caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2012 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | #include "SkIntersections.h" |
| 8 | #include "SkOpAngle.h" |
| 9 | #include "SkPathOpsCurve.h" |
commit-bot@chromium.org | b76d3b6 | 2013-04-22 19:55:19 +0000 | [diff] [blame] | 10 | #include "SkTSort.h" |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 11 | |
caryclark@google.com | a5e5592 | 2013-05-07 18:51:31 +0000 | [diff] [blame] | 12 | #if DEBUG_SORT || DEBUG_SORT_SINGLE |
| 13 | #include "SkOpSegment.h" |
| 14 | #endif |
| 15 | |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 16 | // FIXME: this is bogus for quads and cubics |
| 17 | // if the quads and cubics' line from end pt to ctrl pt are coincident, |
| 18 | // there's no obvious way to determine the curve ordering from the |
| 19 | // derivatives alone. In particular, if one quadratic's coincident tangent |
| 20 | // is longer than the other curve, the final control point can place the |
| 21 | // longer curve on either side of the shorter one. |
| 22 | // Using Bezier curve focus http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf |
| 23 | // may provide some help, but nothing has been figured out yet. |
| 24 | |
| 25 | /*( |
| 26 | for quads and cubics, set up a parameterized line (e.g. LineParameters ) |
| 27 | for points [0] to [1]. See if point [2] is on that line, or on one side |
| 28 | or the other. If it both quads' end points are on the same side, choose |
| 29 | the shorter tangent. If the tangents are equal, choose the better second |
| 30 | tangent angle |
| 31 | |
| 32 | maybe I could set up LineParameters lazily |
| 33 | */ |
caryclark@google.com | a5e5592 | 2013-05-07 18:51:31 +0000 | [diff] [blame] | 34 | static int simple_compare(double x, double y, double rx, double ry) { |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 35 | if ((y < 0) ^ (ry < 0)) { // OPTIMIZATION: better to use y * ry < 0 ? |
| 36 | return y < 0; |
| 37 | } |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 38 | if (y == 0 && ry == 0 && x * rx < 0) { |
| 39 | return x < rx; |
| 40 | } |
| 41 | double x_ry = x * ry; |
| 42 | double rx_y = rx * y; |
| 43 | double cmp = x_ry - rx_y; |
| 44 | if (!approximately_zero(cmp)) { |
| 45 | return cmp < 0; |
| 46 | } |
| 47 | if (approximately_zero(x_ry) && approximately_zero(rx_y) |
| 48 | && !approximately_zero_squared(cmp)) { |
| 49 | return cmp < 0; |
| 50 | } |
caryclark@google.com | a5e5592 | 2013-05-07 18:51:31 +0000 | [diff] [blame] | 51 | return -1; |
| 52 | } |
| 53 | |
| 54 | bool SkOpAngle::operator<(const SkOpAngle& rh) const { |
| 55 | double x = dx(); |
| 56 | double y = dy(); |
| 57 | double rx = rh.dx(); |
| 58 | double ry = rh.dy(); |
| 59 | int simple = simple_compare(x, y, rx, ry); |
| 60 | if (simple >= 0) { |
| 61 | return simple; |
| 62 | } |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 63 | // at this point, the initial tangent line is coincident |
| 64 | // see if edges curl away from each other |
| 65 | if (fSide * rh.fSide <= 0 && (!approximately_zero(fSide) |
| 66 | || !approximately_zero(rh.fSide))) { |
| 67 | // FIXME: running demo will trigger this assertion |
| 68 | // (don't know if commenting out will trigger further assertion or not) |
