3; // 3*f
86 double H = cubic[0].y; // e
87 E -= H - G + F; // E = -e + 3*f - 3*g + h
88 F += 3 * H - 2 * G; // F = 3*e - 6*f + 3*g
89 G -= 3 * H; // G = -3*e + 3*f
90 if (moreHorizontal) {
91 A = A * slope - E;
92 B = B * slope - F;
93 C = C * slope - G;
94 D = D * slope - H + axisIntercept;
95 } else {
96 A = A - E * slope;
97 B = B - F * slope;
98 C = C - G * slope;
99 D = D - H * slope - axisIntercept;
100 }
101 double t[3];
102 int roots = cubicRoots(A, B, C, D, t);
103 for (int x = 0; x < roots; ++x) {
104 intersections.add(t[x], findLineT(t[x]));
105 }
106 return roots > 0;
107}
108
109protected:
110
111double findLineT(double t) {
112 const double* cPtr;
113 const double* lPtr;
114 if (moreHorizontal) {
115 cPtr = &cubic[0].x;
116 lPtr = &line[0].x;
117 } else {
118 cPtr = &cubic[0].y;
119 lPtr = &line[0].y;
120 }
121 double s = 1 - t;
122 double cubicVal = cPtr[0] * s * s * s + 3 * cPtr[2] * s * s * t
123 + 3 * cPtr[4] * s * t * t + cPtr[6] * t * t * t;
124 return (cubicVal - lPtr[0]) / (lPtr[2] - lPtr[0]);
125}
126
127private:
128
129const Cubic& cubic;
130const _Line& line;
131Intersections& intersections;
132bool moreHorizontal;
133
134};
135
136bool intersectStart(const Cubic& cubic, const _Line& line, Intersections& i) {
137 LineCubicIntersections c(cubic, line, i);
138 return c.intersect();
139}