| 69 | // commenting it out allows demo to run in release, though |
| 70 | return fSide < rh.fSide; |
| 71 | } |
| 72 | // see if either curve can be lengthened and try the tangent compare again |
caryclark@google.com | 0361032 | 2013-04-18 15:58:21 +0000 | [diff] [blame] | 73 | if (/* cmp && */ (*fSpans)[fEnd].fOther != rh.fSegment // tangents not absolutely identical |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 74 | && (*rh.fSpans)[rh.fEnd].fOther != fSegment) { // and not intersecting |
| 75 | SkOpAngle longer = *this; |
| 76 | SkOpAngle rhLonger = rh; |
| 77 | if (longer.lengthen() | rhLonger.lengthen()) { |
| 78 | return longer < rhLonger; |
| 79 | } |
| 80 | } |
| 81 | if ((fVerb == SkPath::kLine_Verb && approximately_zero(x) && approximately_zero(y)) |
| 82 | || (rh.fVerb == SkPath::kLine_Verb |
| 83 | && approximately_zero(rx) && approximately_zero(ry))) { |
| 84 | // See general unsortable comment below. This case can happen when |
| 85 | // one line has a non-zero change in t but no change in x and y. |
| 86 | fUnsortable = true; |
| 87 | rh.fUnsortable = true; |
| 88 | return this < &rh; // even with no solution, return a stable sort |
| 89 | } |
| 90 | if ((*rh.fSpans)[SkMin32(rh.fStart, rh.fEnd)].fTiny |
| 91 | || (*fSpans)[SkMin32(fStart, fEnd)].fTiny) { |
| 92 | fUnsortable = true; |
| 93 | rh.fUnsortable = true; |
| 94 | return this < &rh; // even with no solution, return a stable sort |
| 95 | } |
| 96 | SkASSERT(fVerb >= SkPath::kQuad_Verb); |
| 97 | SkASSERT(rh.fVerb >= SkPath::kQuad_Verb); |
| 98 | // FIXME: until I can think of something better, project a ray from the |
| 99 | // end of the shorter tangent to midway between the end points |
| 100 | // through both curves and use the resulting angle to sort |
| 101 | // FIXME: some of this setup can be moved to set() if it works, or cached if it's expensive |
| 102 | double len = fTangent1.normalSquared(); |
| 103 | double rlen = rh.fTangent1.normalSquared(); |
| 104 | SkDLine ray; |
| 105 | SkIntersections i, ri; |
| 106 | int roots, rroots; |
| 107 | bool flip = false; |
caryclark@google.com | a5e5592 | 2013-05-07 18:51:31 +0000 | [diff] [blame] | 108 | bool useThis; |
| 109 | bool leftLessThanRight = fSide > 0; |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 110 | do { |
caryclark@google.com | a5e5592 | 2013-05-07 18:51:31 +0000 | [diff] [blame] | 111 | useThis = (len < rlen) ^ flip; |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 112 | const SkDCubic& part = useThis ? fCurvePart : rh.fCurvePart; |
| 113 | SkPath::Verb partVerb = useThis ? fVerb : rh.fVerb; |
| 114 | ray[0] = partVerb == SkPath::kCubic_Verb && part[0].approximatelyEqual(part[1]) ? |
| 115 | part[2] : part[1]; |
| 116 | ray[1].fX = (part[0].fX + part[partVerb].fX) / 2; |
| 117 | ray[1].fY = (part[0].fY + part[partVerb].fY) / 2; |
| 118 | SkASSERT(ray[0] != ray[1]); |
| 119 | roots = (i.*CurveRay[fVerb])(fPts, ray); |
| 120 | rroots = (ri.*CurveRay[rh.fVerb])(rh.fPts, ray); |
| 121 | } while ((roots == 0 || rroots == 0) && (flip ^= true)); |
| 122 | if (roots == 0 || rroots == 0) { |
| 123 | // FIXME: we don't have a solution in this case. The interim solution |
| 124 | // is to mark the edges as unsortable, exclude them from this and |
| 125 | // future computations, and allow the returned path to be fragmented |
| 126 | fUnsortable = true; |
| 127 | rh.fUnsortable = true; |
| 128 | return this < &rh; // even with no solution, return a stable sort |
| 129 | } |
caryclark@google.com | a5e5592 | 2013-05-07 18:51:31 +0000 | [diff] [blame] | 130 | SkASSERT(fSide != 0 && rh.fSide != 0); |
| 131 | SkASSERT(fSide * rh.fSide > 0); // both are the same sign |
| 132 | SkDPoint lLoc; |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 133 | double best = SK_ScalarInfinity; |
caryclark@google.com | a5e5592 | 2013-05-07 18:51:31 +0000 | [diff] [blame] | 134 | #if DEBUG_SORT |
| 135 | SkDebugf("lh=%d rh=%d use-lh=%d ray={{%1.9g,%1.9g}, {%1.9g,%1.9g}} %c\n", |
| 136 | fSegment->debugID(), rh.fSegment->debugID(), useThis, ray[0].fX, ray[0].fY, |
| 137 | ray[1].fX, ray[1].fY, "-+"[fSide > 0]); |
| 138 | #endif |
| 139 | for (int index = 0; index < roots; ++index) { |
| 140 | SkDPoint loc = i.pt(index); |
| 141 | SkDVector dxy = loc - ray[0]; |
| 142 | double dist = dxy.lengthSquared(); |
| 143 | #if DEBUG_SORT |
skia.committer@gmail.com | 2b34fe0 | 2013-05-08 07:01:40 +0000 | [diff] [blame^] | 144 | SkDebugf("best=%1.9g dist=%1.9g loc={%1.9g,%1.9g} dxy={%1.9g,%1.9g}\n", |
caryclark@google.com | a5e5592 | 2013-05-07 18:51:31 +0000 | [diff] [blame] | 145 | best, dist, loc.fX, loc.fY, dxy.fX, dxy.fY); |
| 146 | #endif |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 147 | if (best > dist) { |
caryclark@google.com | a5e5592 | 2013-05-07 18:51:31 +0000 | [diff] [blame] | 148 | lLoc = loc; |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 149 | best = dist; |
| 150 | } |
| 151 | } |
caryclark@google.com | a5e5592 | 2013-05-07 18:51:31 +0000 | [diff] [blame] | 152 | flip = false; |
| 153 | SkDPoint rLoc; |
| 154 | for (int index = 0; index < rroots; ++index) { |
| 155 | rLoc = ri.pt(index); |
| 156 | SkDVector dxy = rLoc - ray[0]; |
| 157 | double dist = dxy.lengthSquared(); |
| 158 | #if DEBUG_SORT |
skia.committer@gmail.com | 2b34fe0 | 2013-05-08 07:01:40 +0000 | [diff] [blame^] | 159 | SkDebugf("best=%1.9g dist=%1.9g %c=(fSide < 0) rLoc={%1.9g,%1.9g} dxy={%1.9g,%1.9g}\n", |
caryclark@google.com | a5e5592 | 2013-05-07 18:51:31 +0000 | [diff] [blame] | 160 | best, dist, "><"[fSide < 0], rLoc.fX, rLoc.fY, dxy.fX, dxy.fY); |
| 161 | #endif |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 162 | if (best > dist) { |
caryclark@google.com | a5e5592 | 2013-05-07 18:51:31 +0000 | [diff] [blame] | 163 | flip = true; |
| 164 | break; |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 165 | } |
| 166 | } |
caryclark@google.com | a5e5592 | 2013-05-07 18:51:31 +0000 | [diff] [blame] | 167 | #if 0 |
| 168 | SkDVector lRay = lLoc - fCurvePart[0]; |
| 169 | SkDVector rRay = rLoc - fCurvePart[0]; |
| 170 | int rayDir = simple_compare(lRay.fX, lRay.fY, rRay.fX, rRay.fY); |
| 171 | SkASSERT(rayDir >= 0); |
| 172 | if (rayDir < 0) { |
| 173 | fUnsortable = true; |
| 174 | rh.fUnsortable = true; |
| 175 | return this < &rh; // even with no solution, return a stable sort |
| 176 | } |
| 177 | #endif |
| 178 | if (flip) { |
| 179 | leftLessThanRight = !leftLessThanRight; |
| 180 | // rayDir = !rayDir; |
| 181 | } |
| 182 | #if 0 && (DEBUG_SORT || DEBUG_SORT_SINGLE) |
| 183 | SkDebugf("%d %c %d (fSide %c 0) loc={{%1.9g,%1.9g}, {%1.9g,%1.9g}} flip=%d rayDir=%d\n", |
| 184 | fSegment->debugID(), "><"[leftLessThanRight], rh.fSegment->debugID(), |
| 185 | "<>"[fSide > 0], lLoc.fX, lLoc.fY, rLoc.fX, rLoc.fY, flip, rayDir); |
| 186 | #endif |
| 187 | // SkASSERT(leftLessThanRight == (bool) rayDir); |
| 188 | return leftLessThanRight; |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 189 | } |
| 190 | |
| 191 | bool SkOpAngle::lengthen() { |
| 192 | int newEnd = fEnd; |
| 193 | if (fStart < fEnd ? ++newEnd < fSpans->count() : --newEnd >= 0) { |
| 194 | fEnd = newEnd; |
| 195 | setSpans(); |
| 196 | return true; |
| 197 | } |
| 198 | return false; |
| 199 | } |
| 200 | |
| 201 | bool SkOpAngle::reverseLengthen() { |
| 202 | if (fReversed) { |
| 203 | return false; |
| 204 | } |
| 205 | int newEnd = fStart; |
| 206 | if (fStart > fEnd ? ++newEnd < fSpans->count() : --newEnd >= 0) { |
| 207 | fEnd = newEnd; |
| 208 | fReversed = true; |
| 209 | setSpans(); |
| 210 | return true; |
| 211 | } |
| 212 | return false; |
| 213 | } |
| 214 | |
| 215 | void SkOpAngle::set(const SkPoint* orig, SkPath::Verb verb, const SkOpSegment* segment, |
| 216 | int start, int end, const SkTDArray<SkOpSpan>& spans) { |
| 217 | fSegment = segment; |
| 218 | fStart = start; |
| 219 | fEnd = end; |
| 220 | fPts = orig; |
| 221 | fVerb = verb; |
| 222 | fSpans = &spans; |
| 223 | fReversed = false; |
| 224 | fUnsortable = false; |
| 225 | setSpans(); |
| 226 | } |
| 227 | |
| 228 | |
| 229 | void SkOpAngle::setSpans() { |
| 230 | double startT = (*fSpans)[fStart].fT; |
| 231 | double endT = (*fSpans)[fEnd].fT; |
| 232 | switch (fVerb) { |
| 233 | case SkPath::kLine_Verb: { |
| 234 | SkDLine l = SkDLine::SubDivide(fPts, startT, endT); |
| 235 | // OPTIMIZATION: for pure line compares, we never need fTangent1.c |
| 236 | fTangent1.lineEndPoints(l); |
| 237 | fSide = 0; |
| 238 | } break; |
| 239 | case SkPath::kQuad_Verb: { |
| 240 | SkDQuad& quad = *SkTCast<SkDQuad*>(&fCurvePart); |
| 241 | quad = SkDQuad::SubDivide(fPts, startT, endT); |
| 242 | fTangent1.quadEndPoints(quad, 0, 1); |
| 243 | if (dx() == 0 && dy() == 0) { |
| 244 | fTangent1.quadEndPoints(quad); |
| 245 | } |
| 246 | fSide = -fTangent1.pointDistance(fCurvePart[2]); // not normalized -- compare sign only |
| 247 | } break; |
| 248 | case SkPath::kCubic_Verb: { |
caryclark@google.com | b3f0921 | 2013-04-17 15:49:16 +0000 | [diff] [blame] | 249 | // int nextC = 2; |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 250 | fCurvePart = SkDCubic::SubDivide(fPts, startT, endT); |
| 251 | fTangent1.cubicEndPoints(fCurvePart, 0, 1); |
| 252 | if (dx() == 0 && dy() == 0) { |
| 253 | fTangent1.cubicEndPoints(fCurvePart, 0, 2); |
caryclark@google.com | b3f0921 | 2013-04-17 15:49:16 +0000 | [diff] [blame] | 254 | // nextC = 3; |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 255 | if (dx() == 0 && dy() == 0) { |
| 256 | fTangent1.cubicEndPoints(fCurvePart, 0, 3); |
| 257 | } |
| 258 | } |
caryclark@google.com | b3f0921 | 2013-04-17 15:49:16 +0000 | [diff] [blame] | 259 | // fSide = -fTangent1.pointDistance(fCurvePart[nextC]); // compare sign only |
| 260 | // if (nextC == 2 && approximately_zero(fSide)) { |
| 261 | // fSide = -fTangent1.pointDistance(fCurvePart[3]); |
| 262 | // } |
| 263 | double testTs[4]; |
| 264 | // OPTIMIZATION: keep inflections precomputed with cubic segment? |
| 265 | int testCount = SkDCubic::FindInflections(fPts, testTs); |
| 266 | double limitT = endT; |
| 267 | int index; |
| 268 | for (index = 0; index < testCount; ++index) { |
| 269 | if (!between(startT, testTs[index], limitT)) { |
| 270 | testTs[index] = -1; |
| 271 | } |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 272 | } |
caryclark@google.com | b3f0921 | 2013-04-17 15:49:16 +0000 | [diff] [blame] | 273 | testTs[testCount++] = startT; |
| 274 | testTs[testCount++] = endT; |
commit-bot@chromium.org | b76d3b6 | 2013-04-22 19:55:19 +0000 | [diff] [blame] | 275 | SkTQSort<double>(testTs, &testTs[testCount - 1]); |
caryclark@google.com | b3f0921 | 2013-04-17 15:49:16 +0000 | [diff] [blame] | 276 | double bestSide = 0; |
| 277 | int testCases = (testCount << 1) - 1; |
| 278 | index = 0; |
| 279 | while (testTs[index] < 0) { |
| 280 | ++index; |
| 281 | } |
| 282 | index <<= 1; |
| 283 | for (; index < testCases; ++index) { |
| 284 | int testIndex = index >> 1; |
| 285 | double testT = testTs[testIndex]; |
| 286 | if (index & 1) { |
| 287 | testT = (testT + testTs[testIndex + 1]) / 2; |
| 288 | } |
| 289 | // OPTIMIZE: could avoid call for t == startT, endT |
| 290 | SkDPoint pt = dcubic_xy_at_t(fPts, testT); |
| 291 | double testSide = fTangent1.pointDistance(pt); |
| 292 | if (fabs(bestSide) < fabs(testSide)) { |
| 293 | bestSide = testSide; |
| 294 | } |
| 295 | } |
| 296 | fSide = -bestSide; // compare sign only |
caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame] | 297 | } break; |
| 298 | default: |
| 299 | SkASSERT(0); |
| 300 | } |
| 301 | fUnsortable = dx() == 0 && dy() == 0; |
| 302 | if (fUnsortable) { |
| 303 | return; |
| 304 | } |
| 305 | SkASSERT(fStart != fEnd); |
| 306 | int step = fStart < fEnd ? 1 : -1; // OPTIMIZE: worth fStart - fEnd >> 31 type macro? |
| 307 | for (int index = fStart; index != fEnd; index += step) { |
| 308 | #if 1 |
| 309 | const SkOpSpan& thisSpan = (*fSpans)[index]; |
| 310 | const SkOpSpan& nextSpan = (*fSpans)[index + step]; |
| 311 | if (thisSpan.fTiny || precisely_equal(thisSpan.fT, nextSpan.fT)) { |
| 312 | continue; |
| 313 | } |
| 314 | fUnsortable = step > 0 ? thisSpan.fUnsortableStart : nextSpan.fUnsortableEnd; |
| 315 | #if DEBUG_UNSORTABLE |
| 316 | if (fUnsortable) { |
| 317 | SkPoint iPt = (*CurvePointAtT[fVerb])(fPts, thisSpan.fT); |
| 318 | SkPoint ePt = (*CurvePointAtT[fVerb])(fPts, nextSpan.fT); |
| 319 | SkDebugf("%s unsortable [%d] (%1.9g,%1.9g) [%d] (%1.9g,%1.9g)\n", __FUNCTION__, |
| 320 | index, iPt.fX, iPt.fY, fEnd, ePt.fX, ePt.fY); |
| 321 | } |
| 322 | #endif |
| 323 | return; |
| 324 | #else |
| 325 | if ((*fSpans)[index].fUnsortableStart) { |
| 326 | fUnsortable = true; |
| 327 | return; |
| 328 | } |
| 329 | #endif |
| 330 | } |
| 331 | #if 1 |
| 332 | #if DEBUG_UNSORTABLE |
| 333 | SkPoint iPt = (*CurvePointAtT[fVerb])(fPts, startT); |
| 334 | SkPoint ePt = (*CurvePointAtT[fVerb])(fPts, endT); |
| 335 | SkDebugf("%s all tiny unsortable [%d] (%1.9g,%1.9g) [%d] (%1.9g,%1.9g)\n", __FUNCTION__, |
| 336 | fStart, iPt.fX, iPt.fY, fEnd, ePt.fX, ePt.fY); |
| 337 | #endif |
| 338 | fUnsortable = true; |
| 339 | #endif |
| 340 | } |